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Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is
involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological
and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental
mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-
mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the
critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in
multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future
avenues for research.
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FACTS

● CatB is involved in multiple kinds of programmed cell death.
● CatB can work in extralysosomal space.
● Inhibitors of CatB are highly effective in many types of PCD-

associated diseases.

OPEN QUESTIONS

● Is the extralysosomal location of CatB precisely regulated by
potential transporters?

● What is the substrate of CatB in NLRP3 inflammasome
activation?

● Does CatB differentially regulated in specific PCD?
● Can CatB induce PCD in lysosomes without translocation?
● How to monitor the relationship between CatB and lysosome

membrane integrity?

INTRODUCTION
Cathepsins are endopeptidase found in most cells, which takes
part in cell autolysis and self-digestion of tissues. Based on their
structure and catalytic type, cathepsins are classified into serine
(cathepsins A and G), aspartic (cathepsins D and E), and of
cysteine cathepsins (cathepsins B, C, F, H, K, L, O, S, V, W, and X)
which is the largest cathepsin family [1]. Because of their

overlapping in substrate specificities, cysteine cathepsin net-
works are able to compensate for the loss of function of
individual enzymes. CatZ regulates the acquired tumor-
promoting functions of lesions deficient in both CatB and CatS
as the compensatory protease [2]. However, double-knockout
mice (CatB−/− CatL−/−) died shortly after birth of brain atrophy
[3]. It is suggested that not all cathepsins, but only several, may
compensate for each other in vivo.
Cathepsin B (CatB, EC 3.4.22.1) is the first and currently the best-

characterized member of the C1 family of papain-like, lysosomal
cysteine peptidases. It is ubiquitously expressed in most cell and
tissue types. Increasing evidence of the pathophysiological roles
and substrates of CatB has been reported following the establish-
ment of CatB knockout mouse in 2000 [4]. CatB is synthesized as
inactive pre-proenzymes and modified in their N‐glycosidically
linked oligosaccharide chains with mannose‐6 phosphate residues
posttranslational glycosylation in Golgi apparatus, then transferred
to endo/lysosomes. The pH drops within the endo/lysosomes, and
inactive CatB is processed via autocatalysis or other proteases into
a mature, active two‐chain form [1]. Programmed cell death (PCD)
is crucial for organismal homeostasis. Abnormal regulation of this
process is associated with a wide variety of human diseases,
including immunological and developmental disorders, neurode-
generation, and cancer [5]. Regulated cell death relies on
specialized molecular machinery and differs from classic necrosis
which is unregulated cell death caused by overwhelming physical,
chemical, or biological factors. PCD is a subset of regulated cell
death that includes classical apoptosis in the context of
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development and tissue homeostasis, and other forms that occur
in the microenvironment of exogenous or endogenous perturba-
tions, such as pyroptosis, ferroptosis, necroptosis, and autophagic
cell death. There is growing evidence suggesting that CatB is
involved in PCD pathways at multiple levels which is responsible
for the onset and progression of numerous diseases. Under
pathological conditions, not only the expression and activity of
CatB are increased, but also lysosomal membrane permeabiliza-
tion leads to the release of CatB into the cytoplasm, initiating
various types of PCD [6]. Cystatins, a superfamily of tight-binding
inhibitors of papain-like cysteine peptidases, are widely applied to
inhibit CatB activity. Inhibition of CatB has yielded positive results
in a number of diseases under both laboratory and clinical
conditions [7, 8], mainly by blocking CatB-induced apoptosis and
autophagy. Therefore, we summarize the molecular mechanisms
and regulatory pathways of CatB in PCD, emphasizing CatB as a
dominant execution protease in PCD. In addition, we also review
CatB-mediated-PCD involved diseases and discuss the therapeutic
strategies via inhibition of CatB activity.

CATHEPSIN B
CatB is found to be ubiquitously expressed in most cell and tissue
types (Fig. 1A). It is primarily synthesized as an inactive pre-
proenzyme by ribosomes associated with the endoplasmic
reticulum, pre-CatB with an N-terminal signal peptide targets this
protein to the lumen of endoplasmic reticulum. After removal of
the signal peptide (pre) from the endoplasmic reticulum lumen,
pro-CatB is delivered to and passed through the different stacks of
Golgi apparatus, where pro-CatB is modified in their
N-glycosidically linked oligosaccharide chains with mannose-6
phosphate residues. The mannose-6 phosphate and mannose-6
phosphate receptor-mediated transport of pro-CatB from the
trans-Golgi network to endo/lysosome. In lysosomes, pro-CatB is
further processed via autocatalysis into a mature two-chain form
composed of an N-terminal light chain and a C-terminal heavy
chain (Fig. 1B) [1]. In addition to the lysosome-sorting pathway,
CatB has also been reported to enter the secretory pathway via
the default mechanism [9]. In physiological conditions, CatB
occurs in the pericellular environment only as their latent
precursors. However, enzymatically active extracellular forms of
CatB have been found in tumors and plasma [10, 11]. In addition,
CatB was detected in the cytosol and nuclear fraction of senescent
microglial cells [12, 13], suggesting its extralysosomal function in
senescent cell (Fig. 1C–E).

CATHEPSIN B IN PCD
As a fundamental process of cells, there are complex connections
among multiple PCD, and CatB is one of the common regulatory
nodal in apoptosis, pyroptosis, ferroptosis, necroptosis and
autophagy. CatB showed similar and/or different roles in
multiple PCD.

CatB and apoptosis
Apoptosis is the most studied and well-understood form of PCD
(Fig. 2). In response to lethal stimuli such as apoptosis stimulation
fragment ligand, caspases are activated by cleavage at specific
aspartic residues, resulting in the removal of an inhibitory
N-terminal domain and the production of a large and a small
subunit. Caspase-8 and 10 are cleaved primarily in response to
extrinsic signals. Activated caspase-8 induces the release of CatB
from the lysosome to the cytosol, where it performs BH3-
interacting domain agonist (Bid)-cleavage. This triggers mitochon-
drial cytochrome c release and subsequent apoptosis [14].
Cellular stress-inducing intrinsic damage, such as DNA damage

or increased reactive oxygen species (ROS), eventually converges
at the mitochondria where the fate of the cell is decided. The

