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Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA,
RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer
vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive
advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect,
striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-
based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is
still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy
and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing
results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma
microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and
strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies.
Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review
the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the
fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
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FACTS

● TAMs potentially establish the complicated, unique intercel-
lular interactions of the glioma ecosystem. Meanwhile, they
also provide a potent alternative for the targeted therapeutics.

● Exosomes would provide us with promising nanoplatforms for
targeted drug delivery with enormous advantages, which
would open a new era of eradication of tumors under
immunoregulation.

● TAM-centered strategies can be divided into reducing the
recruitment or depletion and reprograming into the M2-like
phenotype.

● Exosomes would significantly assist the TAMs-centered treatment
as drug delivery vehicles and liquid biopsy biomarkers.

QUESTION

● What is the difference between different types of macrophages,
such as microglia and bone marrow-derived macrophages?

● How to realize the clinical applications of exosomes and
overcome challenges such as massive production, standard
isolation, drug loading, stability, quality control, etc.?

● How to design the combined modality therapy with higher
efficacy?

● How to make a better transition from pre-clinical trials to clinical
applications?

INTRODUCTION
Gliomas, accounting for ~25% of primary CNS tumors, have an
average mortality rate of 4.43 per 100,000 and 16,606 deaths per
year [1, 2]. Standard therapies of surgery resection combined with
radiotherapy and alkylating agent chemotherapy showed little
curative effect, with a median survival of 16 months [3]. Intensive
research and clinical efforts have revealed growing knowledge
about glioma [4]. However, there has been no significant break-
through in therapeutics [5]. Efforts like temozolomide, bevacizumab
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(a molecule blocking vascular endothelial growth factor-A (VEGF-A)),
cilengitide (a molecule blocking αVb3 and αVb5 integrin), lomustine,
etc. [6], offered minimal survival benefit during the past decades
[6–8]. Therefore, more effective therapeutic options are urgently
needed. Accordingly, lots of laboratory research and increasing
clinical laboratory investigations have been initiated to aid standard
therapies [9]. Unfortunately, up to now, the result is still far from
satisfactory. Many approaches have achieved encouraging out-
comes in preclinical and early clinical stages, like immune
checkpoint inhibitors (ICIs), including antibodies against PD-1, its
ligand PD-L1, CTLA-4, and CAR T cell therapy, failed to exert their
therapeutic effects in glioma [10]. The possible reasons are various.
Besides the high heterogeneity and plasticity, the key obstacles to a
better treatment response mainly fall in the blood-brain barrier (BBB)
and the immunosuppressive tumor microenvironment [11]. For
successful therapy, effective delivery and target specificity are still
essential and fundamental hamper facing us [12].
On the one hand, the BBB, which significantly impedes the

transportation of most drugs, is another factor considerably limiting
and restraining the treatment efficacy [13]. For better anti-tumor
drug efficacy, researchers continuously strive to deliver platforms for
better efficiency. The nanomaterial-based delivery platform is an
alternative and versatile drug transportation system that could come
promisingly across the BBB. As various nanoparticles are engineered
in more specified manners, they can be modulated for therapeutic
agents transporting in a more personalized way, indicating the era
of precision medicine [14]. With extensive advantages like relatively
high drug loading capacity, adjustable therapeutic agents release,
enhanced permeation, and retention effect [15], striking biodegrad-
ability, excellent biocompatibility, and low toxicity [16], etc.,
exosome-based strategies is gaining increasing attention. Exosomes,
a kind of cell-derived extracellular vehicles with ~30–200 nm in
diameter, play a vital role in intracellular communication by
transporting cell-derived proteins, lipids, glycoconjugates, nucleic
acids, etc [17]. With the enormous potential to be developed into
targeted drug carriers, cancer vaccines, as well as noninvasive
biomarkers in diagnosis, treatment evaluation, and prognosis
prediction, exosome-based therapeutics is a research hotspot in
recent years [18, 19].
On the other hand, immunotherapy, a strategy aiming to control

and clear tumors by modulating the immune system to regain the
anti-tumor immune response and constrain the tumor escape [20],
has been a hot topic in recent decades. As a booming and
promising therapeutic regimen, immunotherapy shows significant
clinical value in a crowd of tumors like a subset of hematological
malignancies, melanoma [21, 22], and non-small-cell lung cancer
[23], etc. Accordingly, accumulating efforts have been made in
glioma immunotherapies. General immunosuppression in the
glioma microenvironment (GME) significantly contributes to tumor
progression and treatment resistance. The GME is now receiving
increasing attention. Emerging research efforts are being made for
an in-depth understanding of GME [24]. Grossly, the immunosup-
pressive microenvironment, which poses significant challenges for
cancer treatment by promoting tumor progression and limiting the
infiltration of immune cells, is mainly composed of extracellular
matrix, soluble molecules, various brain-resident cells, and some
immune cells [25]. Tumor-associated macrophages (TAMs), the
ample stromal cells of the innate immune system, are a significant
component of the GME that occupies 30–50% of the tumor mass
[25, 26]. High TAMs infiltration is usually associated with reduced
overall survival of glioblastoma [27]. CD204+ TAMs enriched
glioblastoma has a different characteristic of upregulated genetic
expression related to tissue hypoxia, glioma angiogenesis, and rapid
invasion, favoring a poor prognosis [28]. TAMs significantly
contribute to the immunosuppressive microenvironment and
strongly influence glioma progression, providing us with promising
targets for therapeutic strategies. Tumor immunotherapy therapies
have gained tremendous advances following the rapid

multidisciplinary progress, including developments in oncology,
pharmacology, immunology, molecular biology, etc [29]. In addition,
long-term and continuous release of immunotherapy drugs is
necessary for enhancing anti-cancer immunity, and nanotechnology
ensures the accumulation, controlled release, and precise release of
immunotherapy drugs in tumor areas [30]. Nanoimmunotherapy,
nanoparticle-based tumor immunotherapy, shows unique biological
properties to achieve precise targeting, local drug delivery,
enhanced therapeutic efficacy, and tremendous potential as a
personalized and synergistic treatment regimen. In this review, the
promising exosome-based nanoimmunotherapy targeting TAMs is a
promising immunotherapy strategy that uses nano-sized exosomes
as a delivery system of specific therapeutic drugs targeting the TAMs
to modulate TAMs behavior, thus inhibiting the recruitment of
TAMs, depleting TAMs or reprogram TAMs from the tumor-
promoting phenotype to tumor-suppressing phenotype.
Exosomes, the nanosized endogenous extracellular vehicles,

have colossal prospects to be potential carriers that also have
great potential to stimulate an anti-glioma immune response.
Simultaneously, TAMs, the significant barriers to immunotherapies
that contribute to the immunosuppressive GME, also represent
promising drug targets for glioma immunotherapy. This article
stresses the potential application of exosome-mediated nano
immunotherapies targeting TAMs. We concluded the formidable
role of TAMs within the GME for glioma progression and
immunosuppression via various molecular signaling events.

POTENTIAL EXOSOME-BASED STRATEGIES IN TUMOR
Brief knowledge about exosomes
Exosomes, with a small size of 30–200 nm, are cell-derived
extracellular vesicles delivering specific cargo to the targeted
cells. Like a double-edged sword, they have complicated functions
with the potency to be either tumor-promoting or tumor-
suppressing. Enriched in particular proteins, lipid bilayer, DNA,
RNA, and glucose chains, exosomes regulate the extracellular
matrix and transmit essential signals to other cells, affecting
various aspects of cell biology [31, 32].
First, exosomes can induce signaling via receptor-ligand

interaction, or integrate into the target cell’s membrane, thus
transporting their cargo into its cytosol [33]. Then, once activated,
exosomes function as modulators of the phenotypic or molecular
state of the recipient cells according to their respective cargos,
consequently playing an essential role in mediating intercellular
communication spanning from physiological tissue regulation to
pathogenic injury and organ remodeling [32, 34, 35]. For details
about exosome biogenesis, content, and functions under various
conditions, readers can refer to previous excellent reviews [17, 36].
Although already discovered in 1983, knowledge about the
detailed mechanism of exosomes is still lacking, and the clinical
application of exosomes in disease diagnosis, treatment, etc., is
still challenging [26]. With molecular transfer functions and
considerable immunogenicity, exosomes are widely studied for
targeted drug delivery [37]. Also, interest is emerging in
investigating the potential of exosomes for liquid biopsy [38].

Vital biological function and main application potential of
exosomes in glioma
Figure 1 provides a brief overview of exosome structure and
potent application.

Exosomes as a drug delivery platform. Exosomes, the endogenous
small extracellular vesicles, can transport bioactive materials to the
specific recipient cells. The cargos are diverse and roughly divided
into proteins, lipids, nucleic acids, and metabolites [39]. As
significant intercellular vehicles, exosomes can also be used as
therapeutic agents transporting platforms for specific targeting.
Similar to strategies of incorporating drugs into liposomes—a
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synthetic spherical vesicle [40], the theory of exosome-mediated
drug delivery is not new. Technologies about therapeutic drug
loading, surface modification, and mass manufacture of exosomes
have been comprehensively reviewed in previous publications
[41]. With cellular membranes that contain specific surface
adhesion proteins and vector ligands (CD11b, CD18 receptors,
glycoproteins, tetraspanins, integrins, etc.), exosomes show
distinct advantages of low toxicity (Naturally generated in living
tissue, exosomes have the potential of preventing leakage of the
drug before it reaches the targeted cells), non-immunogenicity,
enhanced bioavailability (Exosomes can get the targeted cells
more effortlessly via various mechanisms, including membrane
fusion, receptor-dependent absorption, endocytosis mediated by
clathrin, or via the clathrin-independent pathways, phagocytosis,
macropinocytosis, lipid raft–dependent uptake, caveolin-
dependent internalization and so on, thus possibly represent
higher clinical effectiveness [32, 42]), good permeability, and
specific tissue tropism, etc [43–45]. One of the major problems of
many other therapeutics is the poor infiltration of the candidate
drugs into the BBB. As a promising nano platform that can
efficiently cross the BBB with specific targeting capacity, exosomes
gain increasing attention in targeted drug delivery.
Clinically, as excellent candidates for high-quality therapeutic