balance between pro-apoptotic and anti-apoptotic B-cell lym-
phoma (Bcl)-2 family proteins determines whether apoptosis
occurs or not. CatB-mediated Bcl-2 degradation reduces the
inhibition of apoptotic signaling. Bcl-2-like protein 4 (Bax) and Bcl-
2 antagonist/killer 1(Bak) are the main pro-apoptotic executioners
that form pores in the mitochondrial outer membrane, which
induces mitochondrial outer membrane permeabilization [15]. The
pro-apoptotic BH3-only proteins, such as Bid, induce Bax/Bak pore
formation, either by directly activating Bax/Bak or passively by
sequestering the anti-apoptotic Bcl-2 proteins. Once active Bax/
Bak have induced mitochondrial outer membrane permeabiliza-
tion, pro-apoptotic factors such as cytochrome c, are released
from the mitochondria into the cytosol. In the presence of ATP,
cytochrome c, apoptotic peptidase activating factor -1, and pro-
caspase-9 interact and oligomerize, forming a complex that is
known as the apoptosome. The apoptosome allows pro-caspase-9
autoactivation. Active caspase-9 then cleaves caspase-3/7, the
executioner, thereby promoting apoptosis [16]. On the other
hand, the X-linked inhibitor of apoptosis protein (XIAP) has been
studied intensely based on its anti-apoptotic function. The anti-
apoptotic function of XIAP is regulated by the second
mitochondria-derived activator of caspases, which is released
from the mitochondrial intermembrane space upon mitochondrial
outer membrane permeabilization [17]. Although XIAP is typically
thought of as an antagonist of apoptosis, it has been identified as
an essential factor in immune inflammatory signaling to
intracellular bacterial infection. For instance, upon cytosolic
exposure to Shigella bacteria, XIAP is activated to promote an
inflammatory response to clear the infection; However, Shigella
has evolved a strategy to escape the innate immune defense by
Bid-activation, which in turn potentiates the release of mitochon-
drial second mitochondria-derived activator of caspases to
neutralize XIAP-mediated inflammatory signaling [18].
In experimental pancreatitis, CatB undergoes activation in a

secretory, vesicular and acidic compartment where it activates
trypsinogen, which in turn activates caspase-3-medicated apop-
tosis [19]. We found aged microglial CatB leaked to the cytosol
and degraded Pro-mitochondrial transcription factor A [12], which
promotes ROS production. ROS may inhibit the enzymatic activity
of cystatin C [20], an endogenous inhibitor of CatB, which then
liberates CatB in a positive feedback pattern.

CatB and pyroptosis
Pyroptosis is composed of “pyro” and “ptosis”. “Pyro” means fire,
indicating the properties of inflammation of pyroptosis, while
“ptosis” means falling, which is consistent with other forms of PCD.
Canonical pyroptotic death is mediated by inflammasome
assembly, which is accompanied by gasdermin cleavage and
interleukin (IL)-1β and IL-18 release (Fig. 3). The most extensively
studied inflammasome is the NACHT-, leucine-rich-repeat-, and
pyrin domain (PYD)-containing protein 3 (NLRP3). The suggested
mechanisms of NLRP3 activation include potassium efflux,
mitochondrial ROS generation, translocation of NLRP3 to the
mitochondria, the release of mitochondrial DNA, and lysosomal
destabilization with cathepsins leakage. However, not all of these
events are induced by all NLRP3 agonists and the precise
mechanism of NLRP3 activation is still debated. In most cell types,
NLRP3 must be primed by binding lipopolysaccharide to Toll-like
receptor 4, and priming is known to increase cellular expression of
NLRP3 through nuclear factor-κB (NFκB) signaling. Once primed,
activated NLRP3 nucleates apoptosis-associated speck-like protein
containing a CARD (ASC) into prion-like filaments through PYD-PYD
interactions. Pro-caspase-1 filaments subsequently form off of the
ASC filaments through CARD-CARD interactions, allowing autopro-
teolytic activation of pro-caspase-1 into caspase-1. This leads to the
secretion of IL-1β and IL-18, and cleavage of gasdermin, whose
N-terminal domain can oligomerize to form pores in the cell
membrane, inducing cell membrane rupture (Fig. 3).
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Interestingly, a diverse set of NLRP3 inflammasome activators
have been used to show the requirement of CatB for IL-1β
production [21]. There is evidence to suggest that lysosomal CatB
leakage into the cytosol is critical for NLRP3 inflammasome
activation, although the precise molecular mechanisms are still
unknown. However, there are some clues to explain the delicate
relationship between CatB and NLRP3 inflammasome. For
example, (1) CatB involves in the activation of NFκB, which is
responsible for the transcriptional regulation of NLRP3 and IL-1β;
(2) Mitochondrial ROS is one of the key factors for NLRP3
activation, and we have reported that leaked CatB in the cytosol

could induce mitochondrial ROS production [12]; (3) NLRP3
inflammasome was reported to be activated on the dispersed
trans-Golgi network where CatB has the chance to interact with
NLRP3 inflammasome [22, 23]. (4) A new finding suggested that
the vesicles to which NLRP3 is recruited are of endosomal origin
[24]. It is reasonable to assume that CatB may activate NLRP3
inflammasome in the endosomes.
NLRP3 has also been linked to necrosis through pyronecrosis.

Similar to classical necrosis, pyronecrosis is accompanied by
release of the pro-inflammatory cytokine mediator high mobility
group box 1 [25]. Although there are significant differences

Fig. 1 CatB expression, maturation, and cellular distribution. A CatB expression in various tissues. The data were obtained from the
Genotype-Tissue Expression (GTEx) Project (https://gtexportal.org). Expression values are shown in TPM (transcripts per million), calculated
from a gene model with isoforms collapsed to a single gene. B CatB maturation and lysosome-sorting pathway. C Methods to examine the
lysosomal acid condition and CatB enzymatic activity. D’ Puncta signals (orange) of lysosomes with the acid environment and puncta signals
(red) of CatB with enzymatic activity. D” LLOME increases the permeability of the lysosome membrane, resulting in a smaller number of acid
lysosomes. LLOME-treated cells showed diffused CatB enzymatic activity. E Senescent cells showed CatB enzymatic activity in the nucleus but
were not found in control cells.
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between pyronecrosis and pyroptosis, such as their differential
dependence on caspase-1, they are evidently both pathways
which respond to pathogens by promoting the inherently pro-
inflammatory release of cellular contents [26]. It was reported that
human monocytes carrying disease-associated NLRP3 mutations
exhibit excessive necrosis-like cell death by a process dependent
on ASC and CatB but not on caspase-1 or IL-1β [25]. These
evidences suggested that lysosome activity was necessary in
pyronecrosis; However, the molecular regulation of CatB on
pyronecrosis remains to be studied.

CatB and ferroptosis
Ferroptosis is characterized by the generation of lipid peroxides by
highly expressed unsaturated fatty acids in the cell membrane and
the accumulation of lipid peroxides to lethal levels catalyzed by
divalent iron or ester oxygenase, thereby inducing cell death
(Fig. 4). Iron is an essential micro-element with two oxidation
states, Fe2+ and Fe3+. Fe3+ is imported into cells through the
membrane protein transferrin receptor 1 and then locates in the
endosome. In the endosome, Fe3+ is reduced to Fe2+ by the
ferrireductase activity of six-transmembrane epithelial antigen of

prostate 3. Divalent metal transporter 1 mediates the release of
Fe2+ from the endosome into a labile iron pool in the cytoplasm
[27]. Intracellular Fe2+ can be oxidized to Fe3+ by hephaestin and
bound to ferroportin 1, which in turn are transferred out of the
cell. Fe2+ alters mitochondrial function through the impairment of
the electron transport chain complexes. Damaged electron
transport chain complexes result in ROS production in mitochon-
dria, leading to oxidative damage to proteins, DNA, and lipids [28].
In addition, ROS can react with the polyunsaturated fatty acids of
lipid membranes and induce lipid peroxidation, which accumu-
lates and destroys cell membranes exacerbating the development
of ferroptosis (Fig. 4).
Signal transducer and activator of transcription 3 (STAT3) is an

oxidative responsive transcriptional factor and is reported to be
linked mediation of stress-related ferroptosis. It was demonstrated
that genetic blockade of STAT3 limited erastin-induced CatB
expression [29]. In contrast, a research results showed over-
expression or knockdown of STAT3 had no effects on the
expression of CatB [30]. Therefore, STAT3-CatB regulatory axis is
stress or disease-dependent in ferroptosis. Maintaining lysosomal
integrity and function is crucial for cellular homeostasis. Different

Fig. 2 Schematic representation of CatB and its substrates in the core apoptotic machinery. The extrinsic apoptotic pathway is activated
by the binding of Fas ligand to the cell surface death receptor (FasR), which induces the activation of the caspase cascade. The intrinsic
apoptotic pathway is activated by intracellular stress, which is initiated by BCL-2 family proteins (BAX/BAK). Mitochondria release cytochrome
c. The binding of cytochrome c to APAF1 promotes apoptosome assembly, which recruits and activates caspase 9. Notably, leakage of CatB
from the lysosome involves in TFAM degradation and Bid truncation, resulting in MOMP. Moreover, CatB in acidic secretory vesicles is involved
in trypsin activation, which regulates the serine protease cascade, resulting in apoptosis. APAF1 apoptotic peptidase activating factor 1, BAK
Bcl-2 antagonist/killer 1, BAX Bcl-2 associated X, apoptosis regulator, Bcl-2 B-cell lymphoma 2, Bid BH3-interacting domain death agonist, CatB
cathepsin B, Fas apoptosis stimulation fragment, FasR Fas cell surface death receptor, MCL1 myeloid cell leukemia sequence 1, MOMP
mitochondrial outer membrane permeabilization, ROS reactive oxygen species, tBid truncated Bid, TFAM mitochondrial transcription factor A.

Z. Xie et al.

4

Cell Death and Disease          (2023) 14:255 



forms of stress-induced lysosomal membrane permeabilization
resulted in lysosomal-dependent cell death. Using pharmacologi-
cal inhibitors and genetic models of ferroptosis, lysosomal
membrane permeabilization and cytoplasmic leakage of CatB
were demonstrated to unleash structural and functional changes
in mitochondria and promote cleavage of histone H3 in the
nucleus [31]. On the other hand, CatB is demonstrated to
involve in the predominantly degradation of albumin in lysosome.
Cysteine is a proteogenic amino acid but also needed for the
synthesis of glutathione (GSH), which is needed to prevent
ferroptosis [32], because GSH is a co-substrate for glutathione
peroxidase 4 that could reduce potentially toxic membrane lipid
hydroperoxides to non-toxic lipid alcohols. CatB-dependent
albumin breakdown followed by export of cystine from the
lysosome via the transporter cystinosin fuels the synthesis of
GSH [33]. However, catabolism of albumin in lysosome can supply
the cell with cysteine need to synthesize GSH while possibly other
protective sulfur containing metabolites, block lipid peroxidation,
and prevent the onset of ferroptosis.

CatB and necroptosis
Necroptosis is a form of regulated cell death, which is induced by
ligand binding to tumor necrosis factor family death domain
receptors, pattern-recognizing receptors, and virus sensors. The
common feature of these systems is the involvement of proteins,
containing a receptor interaction protein kinase homology

interaction motif mediating recruitment and activation of receptor
interaction protein kinase 3, which ultimately activates the
necroptosis executioner mixed lineage kinase domain-like. Sub-
sequently, oligomerization of mixed lineage kinase domain-like
disrupts the integrity of plasma membranes and causes cell death
(Fig. 5). Several lines of evidence demonstrated that lysosomal
membrane permeabilization resulting in CatB leakage-mediated
mitochondrial ROS plays an indispensable role in the regulation of
necroptosis [34, 35]. Besides that, there are few reports on CatB
and necroptosis except for direct cleavage of receptor interaction
protein kinase 1, demonstrating that CatB pulls the emergency
brake on necroptosis [36].

CatB and autophagy
Autophagy is a lysosome-dependent catabolic process character-
ized by the increased formation of double-membrane autophago-
somes for the sequestration of cytoplasmic components and
subsequent degradation after autophagosome fusion with lyso-
somes (Fig. 6). It is generally considered a cell survival/protection
mechanism. However, in specific contexts, autophagy accompa-
nies and is required for the activation of other cell death models.
In these cases, inhibition of autophagy can prevent cell death,
even though cell death is not executed through autophagy.
Under homeostatic conditions, CatB cleaves the calcium

channel mucolipin TRP cation channel 1 in the lysosome,
maintaining suppression of the transcription factor EB and