substance carriers, the emerging study investigates the potential
of exosomes to deliver diverse therapeutic payloads, including
nucleic acid (RNA, DNA, CRISPR/Cas9), chemotherapy drug
(standard anticancer agents like curcumin, doxorubicin, and
paclitaxel), antisense oligonucleotides, immune modulators, etc.
Besides, exosomes can be engineered as a delivery platform for
antibody fragments or monoclonal antibodies as a “display
platform.” Those engineered exosomes act as a crux that rebuilds
the interaction between cancer cells and immune cells, thus
significantly promoting anti-tumor efficacy [37, 46]. Intravenous
administration of unmodified exosomes from macrophages
efficiently penetrates the BBB. The double-layer membranes of
exosomes powerfully protect their cargos from proteases,
nucleases, and other environmental impacts, thus successfully
delivering specific loads into the brain [47].

The paclitaxel-containing exosomes significantly improve the
anti-tumor efficacy in glioblastoma through enhanced targeting
[48]. Moreover, the biocompatible macrophage-derived exosomes
can be employed as carriers to deliver therapeutic agents. Myung
Soo Kim et al. formulated a targeted paclitaxel delivery system by
engineering macrophage-derived exosomes to load paclitaxel and
incorporate aminoethylanisamide-polyethylene glycol vector moi-
ety, which could particularly link to the sigma receptor, the
overexpressed surface molecules of lung cancer cells [49]. Lydia
Alvarez-Erviti et al. successfully demonstrated exosome-mediated
siRNA delivery to the mouse brain [44]. J Wolfers et al. revealed
that tumor-derived exosomes could carry antigens to dendritic
cells, consequently stimulating the immune response [50]. Jiahui
Zhang et al. reported that neutrophil-exosomes deliver cytotoxic
proteins to induce tumor cell apoptosis [51]. Neutrophil-exosomes
carrying the drug also show excellent chemotactic function and
BBB penetration [52].
Moreover, researchers developed a dual-functional exosome-

based superparamagnetic nanoparticle cluster (SMNC-EXO) using
various superparamagnetic nanoparticles anchored to exosomes.
SMNCEXOs can precisely deliver therapeutic agents to targeted
cells in response to external magnetic fields [53].
While despite the great prospect of exosomes as competent

nanosized drug-carrier, clinical applications still face obstacles like
substantial production, efficient isolation, convenient therapeutic
agent loading, better stability, controllable quality management,
etc. Subsequently, artificial exosomes, including ‘hybrid exo-
somes’, ‘exosome‑mimetic’, and ‘nanovesicles’, are emerging to
overcome the limitations of biological exosomes [54].

Exosomes as intercellular communication mediators and cancer
vaccines. Originally thought to be a mechanism for eliminating
cellular “waste”, exosomes are now well recognized to possess
strong intercellular communication and local or distant micro-
environment modulation. They are attracting accumulating
attention as endogenous modulators [55]. Depending on parental
cells and pathophysiological conditions, exosomes selectively
package, secrete, and transfer specific molecules between cells

Fig. 1 Brief structure of clinical application of exosomes. Exosomes are produced by almost all living cells, mainly immune cells (including
macrophages, NK cells, dendritic cells, T cells, B cells, etc.) and tumor cells. The cargo of exosomes can be roughly divided into proteins, lipids,
nucleic acids, and metabolites. The cellular membranes contain specific surface adhesion proteins, vector ligands (CD11b, CD18 receptors,
integrins, glycoproteins, tetraspanins, etc.), and MHC. After specific modification, exosomes could promisingly assist tumor diagnosis and
treatment as drug delivery systems, cancer vaccines, and liquid biopsy biomarkers. (By Figdraw).
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[17]. With different origins and their respective cargos, exosomes
exhibit distinct and enormous properties to change the fate of the
recipient cells by modifying the translational profile in a relatively
efficient, potent, and managing way [56]. Exosomes significantly
facilitate intercellular communication. A further understanding of
the underlying molecular mechanism would be significant for
developing other anti-tumor therapeutics, including strategies
targeting TAMs to reverse the immunosuppressive microenviron-
ment.
Increasing evidence indicates that exosomes play multiple roles