Fig. 3 Schematic representation of CatB and its substrates in the core pyroptosis machinery. Activation of NLRP3 inflammasome in
macrophages requires two steps: priming and activation. The priming step is provided by inflammatory stimuli such as TLR agonists, which
induce NF-κB-mediated NLRP3 and pro-IL-1β expression. The activation step is triggered by PAMPs and DAMPs. Upon stimulation, NLRP3
oligomerizes and recruits ASC through homotypic PYD-PYD interactions and leads to helical ASC filament formation. Assembled ASC recruits
caspase 1 and enables proximity-induced caspase 1 self-cleavage and activation, which in turn cleaves pro-IL-1β and GSDMD. GSDMD inserts
into the membrane, forming pores and inducing pyroptosis. It has been demonstrated that CatB is a critical factor for NLRP3 inflammasome
activation but the precise molecular mechanisms and cellular space are unclear. The remained questions regarding CatB are listed at the right-
bottom of the figure. CatB cathepsin B, DAMPs damage-associated molecular patterns, GSDMD gasdermin, IL interleukin, IκB I kappa B kinase,
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, NLRP3 NACHT-, leucine-rich-repeat- (LRR), and pyrin domain (PYD)-
containing protein 3, PAMPS pathogen-associated molecular patterns, ROS reactive oxygen species, TLR toll-like receptor.
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reducing the expression of lysosomal and autophagy-related
proteins [37]. In an infection model of BMDMs with Francisella
movicida, genetic deletion or pharmacological inhibition of CatB
down-regulated mechanistic target of rapamycin activity and
prevented cleavage of lysosomal calcium channel TRPML1 and
these events drove transcription of lysosomal and autophagy
genes via TEEB [38]. Accordingly, CatB provides a checkpoint for
homeostatic maintenance of lysosome populations and basic
recycling functions in host defense against Francisella movicida.
Nevertheless, another infection model indicated a contrary
mechanic function of CatB in autophagy. Anthrax lethal toxin is
a virulence factor secreted by Bacillus anthracis and has direct
cytotoxic effects on most cells once released into the cytoplasm.
The cytoplasmic delivery of the proteolytically active component
of lethal toxin, lethal factor, is carried out by the transporter
component, protective antigens, which interacts with either of
two known surface receptors: anthrax toxin receptor 1 and 2. It
was demonstrated that CatB mediates the cytoplasmic delivery of
lethal factor by anthrax toxin receptor 2 in parallel with enhanced
autophagic flux (Fig. 6), because cells treated with the membrane-
permeable CatB inhibitor or CatB-deficient cells had no defect in
fusion of LC3-containing autophagic vacuoles with lysosome,
autophagic flux was significantly delayed [39]; However, it remains
to be addressed how CatB affects this process.
In addition to CatB-mediated autophagy in infection model, it

was also reported that increased S-nitrosylation of CatB in both AD
mouse and flash-frozen postmortem human AD brains. This
posttranslational modification of CatB inhibits its enzymatic
activity, blocks autophagic flux, and leads to accumulation of
protein aggregates that finally contributes to Alzheimer’s disease

pathogenesis [40]. It is worth noting that CatB may involve in
autophagy-associated cell death, but lacking evidence of its
involvement in autophagy-dependent cell death.

CATHEPSIN B AND DISEASE
Increased pathological roles and substrates of CatB have been
reported in the last decades. Impaired CatB synthesis and activity
were shown to be involved in the pathogenesis of multiple
diseases (Fig. 7), such as rheumatoid arthritis [41, 42], liver fibrosis
[43], traumatic brain injury [44], hypoxia-ischemic brain injury [45],
inflammatory pain [46], pancreatitis [47], Alzheimer’s disease
[48–50], cancer [51, 52], and COVID-19 infection [53, 54]. Herein,
we will review and discuss the role of CatB in PCD during disease
progression (Table 1).

Neurologic diseases
The cytoplasmic CatB expression has been found to be
upregulated in postmortem brain tissue of patients with various
neurological diseases, including cerebral ischemia, traumatic brain
injury (TBI), and neurodegenerative diseases [40, 55–57]. CatB is
sequestered primarily in the lysosomes and vesicles of the
regulated secretory pathway, and is rarely found in the cytosol
of healthy cells. Numerous researches have reported that
lysosomal permeabilization enables the release of CatB into the
cytoplasm in response to pathogenic stimuli through in vitro
experiments and animal models of disease, including neurons
from rats with cerebral ischemia induced by permanent middle
cerebral artery occlusion and in vitro oxygen and glucose
deprivation model, microglia and neurons treated with Aβ and

Fig. 4 Schematic representation of CatB and its substrates in the core ferroptosis machinery. Ferroptosis is mainly caused by iron-
dependent lipid peroxidation. Free Fe3+ forms a complex with extracellular transferrin, which binds to a TfR1 on the cell membrane and forms
endosomes that are transported in the cell under endocytosis. In the cell, Fe3+ is catalyzed into Fe2+ by the enzyme STEAP3. Fe2+ can be
pumped out through ferroportin which is located on the cell membrane. Excess Fe2+ generates ROS through Fenton chemical reaction,
leading to the continuous accumulation of lipid ROS within the cell and the eventual development of ferroptosis. ROS can also interact with
PUFAs on the lipid membrane to form lipid ROS. When a large amount of lipid ROS accumulates in the cell, it causes ferroptosis. Membrane
lipid peroxidation of lysosome increases the permeability of the lysosomal CatB, which is capable to promote mitochondrial ROS production
and degrades H3 in the nucleus. ACSL4 acyl-coenzyme A synthetase long chain family member 4, CatB cathepsin B, DMT1 divalent metal ion
transporter 1, ETC electron transport chain, H3 histone 3, LOX lysyl oxidase, LPCAT3 lysophosphatidylcholine acyltransferase 3, PUFAs
polyunsaturated fatty acids, ROS reactive oxygen species, STEAP3 six-transmembrane epithelial antigen of the prostate, TfR1 transferrin
receptor 1.
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from AD mice models, dopamine neurons treated with MPTP,
cortex and hippocampus neurons from TBI mouse model, etc.
[55–59].
Unlike many other lysosomal proteases that are only active at

the acidic pH within lysosomes, mature CatB possesses a finite
period of proteolytic activity at the neutral pH [60]. Cytosolic CatB
cleavage of BID and release of cytochrome C from the
mitochondria could induce caspase-dependent apoptosis, which
is a common mechanism by which CatB induces cell death in
neurological disorders, such as retinitis pigmentosa, (focal)
cerebral ischemia, TBI, lysosomal storage disorders, and AD
[59, 61–64]. S-nitrosylating CatB, which increases in both 5xFAD
transgenic mouse and flash-frozen postmortem human AD brains,
showed lower protease activity and compromised autophagic flux
induced caspase-dependent neuronal apoptosis in mouse cere-
brocortical cultures [65]. A similar mechanism of neuronal cell
death caused by the obstruction of autophagosome clearance by
low-activity CatB was also found in hypoxia-ischemia [66]. In
addition, the deletion of CatB caused Cav2.1 forming inclusions in
the lysosomes and induces Purkinje cell death in Spinocerebellar
ataxia type 6 mouse model [65]. These studies suggest that CatB
exerts neuroprotective effects.
In Parkinson’s disease, microglia endocytosis α-syn results in

cytosolic CatB accumulation followed by activation of NLRP3
inflammations, inducing loss of dopaminergic neurons in the

substantia nigra [57]. However, the specific substrates and
subcellular localization of CatB-initiated NLRP3 activation remain
to be revealed. Moreover, only the expression of CatB, rather than
Cat H, L, and D, was found to increase in the degenerative neurons
of patients with amyotrophic lateral sclerosis (ALS) [67]. Though
the exact role of CatB in motor neuron death has not been
characterized, Watanabe et al. found that exogenous addition of
Cystatin C could protect primary motor neurons derived from ALS
model mice by inhibiting CatB activity [8]. Viral infections such as
human immunodeficiency virus 1 [68] can also cause neuronal
death and cognitive impairment. Human immunodeficiency virus
1 infection of monocyte-derived macrophages, can cross the
blood-brain barrier to the central nervous system secreting
neurotoxic factors including CatB then trigger neuronal cell
apoptosis [68, 69].