in cancer progression, and the dual potential of exosomes to be
either cancer-promoting or suppressing has been considered.
Interaction between tumor and stromal cells via exosomes is
complex. Glioma cell-derived exosomes play crucial roles in
immune modulation and can reprogram TAMs and drive
polarization of macrophages to the M1 or M2 phenotype,
depending on the respective molecular constituent. For example,
tumor-derived exosomal miR-934 can be tumor-promoting by
inducing M2 macrophage polarization. In addition, glioblastoma-
derived exosomes reprogram TAMs to produce exosomes
containing unique proteins that are immunosuppressive and
tumor-growth-promoting [57]. Exosomal STAT3 derived from
glioblastoma stem cells traverses the monocyte cytoplasm, causes
a molecular change of the actin cytoskeleton, and induces
monocytes to polarize toward the tumor-promoting M2 pheno-
type [58]. Besides, dendritic cell-derived exosomes with TNF
superfamily ligands can boost tumor cell apoptosis [59], Natural
killer, cell-derived exosomes with miR-186 exert cytotoxic effects
on blastoma cells [60, 61]. Neutrophils-derived exosomes, with the
different constitutions of a vast repertoire of cytokines, immuno-
suppressive or stimulatory molecules, can be pro-tumorigenic or
antitumorigenic [62]. Also, glioma-derived exosomal EGFRvIII is
transferred to neighboring glioma cells lacking EGFRvIII and then
activates the MAPK and AKT pathway, horizontally transforming
the phenotype among subsets of cancer cells [63].
More importantly, exosomes from specific sources exhibit

different content profiles. For instance, the unique content of
exosomes derived from tumor cells or immune cells containing a
mass of tumor antigens like MHC-I could directly induces
anticancer immunotherapy. With the potential to elicit antitumor
responses, accumulating investigations are trying to develop
exosomes into vital cancer vaccines or vaccine adjuvants [64, 65].
Exosome-based vaccines have presented infusive and hopeful
results against various tumors. Exosome-based vaccines already
approved have infusive and bright effects against various tumors
and are approved by the FDA. TheraCys® is applied to treat early-
stage bladder cancer, PROVENGE can be used for metastatic
castration-resistant prostate cancer, and IMLYGIC® shows its
efficacy in metastatic melanoma [66].

Exosomes as potential glioma biomarkers. In addition to their
therapeutic potential, exosomes also present the potential to
facilitate disease diagnosis and prognosis as robust biomarkers.
Released continuously by all living cells, including glioma cells,
exosomes are enriched in body fluids such as blood, urine, saliva,
cerebrospinal fluid, sputum, etc [32, 67]. With advantages of
minimal invasive characteristic, cost-saving, real-time evaluation of
tumor condition, and so on, liquid biopsy attracts increasing
attention in cancer. Compared with evaluating circulating tumor
cells or other strategies, exosomes offer extraordinary advantages.
Exosomes show high biological concentration, continuously
released by alive cells, there is a relatively high level of cell-
derived exosomes in various biofluid. In addition, containing
different cell-derived molecules like DNA, RNA, bioactive protein,
chains of glucose, metabolites, exosomes have more abundant
information. And cargos contained within exosomes are protected
from degradation [38, 68]. Exosome-based liquid biopsies provide
information about the actions of tumor cells and present possible

applications for tumor diagnosis, therapeutic response monitor-
ing, and prognosis evaluation [55, 69]. Specifically, compared to
circulating tumor cells, exosomes give better sensitivity during the
initiating process, which is closely linked to carcinogenesis [70].
As shown above, exosomes act as a critical mediator of

intercellular communication. Exosomes are significantly associated
with tumor progression and microenvironment modulation. The
exosome-based gene test to predict malignancies was the earliest
available for prostate cancer in 2016 [71]. For CNS tumors, where
sample collection is a chief obstacle, exosomes unfold a new vista
for clinical evaluation. The structural and functional properties of
exosomes make exosomes to be potent diagnostic/prognostic
makers. With the potential to efficiently cross the intact BBB [72],
Exosomes provide a valuable alternative that is less invasive than
cerebrospinal fluid sampling. Exosomes derived from malignant
glioma cells have been investigated for searching for robust
biomarkers for glioma evaluation. For instance, exosomes contain-
ing significantly high MCT1 and CD147 indicate malignant glioma
progression [73]. What’s more, exosome-derived miRNAs, the
ample and fundamental biomolecules mediating intercellular
communication, play essential roles in immunosuppression,
induction, intrusion, metastasis, and treatment unresponsiveness
of tumors [74]. The serum exosomal EGFRvIII mRNA of glioblas-
toma patients could be used to provide sufficient diagnostic
information [55]. In short, many circulating exosomes and
exosomal cargos that may play significant roles in the intricate
cross-talk systems in glioma initiation, development, and dis-
semination, also provide us potent opportunities for glioma
diagnosis and prognosis evaluation. To monitor drug response in
GBM, Shao et al. have developed a microfluidic chip to evaluate
the levels of unique exosomal mRNA (MGMT and APNG) [75]. In
addition, for detecting prognostic biomarkers in glioma-derived
exosomes, the TiO2-CTFE-AuNIs real-time label‐free plasmonic
biosensor demonstrates its promising application in liquid glioma
biopsy [76].