Cardiovascular diseases
CatB expression and protease activity are elevated in several
inflammatory heart diseases [70, 71]. High levels of CatB can
promote pyroptosis by activating NLRP3 inflammasome in
cardiomyocytes of coxsackievirus B3-induced viral myocarditis
mice and streptozotocin-induced diabetic cardiomyopathy mice,
and in endothelial cells of a mouse model of Kawasaki disease
induced by Candida albicans cell wall extracts [72]. Knockout of
CatB alleviated apoptosis and pyroptosis of cardiomyocytes in

Fig. 5 Schematic representation of CatB and its substrates in the core necroptosis machinery. Upon TNF-α stimulation, the activated TNFR
interacts TRADD, TRAFs, and RIPK1 and recruits cIAP1/2 to form a plasma membrane-associated complex, resulting in RIPK1
polyubiquitination and NF-κB activation. Deubiquitinated RIPK1 binds to FADD and caspase-8 to form complex IIa, which activates
caspase-8 and leads to apoptosis. If caspase-8 activity is blocked, RIPK1 will bind to RIPK3 to form complex IIb, flowed by RIPK3 activation,
MLKL phosphorylation, and MLKL membrane translocation resulting in necroptosis through disrupting membrane integrity. Casp caspase,
CatB cathepsin B, cIAP1/2 cellular inhibitor of apoptosis protein 1/2, CYLD CYLD lysine 63 deubiquitinase, DAMPs damage-associated
molecular patterns, DR5 death receptor 5, FADD Fas associated via death domain, Fas apoptosis stimulation fragment, FasL Fas, apoptosis
stimulation fragment ligand, IκB I kappa B kinase, MLKL mixed lineage kinase domain-like, NF-κB nuclear factor kappa-light-chain-enhancer of
activated B cells, RIPK receptor interaction protein kinase, ROS reactive oxygen species, TLR toll-like receptor, TNF tumor necrosis factor, TNFR
TNF receptor, TRADD TNFR1-associated death domain protein, TRAF TNF receptor associated factor, TRAIL TNF-related apoptosis-inducing
ligand.
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mice with viral myocarditis and myocardial infarction, respectively
[71, 73]. Collectively, these evidences suggest that CatB could be a
promising therapeutic target for myocarditis.

Immune disease
As a widely distributed cathepsin in immune cells, CatB is also
associated with immune diseases. In Sjögren syndrome, a chronic
Kawasaki disease and progressive autoimmune disease characterized
by dry mouth and eyes, impaired autophagy has been shown to lead
to the release of CatB into the cytoplasm resulting in apoptosis via
activation of caspase 1 and BID-caspase 3 pathways [74]. Cold-
induced autoinflammatory syndrome 1 gene encodes cryopyrin
(named NALP3 and NLRP3), a protein that localizes to the cytosol and
functions as pattern recognition receptor. Cryopyrin is one of the
main components of NLRP3 inflammasome. Mutations in the cold-
induced autoinflammatory syndrome 1 gene induce rapid pyrone-
crosis of THP-1 monocytic cells and are associated with neonatal-
onset multisystem inflammatory disease. The pyronecrosis of cold-

induced autoinflammatory syndrome 1 mutant monocytes is
independent of caspase1 and IL-1β, but can be blocked by ASC
knockdown and CatB inhibition [25, 75–77]. CatB induces hepatocyte
death through the CatB-tBid-mitochondrial apoptotic signaling
pathway in multiple hepatitis/liver injury models [43, 78, 79]. CatB
can also aggravate acute pancreatitis mice induced by intraperitoneal
injection of cerulein via activating the NLRP3 inflammasome and
promoting caspase-1-induced acinar cell pyroptosis. However,
another study showed that treatment of mouse pancreatic acinar
cells with low doses of LLOMe resulted in the release of a small
amount of CatB into the cytoplasm [80], causing caspase 3-activated
apoptotic cell death. At higher doses that lead to large amount of
CatB releasing into the cytoplasm, there was in turn a decrease in
capsase-3 activation and an increase in lactate dehydrogenase
release and RIP-1/RIP-3 interaction suggesting an increase in cell
death by necrosis. Moreover, no necrosis was observed when acinar
cells of CatB KO mice were treated with high-dose LLOMe [80].
Although the mechanism by which CatB at different cytoplasmic

Fig. 6 Schematic representation of CatB and its substrates in autophagy. Loss of growth factor stimulation or nutritional inputs like glucose
leads to the activation of the ULK complex and subsequently drives phagophore assembly. The phagophore elongates and circularizes to
form the autophagosome, which then docks with lysosomes. Under homeostatic conditions, CatB directly cleaves the lysosomal calcium
channel MCOLN1 and negatively regulates the efflux of calcium and activation of the PPP3. Inhibition of PPP3 prevents its ability to
dephosphorylate and activate TFEB. Dephosphorylated TFEB initiates autophagy. Therefore, CatB works as an apical signal controlling
lysosomal dynamics and autophagy. ANTXR2-mediated delivery of LF requires autophagy flux, which is triggered by lysosome fusion and
CatB. Obesity-induced lipotoxicity and ER stress, or stressed lysosomal mediated autophagosome accumulation involves CatB activity
reduction or lysosomal leakage. AMPK AMP-activated protein kinase, ANTXR2 anthrax toxin receptor 2, CatB cathepsin B, ER endoplasmic
reticulum, LF lethal factor, MCOLN1 mucolipin TRP cation channel 1, PPP3 Protein Phosphatase 3, TFEB transcription factor EB, ULK Unc-51 like
autophagy activating kinase.
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concentrations causes the transformation of cell death pathway
remains to be explored, it suggests the variable role of CatB in
causing cell death at different stages of disease progression.

Cancers
CatB expression is elevated in many types of tumor cell and
serves as a prognostic and therapeutic marker for multiple
cancers [81–83]. Of note, lysosomal cathepsins are often
upregulated in cancer cells to meet the increased metabolic
demands, and elevated cathepsin expression is associated with
increased invasiveness and metastasis. This is significantly
different from pathologically stimulated cells in which elevated
cytoplasmic CatB induces PCD. In view of the prominent position
of its specific functions in cancer cells, there are currently two
approaches to directly or indirectly regulate cancer cell death by
targeting CatB: (1) Inhibiting the proteolytic enzyme activity of
CatB to reduce cancer cell migration, invasion, and proliferation.
CatB is involved in cancer metastasis by altering extracellular
matrix remodeling and facilitating angiogenesis and promotes
invasion and proliferation via induction of vascular endothelial
growth factor and MMP-9 [84, 85]. For example, CatB degradation
of tenascin-C surrounding neovessels could facilitate neovascular
extension resulting in the progression of gliomas [86]. Knock-
down of CatB via RNA interference reduced gliomas invasion,
growth, and angiogenesis [84]. CatB inhibition by shRNA or
CA074 in tumor cells reduced collagen I degradation in vitro and
bone metastasis in tumor-bearing animals [87, 88]. (2) Increasing
lysosomal permeabilization enables the release of CatB into the
cytoplasm to promote tumor cell apoptosis. This is currently the
most widely explored in the CatB-targeting treatment strategies
of various cancer types, including lung cancer [89], hepatocellular
carcinoma [90], and glioma [91]. However, side effects should be
evaluated with caution when using these drugs, as lysosomal

permeabilization has the potential to cause paracancerous
cell death.

CATHEPSIN B INHIBITORS
CatB is involved in multiple types of PCD and diseases. Deletion of
CatB has been shown to significantly reduce the disease
progression. Therefore, CatB inhibitors have been used in a broad
range of disease models to reduce cell death, which demonstrates
the important role of CatB in multiple PCD, such as apoptosis,
autophagy and pyroptosis, and represents a potential strategy of
alleviating the pathogenesis of various diseases. Currently,
inhibitors targeting CatB include endogenous peptide inhibitors
and both natural and synthetic inhibitors of low molecular weight
(Table 2).

CatB endogenous inhibitors
Active CatB is generally located in lysosomes and can be detected
in various cellular compartments. Although the activity of CatB is
reduced after its release into the cytoplasm, any leakage will cause
great damage to the cells. Therefore, the endogenous inhibitors of
CatB play important roles in the homeostasis of cells, the
imbalance between CatB and its endogenous inhibitors is
considered to be a hallmark of disease progression [92]. The
endogenous inhibitors of CatB include cystatins, thyropins,
propeptides, serpins and the general peptidase inhibitor α2-
macroglobulin. The most essential one of them is the cystatin
superfamily, including evolutionary related proteins expressed in
animals, plants, fungi and viruses [93].
The cystatins are divided into three families: type I, II and III. The

type I cystatins, which includes cystatin A and B (also known as
stefins), is an intracellular protein mainly found in the cytoplasm
and nucleus. Stefins are single-chain polypeptide consisting of

Fig. 7 Cathepsin B in diseases. Schematic representation of CatB-mediated cell death in neurologic diseases, immune diseases, cardiac
diseases and cancers.
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about 100 amino acids. The type II and III cystatins are secreted
proteins. The type II cystatins, such as cystatin C, D, E/M, S and SN,
are single-chain polypeptides consisting of about 120 amino acid
residues. The activity of CatB in extracellular fluid is mainly
regulated by cystatin C. Type III cystatins are multidomain, high
molecular mass proteins (60–120 kDa), such as kininogens [60, 94].
Cystatin superfamily is responsible for overseeing the CatB

biosynthesis and translocation to lysosomes, regulating excessive
cysteine protease activity in cells and tissues [85]. In addition,
Stefin A, as a reversible inhibitor, plays a role in apoptosis, controls
the proliferation and differentiation of normal keratinoma cells,
and protects epithelial and lymphoid from cysteine peptidase
produced by invasive pathogens. Stefin A has also been shown to
control follicle growth and maturation [60]. It has been reported
that low stefin A expression can promote the development of
glioblastoma, breast cancer and head and neck cancer. However,
CatB and stefin A can form a positive feedback loop during renal
cell carcinoma progression in renal cell carcinoma [95]. Aberrant
expression of stefin B is also associated with diseases. Compared
with benign meningioma, stefin B mRNA and protein expression
levels are lower in atypical, whereas the corresponding expression
levels of CatB are high [94]. The loss of function mutations in the
stefin B gene can cause progressive myoclonic epilepsy of the
Unverricht-Lundborg, and the absence of stefin B leads to the
increased activity of cysteine cathepsin, inducing apoptosis [60].
Cystatin C can exhibit neuroprotective property through autop-
hagy induction and inhibition of CatB [8]. Cystatin SN regulates
proliferation of cancer cells in gastric cancer, pancreatic cancer
and lung cancer, and inhibits cell death by regulating autophagy
induction and ROS production in colorectal cancer [7].
H-kininogen inhibits bradykinin - induced brain inflammation
which is characterized by gliosis [96].

Exogenous inhibitors of CatB
The group of exogenous inhibitors of CatB includes inhibitors of
natural origin that are isolated from animals, plants and
microorganisms; small synthetic molecules; neutralizing mono-
clonal antibodies; anti-sense and siRNA molecules [93].

Inhibitors of natural origin
CatB inhibitors of natural origin mainly include of peptidyl
aldehydes, aziridinyl peptides and epoxysuccinyl peptides. The
epoxysuccinyl peptides are the most studied CatB inhibitors of
natural origin, and the most well-known member among them is
E-64, which was isolated from Aspergillus japonicus in 1978. E-64
can induce oxidative stress and apoptosis in various parasites,
such as filarial parasite [97]. Aldehyde inhibitor leupeptine, which
was isolated from different culture broths of streptomyces strains,
was shown to ameliorate the harmful effects on endothelial cells
in scleroderma [98, 99].