THE VITAL ROLE OF TAMS IN THE GME AND POTENTIAL
STRATEGIES UNDERLYING
The tumor microenvironment is widely recognized as critical in
tumor development and treatment response. TAMs, the effective
innate immune system, constitute a diminishing population among
the complex components of the tumor microenvironment. In
addition, they are the vital mononuclear phagocytes that bridge
the natural immune response with the adaptive immune response
by presenting relevant antigens to the T cells following the
phagocytosis of apoptotic cells. It is not surprising that TAMs are
increasingly recognized as crucial in normal processes like neural
development, homeostasis, and central nervous system diseases. At
the intersection of neuroscience and immunology, investigations on
macrophage biology are gaining increasing attention. Meanwhile,
knowledge about TAMs is fast-growing [77, 78]. (Fig. 2).

A brief classification of TAMs
From the origin perspective, glioma TAMs consist of microglia and
bone marrow-derived macrophages. Macrophages reside in most
significant tissues and contribute to tissue homeostasis and
disease. Following the expression of unique sets of transcriptional
regulators, the progenitor cells differentiate into tissue-specific
macrophages during organogenesis. Most adult macrophages,
resident or infiltrating, are classical hematopoietic stem cells
(HSC)-derived, except microglia. Nevertheless, the mechanisms
responsible for the development of macrophage diversity remain
unclear. The exact origins are still under debate [79–81]. Microglia,
a population of resident macrophages derived from erythro-
myeloid progenitors of the yolk sac [81], is the type of
macrophages in the central nervous system under normal
conditions. As a whole, microglia turn over slowly, and individual
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cells can potentially be decades old [82]. Besides serving as
professional phagocytes, microglia significantly regulate neuronal
activity at the synaptic level, ultimately supporting circuit plasticity
[83]. Main classifications and more detailed information about
microglia have been extensively reviewed [84, 85]. Following
environmental stimuli, microglia are activated and undergo
significant morphological changes to execute different tasks.
Under different conditioning paradigms, the bone marrow-
derived macrophages seed the brain and play a part in the
parenchymal brain macrophage compartment. Nevertheless, as
previously reviewed, bone marrow-derived macrophages remain
distinct from yolk sac-derived host microglia in molecular and
function [86, 87]. The high density of TAMs is significantly
associated with poor overall glioma survival. At the same time,
the distinctions between brain-resident microglia and bone
marrow-derived macrophages are noteworthy. Higher infiltration
of bone marrow-derived macrophages usually indicates poorer
survival, while there is no such association between the quantity
of microglia and the overall survival of the patient. Primarily, in
glioblastoma, TAMs represent a significant population. Up to 50%
of the tumor mass is macrophages. Among the total population
TAMs, bone marrow-derived macrophages account for 85%, and
brain-resident microglia account for the resting 15% [88].
From the function perspective, TAMs are briefly classified into

an anti-tumor M1 phenotype and a pro-tumor M2 phenotype.
While rather than strictly polarized M1 and M2 phenotypes, TAMs
tend to be in flux between M1 and M2 states. The levels of
different TAM subpopulations in the tumor core are positively
associated with the overall survival of the patients [89]. With high
plasticity, the traditional classifications [2] need to be reconsid-
ered. TAMs are now well-accepted to have more complex
heterogeneous subpopulations and intricate immunological func-
tions [90]. Review of classifications of phenotypic states of TAMs
has been discussed previously [84, 85, 91]. A better understanding
of the complex and diverse characteristics of TAMs is essential for
developing precise therapeutic strategies for glioma. While due to
the limited knowledge, the oversimplified M1/M2 classification is
still widely used. As the predominant part of the GME, TAMs
generally express an M2 phenotype, which reflects

pathognomonic features, and play a vital role in immunosuppres-
sion and glioma initiation, progression, metastasis, and treatment
resistance [92].
Simply put, TAMs are recruited to the GME and then release a

considerable amount of growth factors and cytokines that
strongly contribute to tumor proliferation, vascularization, inva-
sion, metabolism, treatment resistance, and the immunosuppres-
sive microenvironment. Intriguingly, TAMs can exert duplex
influences, either to orchestrate a tumor-promoting response or
enhance the anti-tumor effect, which presents us with a new vista
of macrophage-centered therapies [93]. As the complicated
interactions establish a unique tumor ecosystem, they also offer
promising opportunities for therapeutic targets with attractive
prospects [94].

Recruitment and polarization of TAMs
Under physiological conditions, exclusively via the IL-1α-dependent
pathway, microglial populations are replenished from brain-resident
microglia [95]. While under pathological conditions like trauma,
infection, and brain tumor, microglia undergo substantial phenotypic
changes, bone marrow-derived macrophages cross the impaired BBB
and colonize the microglial niche. Distinct from other solid tumors, it
is well-accepted that TAMs dominate the GME [96]. Among them,
bone marrow-derived macrophages recruited peripherally constitute
the significant population [94, 97]. Factors mediating TAMs
chemoattraction mainly include various chemokines, surficial ligands,
and other essential factors like neurotransmitters, ATP, etc [98].
TAMs are vital cells with different molecular profiles

potentially regulated by microenvironment factors in sophisti-
cated ways. Briefly, TNF-α, IFN-γ, and LPS (Toll-like receptor four
ligands) drive polarization toward the M1 phenotype. While
under stimulation of IL-4, IL-10, and IL-13, macrophages
typically shift to the M2 phenotype [99]. At different states of
differentiation, activation, and polarization, TAMs show differ-
ent phenotypes and distinct functions. While regarding the
separation of M1/M2 macrophages, little exclusivity was
observed [93]. What’s more, as for TAMs from different sources,
functions of resident microglia and recruited macrophages
appear to differ in ways that remain unknown [100].