Synthetic inhibitors
To improve the specificity of CatB inhibitors, another representa-
tive epoxysuccinyl inhibitor, CA074 was synthesized with a better
selectivity for CatB than E-64. However, the poor membrane
permeability of CA074 limits its biological application. CA-074Me
was further synthesized and showed strong cellular uptake.
Numerous studies showed that the derivatives of E-64 and

CA074 could reduce inflammation and apoptosis in various
diseases. For instance, TBI- induced cell death, motor and
cognitive dysfunction were attenuated by the use of E-64d [60].
E-64d treatment reduced neuromotor disorders, the loss of brain
tissue and neuronal cell in controlled cortical impact mice [60].
Moreover, CA074 could protect cortical structures from ischemic
damage in focal cerebral ischemia [61] and abolish the neurotoxic
effects caused by Aβ42-activated microglial BV2 cells in AD [100].
CA074ME has been reported to suppress the expression and
activity of pro-inflammatory cytokine and further inhibits acinarTa

bl
e
1.

co
n
ti
n
u
ed

D
is
ea

se
s

Su
b
je
ct
s

C
at
B
ex

p
re
ss
io
n

fo
ld
s
ch

an
g
e

C
at
B
ac
ti
vi
ty

C
el
l
d
ea

th
ty
p
e

C
at
B
p
at
h
ol
og

ic
al

fu
n
ct
io
n

R
ef
er
en

ce

A
lc
o
h
o
l-a

ss
o
ci
at
ed

liv
er

d
is
ea
se

(A
LD

)
N
o
n
-a
lc
o
h
o
lic

fa
tt
y
liv
er

d
is
ea
se

p
at
ie
n
ts
’
T
ce
ll

12
u
p

D
u
o
d
en

al
C
D
8+

T
re
si
d
en

t
m
em

o
ry

(T
R
M
)
ce
lls

C
at
B
re
le
as
es

in
to

th
e
cy
to
so
l

d
ri
vi
n
g
th
e
TR

M
ap

o
p
to
si
s.

[1
19

]

A
cu

te
p
an

cr
ea
ti
ti
s

A
ci
n
ar

ce
lls

p
re
p
ar
ed

fr
o
m

th
e

p
an

cr
ea
s
o
f
ra
ts

o
r
m
ic
e

u
p

u
p

A
ci
n
ar

ce
ll

Sm
al
l
am

o
u
n
t
o
f
C
at
B
in

th
e

cy
to
so
l
ac
ti
va
te
s
ap

o
p
to
si
s

an
d
la
rg
e
am

o
u
n
t
o
f
C
at
B

sh
ift
s
th
e
ce
ll
d
ea
th

p
at
h
w
ay

to
w
ar
d
n
ec
ro
si
s.

[4
,8

0]

A
cu

te
p
an

cr
ea
ti
ti
s

In
tr
ap

er
it
o
n
ea
l
in
je
ct
io
n
o
f
ce
ru
le
in

in
m
ic
e
to

in
d
u
ce

ac
u
te

p
an

cr
ea
ti
ti
s

3
u
p

A
ci
n
ar

ce
ll

C
at
B
ac
ti
va
te
s
th
e
N
LR

P3
in
fl
am

m
as
o
m
e
an

d
p
ro
m
o
te
s

th
e
ca
sp
as
e-
1-
in
d
u
ce
d

p
yr
o
p
to
si
s.

[1
01

]

Z. Xie et al.

12

Cell Death and Disease          (2023) 14:255 



Ta
bl
e
2.

Th
e
en

d
o
g
en

o
u
s
an

d
ex
o
g
en

o
u
s
in
h
ib
it
o
rs

o
f
C
at
B.

C
at
eg

or
y

In
h
ib
it
or

se
ri
es

In
h
ib
it
or

So
ur
ce

Ty
p
e
of

in
h
ib
it
io
n

R
el
at
ed

ce
lls
/d
is
ea

se
s

Ty
p
e
of

ce
ll
d
ea

th
R
ef
er
en

ce

En
d
o
g
en

o
u
s

in
h
ib
it
o
rs

Ty
p
e
I
C
ys
ta
ti
n
s

St
efi

n
A

In
vi
vo

R
ev
er
si
b
le

K
er
at
in
o
m
a
ce
lls
,e

p
it
h
el
ia
l,

ly
m
p
h
o
id
/G

lio
b
la
st
o
m
a,

b
re
as
t

ca
n
ce
r,
h
ea
d
an

d
n
ec
k
ca
n
ce
r

A
p
o
p
to
si
s

[9
3,

95
]

Ty
p
e
I
C
ys
ta
ti
n
s

St
efi

n
B

In
vi
vo

R
ev
er
si
b
le

C
er
eb

el
la
r
g
ra
n
u
le

n
eu

ro
n
s/

Pr
o
g
re
ss
iv
e
m
yo

cl
o
n
ic

ep
ile
p
sy

o
f

th
e
U
n
ve
rr
ic
h
t-
Lu

n
d
b
o
rg

(E
PM

1)

A
p
o
p
to
si
s

[6
0]

Ty
p
e
II
C
ys
ta
ti
n
s

C
ys
ta
ti
n
C

In
vi
vo

R
ev
er
si
b
le

M
yo

ca
rd
ia
l
ce
ll/
V
ir
al

m
yo

ca
rd
it
is
(V
M
C
)

Py
ro
p
to
si
s

[6
0,

71
]

M
o
to
r
n
eu

ro
n
al

ce
lls
/A
m
yo

tr
o
p
h
ic

la
te
ra
l
sc
le
ro
si
s
(A
LS
)

D
o
p
am

in
er
g
ic

n
eu

ro
n
s/
Pa

rk
in
so
n’
s

d
is
ea
se

(P
D
)

A
u
to
p
h
ag

y
[8
]

Ty
p
e
II
C
ys
ta
ti
n
s

C
ys
ta
ti
n
SN

In
vi
vo

R
ev
er
si
b
le

C
an

ce
r
ce
lls
/G

as
tr
ic

ca
n
ce
r,

co
lo
re
ct
al

ca
n
ce
r
(C
RC

),
p
an

cr
ea
ti
c

ca
n
ce
r,
lu
n
g
ca
n
ce
r

A
u
to
p
h
ag

y
(C
R
C
)

[9
3,

98
]

Ty
p
e
III

C
ys
ta
ti
n
s

H
-k
in
in
o
g
en

In
vi
vo

R
ev
er
si
b
le

M
ic
ro
g
lia
l
ce
lls
/T
em

p
o
ra
l
lo
b
e

ep
ile
p
sy

(T
LE
)

/
[9
8,

10
8]

N
at
u
ra
l
in
h
ib
it
o
rs

Pe
p
ti
d
yl

al
d
eh

yd
es

Le
u
p
ep

ti
n

St
re
pt
om

yc
es

st
ra
in
s

R
ev
er
si
b
le

M
ic
ro
va
sc
u
la
r
en

d
o
th
el
ia
l
ce
lls
/

Sc
le
ro
d
er
m
a

/
[1
05

]

To
ka
ra
m
id
e
A

Th
eo
ne
lla

m
ira

bi
lis

R
ev
er
si
b
le

/
/

[9
3,

10
7]