Fig. 2 Recruitment and polarization of TAMs. TAMs consist of residual microglia and bone marrow-derived macrophages (BMDMs). Various
molecules are associated with the recruitment and polarization of TAMs. Under different stimuli, macrophages show distinct phenotypes,
which can be roughly divided into immunosuppressive M2 phenotype (There’s significant upregulation of STAT3, PD-L1, Arg-1, CECR1, Romo1,
etc.) and immune-stimulating M1 phenotype. (By Figdraw).
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Monocyte chemoattractant protein-2 (CCL2, or MCP-1), the first
identified chemoattractant molecule, is a critical molecule that
recruits resident microglial cells to glioma and promotes its
progression [101]. Glioblastoma cells produce kynurenine, which
plays a role by stimulating aryl hydrocarbon receptor (AHR) in
TAMs, which then contributes to the recruitment of TAMs via
upregulated CCR2 expression [102]. Similarly, the up-released IL1β
by TAMs activates the p38 MAPK signaling pathway and
expression of CCL2 by tumor cells [103]. later, researchers
confirmed a stronger correlation between the expression of
CCL7 (also known as MCP-3) and the level of infiltrated microglia
and macrophages [104].
CXCL12 (stroma-derived factor-1, SDF-1) is another critical

chemoattraction for TAMs recruiting via the CXCL12/CXCR4
pathway, especially for infiltrating areas of hypoxia and tumor
invasiveness [105]. Glial cell line-derived Neurotrophic Factor
(GDNF) strongly induces recruiting of microglia. Accordingly,
shRNA knockdown GDNF showed reduced glioma expansion and
prolonged survival in mice [106].
Periostin released by glioma stem cells accumulates in the

perivascular areas. It acts as a chemoattractant by stimulating the
integrin receptor αvβ3 of the peripheral monocytes and M2-like
TAMs [107]. Osteopontin (OPN/SPP1) also plays a vital role in
recruiting macrophages to glioblastoma, regulating cellular
communication between tumor cells and the TAMs via integrin
αvβ5 on the glioblastoma-infiltrating macrophages [108]. IL-33 is
associated with the recruitment and invasion of TAMs via platelet-
derived growth factor (PDGF)–BB–PDGF receptor beta
(PDGFRβ)–Sox7 signaling [109]. In PTEN-null glioma, YAP1 is
activated, upregulating lysyl oxidase expression (LOX) in glioma
cells. Then LOX acts as a significant macrophage chemoattractant
by activating the β1 integrin-PYK2 signaling of macrophages [110].
Macrophage colony-stimulating factor (M-CSF, encoded by the

CSF1 gene) significantly controls the recruitment and polarization
of TAMs [111]. Tumor-derived M-CSF induces polarization of TAMs
toward the pro-tumor M2 phenotype [112]. Granulocyte-
macrophage colony-stimulating factor (GM-CSF, encoded by the
CSF2 gene) is another essential molecule that attracts, supports
survival, and induces M2 polarization of TAMs [113].
The polarization of TAMs in tumors correlates with the

downregulation of the activity of the transcription agent signal
transducer and activator of transcription 3 (STAT3). The enhanced
levels of sialic acid of the GME, induced by the hypoxia condition,
mediate the disruption of CD45 protein dimerization, upregulation
of CD45 phosphatase, and the downregulation of STAT3 signaling
in recruited monocytes [114]. Lactic acid expressed by tumor cells
with aerobic or anaerobic glycolysis significantly promotes the
expression of VEGF and the shift toward M2-like TAMs. HIF1α
mediates the mechanism and the effect of lactic acid. The lactate-
facilitated expression of arginase 1 by macrophages significantly
promotes glioma growth [115]. Carbonic anhydrase IX contributes
to the polarization of M2-like TAM through the EGFR/STAT3/HIF-1α
axis under hypoxic conditions [116]. Reactive oxygen species
modulator 1 (Romo1) is significantly upregulated in macrophages.
The overexpression of Romo1 in macrophages induces the shift of
bone marrow-derived macrophages toward M2 macrophages via
stimulating mTORC1 signaling [117]. In addition, experiments
indicate that relatively lower concentrations of S100B attenuate
microglia polarization via inducting STAT3 [118]. Recent investiga-
tions reveal that miR-155-3p and IL-6 drive shifts toward M2
macrophages through the positive feedback loop of IL-6-pSTAT3-
miR-155-3p-autophagy-pSTAT3 signaling [119].
Glioma stem cells (GSCs) release Wnt-induced signaling protein