Y
M
-5
10

84
St
re
pt
om

yc
es

sp
.Q

21
70

5
R
ev
er
si
b
le

/
/

[9
3,

10
7]

A
zi
ri
d
in
yl

p
ep

ti
d
es

M
ir
az
ir
id
in
e

Th
eo
ne
lla

m
ira

bi
lis

Ir
re
ve
rs
ib
le

/
/

[1
07

]

Ep
o
xy
su
cc
in
yl

p
ep

ti
d
es

E-
64

As
pe
rg
ill
us

ja
po

ni
cu
s

Ir
re
ve
rs
ib
le

Fi
la
ri
al

p
ar
as
it
e

A
p
o
p
to
si
s

[8
5,

10
9]

Sy
n
th
et
ic

in
h
ib
it
o
rs

Ep
o
xy
su
cc
in
yl

in
h
ib
it
o
rs

E-
64

d
Sy
n
th
es
iz
ed

Ir
re
ve
rs
ib
le

N
eu

ro
n
al
/C
o
n
tr
o
lle
d
co

rt
ic
al

im
p
ac
t
(C
C
I)

A
p
o
p
to
si
s

[6
0]

Ph
o
to
re
ce
p
to
r
ce
ll/
R
et
in
it
is

p
ig
m
en

to
sa

A
u
to
p
h
ag

y
[6
4,

85
]

N
eu

ro
n
al
/T
ra
u
m
at
ic

b
ra
in

in
ju
ry

(T
B
I)

A
p
o
p
to
si
s

[5
6]

Lu
n
g
ca
n
ce
r
ce
lls
/L
u
n
g
ca
n
ce
r

A
p
o
p
to
si
s

[1
20

]

C
A
07

4
Sy
n
th
es
iz
ed

Ir
re
ve
rs
ib
le

Li
ve
r
ce
lls
/N

o
n
-a
lc
o
h
o
lic

fa
tt
y
liv
er

d
is
ea
se

(N
A
FL
D
)

A
p
o
p
to
si
s

[7
9]

C
o
rt
ic
al

ce
ll/
Fo

ca
l
ce
re
b
ra
l
is
ch

em
ia

[6
1]

M
ic
ro
g
lia
l
ce
lls
/A
lz
h
ei
m
er
’s

d
is
ea
se

(A
D
)

[1
00

]

M
ac
ro
p
h
ag

es
,n

eu
ro
n
al
/H

IV
-1

[6
8]

C
A
07

4M
e

Sy
n
th
es
iz
ed

Ir
re
ve
rs
ib
le

A
ci
n
ar

ce
ll/
A
cu

te
p
an

cr
ea
ti
ti
s
(A
P)

A
p
o
p
to
si
s,
p
yr
o
p
to
si
s

[8
0,

10
1]

M
o
n
o
cy
te
s/
N
eo

n
at
al
-o
n
se
t

m
u
lt
is
ys
te
m

in
fl
am

m
at
o
ry

d
is
ea
se

(N
O
M
ID
)

Py
ro
n
ec
ro
si
s

[7
5,

76
]

C
ar
d
io
m
yo

cy
te
s/
C
ar
d
ia
c
re
m
o
d
el
in
g

(h
ea
rt

fa
ilu

re
,c
ar
d
ia
c
h
yp

er
tr
o
p
h
y

A
p
o
p
to
si
s

[7
3]

Z. Xie et al.

13

Cell Death and Disease          (2023) 14:255 



cell apoptosis and pyroptosis in Acute Pancreatitis [80, 101]. As a
potent inhibitor, CA074ME can also be used in the treatment for
neonatal-onset multisystem inflammatory disease [75, 76], kawa-
saki disease [102] and acute myeloid leukemia [83]. Except for the
most common epoxysuccinyl inhibitors, aziridine-2,3-dicarboxy-
late containing inhibitor can induce cell death in Leishmania [103],
K11777 is able to improve pain in pancreatic inflammation [104].
Epoxysuccinyl inhibitors are the most studied class of irrever-

sible CatB inhibitors. However, the irreversibility and possible side
effects limit their clinical application, which led to the develop-
ment of reversible inhibitors [93]. A focused library of derivatives
of nitroxoline has been reported, which is a potent, selective and
reversible CatB inhibitor can alleviate tumor cell invasion [105]. In
addition, El-Fakharany et al. revealed the apoptosis-mediating
anticancer activity of bovine lactoperoxidase and lactoferrin
nanocombinations with Cu and Fe, these novel nanocombinations
have high binding affinity to CatB and show a predicted inhibitory
effect on it [106].

Monoclonal antibodies
Monoclonal antibodies have high affinity and specificity for
homologous antigens compared to small molecule and peptide-
like protease inhibitors. Dai et al. generated a humanized antibody
inhibitor with high potency and specificity for human CatB
through genetic fusion of propeptide of proCatB into the heavy
chain complementarity determining region 3 of Herceptin, which
is a drug used for the treatment of breast cancer [107]. Kos et al.
reported a recombinant chimeric analog of the murine mAb 2A2,
which retained the binding properties of the parental murine
antibody and its ability to inhibit CatB activity, mAb
2A2 significantly reduced extracellular matrix degradation and
tumor cell invasion in vitro [93].
Overall, chemical inhibition of CatB has been studied in a variety

of diseases, includes trauma of cerebral bleeding, Huntington’s
disease, excitatory epilepsy, inflammatory pain and neurodegen-
erative diseases [108]. However, the ideal inhibitor of CatB with
good cell permeability, selectivity, efficacy and safety is yet to be
developed. Furthermore, due to the compensatory mechanism
between other cysteine cathepsins (such as CatX) and CatB
observed in cancer and inflammation, long-term use of CatB
inhibitors may not prove to be effective in clinical treatment
[60, 109].

CONCLUSION AND PERSPECTIVES
Major advances have taken place in our understanding of the role
of CatB in PCD. Abnormal PCD caused by increased CatB
expression and activity is an important trigger for numerous
diseases’ pathological development. Therefore, multiple CatB
inhibitors have been developed to treat a variety of diseases
and have some inspirit outcomes in both laboratory and clinical
fields.
In particular, lysosomal leakage of CatB has been reported to be

involved in all the mentioned types of PCD and most of the
diseases to which CatB-mediated PCD contributes. However, there
are still many gaps of the processes and mechanisms underlying
lysosomal CatB translocation regulation. And the specific sites of
CatB, which leaked into neutral cytoplasmic environments
cleavage or hydrolysis substrates, need to be further explored. A
better understanding of how lysosomal CatB and mitochondrial
redox signals are communicated is not only essential to expand
our knowledge of basic biology in PCD, but it will also have
important implications in drug development.
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