1 (WISP1) by the signal integrin α6β1-Akt to maintain M2 TAMs.
The Wnt/β-catenin-WISP1 signaling axis also presents us with a
promising target [120]. GSC-derived exosomes containing various
essential components, like members of the STAT3 pathway, can
traverse the monocyte cytoplasm and cause the polarization of

monocytes toward the M2 phenotype with upregulated expres-
sion of PD-L1 [58].
Exosomal circNEIL3 can be transmitted to infiltrated TAMs,

enabling them to polarize to the immunosuppressive phenotype
by stabilizing IGF2BP3 [78]. ERp57/PDIA3 is another potential
factor modulating microglial pro-tumor polarization toward the
M2 phenotype [121]. RSK1, a downstream target of Ras/
extracellular signal-regulated kinase signaling, also strongly
correlates with the infiltration of M2 macrophages [122]. Also,
arsenite-resistance protein-2 plays a critical role in M2-like TAM
polarization via ARS2/MAGL signaling [123]. (Fig. 3).

TAMs contribute to glioma proliferation
The polarized microglial cells release high levels of O2 radicals to
contribute to the genomic mutations and enhance the expression
of IL-6 and TNF-α to support tumor survival. TAMs play a
significant role in promoting the stem-like properties of Brain
tumor-initiating cells (BTICs), which possess the capacity for self-
renewal and accurate recapitulation of the initial tumor and
contribute to the genesis and recurrence of gliomas [124].
Microglia increase the expression of LPA1 and ATX in GBM,

further contributing to GBM proliferation and migration [125].
Microglia also synthesizes and releases stress-inducible protein 1
(STI1), a cellular ligand that contributes to glioblastoma prolifera-
tion and migration.
M2 TAMs-derived exosomal miR-27b-3p raise the activity of

BTICs through the MLL4/PRDM1/IL-33 signaling [126]. WISP1 also
plays an indispensable role in maintaining TAMs and GSCs
through the Wnt/β-catenin-WISP1 signaling [120]. TAMs secrete
a large amount of pleiotrophin (PTN) to control GSCs via the PTN-
PTPRZ1 paracrine signaling [127]. The highly expressed CCL8 on
TAMs contributes to the invasive activities and stem-like
characteristics of GBM cells via signaling on the CCR1 and CCR5
and activating the ERK1/2 phosphorylation [128].
The unreleased arginase in macrophages enhances the

production of L-ornithine and putrescine, consequently playing
an essential role in promoting tumor cell proliferation. Intriguingly,
the metabolism of L-arginine via the arginase and iNOS pathways
can induce distinct differences in the growth of surrounding
tumor cells in association with the prevailing pathway [129]. The
extracellular adenosine deaminase protein Cat Eye Syndrome
Critical Region Protein 1 (CECR1), the upregulated molecule on M2
TAMs, potentially correlates with the M2-like polarization.
Associated with Ki67 and mitogen-activated protein kinase
(MAPK) signaling, the upregulated CECR1 significantly contributes
to glioma proliferation and migration [130].
M2 macrophages secrete a large amount of IL-6, which

subsequently enhances 3-phosphoinositide-dependent protein
kinase 1 (PDPK1)-mediated phosphoglycerate kinase 1 (PGK1)
threonine (T) 243 phosphorylation in tumor cells. This
phosphorylation activity induced the PGK1-catalyzed reaction
toward glycolysis by modulating substrate affinity [131]. The
macrophage-regulated tumor cell metabolism mechanism
implicates the prospect of a strategy to inhibit the PGK1
phosphorylation. In addition, M2 macrophages produce IL-1β,
which plays a vital role in the phosphorylation of the glycolytic
enzyme glycerol-3-phosphate dehydrogenase (GPD2) at threo-
nine 10 (GPD2 pT10) through phosphatidylinositol-3-kinase-
mediated activation of protein kinase-delta (PKCδ) in glioma
cells. Blockade of IL-1β generation or inhibition of PKCδ, GPD2
pT10 provides us with potential treatment strategies for glioma
[132].

TAMs contribute to glioma vascularization
The rapid proliferation of tumor cells induces considerable
requirement for nutrients and oxygen, leading to the neo-
angiogenesis process with enhanced vascular permeability,
significantly contributing to cancer progression [133]. TAMs play
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an indispensable role in regulating vascular homeostasis and
angiogenesis of brain tumors by representing an alternative
source of pro-angiogenic growth molecules. Nonetheless, angio-
genesis is a complicated process involving the proliferation,
migration, and differentiation of vascular endothelial cells under
the activation of various signals. The well-known angiogenesis
regulators in GBM progression include VEGF, angiopoietins (Angs),
TGF-β, MMPs, platelet-derived growth factor (PDGF), basic
fibroblast growth factor (bFGF), and hepatocyte growth factor
(HGF). Besides angiogenesis, the tumor also develops a strategy of
vasculogenic mimicry. In vasculogenic mimicry, the tubular
structure is constituted of tumor cells, but endothelial cells
efficiently transport required nutrients and red blood cells carrying
oxygen to the tumor [134, 135].
VEGF is one of the significant modulators of vascular perme-

ability and tumor angiogenesis. There is an upregulated release of
VEGFA in TAMs via IL10/STAT3 signaling [136]. VEGFA and
semaphorin 3 A (Sema 3 A) can also activate neuropilin-1 (NRP1),
VEGFR1 and recruit TAMs [137]. CXCL2, the poorly described
chemokine, is also significantly up-expressed and shows better
angiogenic potency than VEGF in vitro [138]. The IL8/CXCL2/
CXCR2 signaling axis simultaneously provides a promising
therapeutical target. The AKT/mTOR signaling axis, or phosphati-
dylinositol 3-kinase (PI3K)/protein kinase B, is also closely
associated with angiogenesis and VM formation [139].
In addition, TAMs actively control glioma angiogenesis by

sensing hypoxic conditions. The enhanced levels of sialic acid in
the hypoxic GME lead to a series of effects on CD45, CD45 tyrosine
phosphatase, and STAT3 signaling in recruited myeloid-derived
suppressor cells (MDSCs), then provide the original trigger for
differentiation of MDSCs into TAMs [114].
TGF-β plays a vital role in angiogenesis’s initiation and

resolution phase via a delicate balance of ALK5 and
ALK1 signaling. The TGF-β/ALK5 signaling leads to downregulated
angiogenesis, while the TGF-β/ALK1 signaling induces angiogen-
esis [140]. TAMs also enhance the vascular mimicry of glioma by
improving IL-6 secretion in glioma cells through the PKC pathway
[141]. Subsequently, JAK-STAT signaling of recruited endothelial
progenitor cells are activated, promoting the vasculogenic process

[142]. Also, COX2+ TAMs release IL-1β, which enhances the
endothelial proliferation and upregulates the expression of pro-
angiogenic regulators, including VEGF-A, hypoxia-inducible factor
(HIF)-1α, and IL-8 [143].
TAMs express YKL-40 after stimulation of the MAPK–nuclear

factor-kappaB (NFκB), which induces vascular endothelial cad-
herin/β-catenin/actin communication in endothelial cells contri-
buting to the tumor angiogenesis process [144].
CECR1, the extracellular adenosine deaminase protein upregu-

lated by M2 macrophages in GBM, significantly contributes to new
vessel formation. Researchers confirmed that the intercellular
CECR1-PDGFB-PDGFRβ signaling between macrophages and
pericytes contributed to the angiogenic process [145]. RAGE (the
receptor for advanced glycation end-products) signaling in TAMs
significantly promotes glioma angiogenesis, providing another
potential therapeutic target [146].
Moreover, an increasing number of researches indicate that

resident microglia and bone marrow-derived macrophages do not
show the same potential in various aspects, including vasculariza-
tion of glioma. Compared with ablation of the whole myeloid cell
fraction, selective reduction of resident microglia represents the
equivalent effect of decreased vessel density, indicating that
resident microglia, peripherally derived macrophages, are the vital
modulatory cell population [147]. While current research and
knowledge about microglia are still lacking, in-depth investiga-
tions into the distinct role of microglia in glioma are of essential
significance.

TAMs contribute to glioma invasion
Glioma-associated macrophages have been revealed to express
several significant modulators that induce glioma growth and
invasion, including IL-1β, TGF-β, IL-6, epidermal growth factor
(EGF), and STI1 [148], by modulating the perivascular GICs and
glioma cells [149].
Besides, TAMs also support glioma invasion by upregulated

expression and activation of extracellular matrix-degrading
proteases like matrix metalloprotease (MMP) 2, MMP9, and
membrane-type 1 MMP (MT1-MMP) [150]. Versican released by
glioma can trigger the expression of TLR2 and educate microglia

Fig. 3 Roles of TAMs in the TME and the molecules concerned. TAMs play a significant role in glioma progression by contributing to glioma
proliferation, vascularization, and invasion, promoting immunosuppression in the GME, generating treatment resistance, and influencing
glioma metabolism. Acting through specific signaling pathways, various molecules are closely involved. Detailed mechanisms are discussed as
follows. (By Figdraw).
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into the M2 phenotype, which presents upregulated MT1-MMP
expression [151]. Then, the inactive pro-form MMP becomes
activated after cleaving under stimulation of MT1-MMP [152]. TGF-
β, predominantly released from TAMs, can induce the up-
expression of MMP and down-regulation of tissue inhibitor of
metalloproteinases (TIMP)-2, thus significantly glioma invasiveness
and migratory responses. Using plasmid-transcribed small hairpin
RNAs (shRNAs) to suppress the expression of TGF-β type II
receptor (TbetaIIR), the invasiveness and tumorigenicity were
successfully inhibited in vitro [153]. CCL5 is associated with the
upregulation of MMP2, thus contributing to the invasion and
migration of glioma. Under the stimulation of CCL5, glioma cells
subsequently increase intracellular calcium levels, phosphorylated
Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), and
p-Akt expression levels. Not surprisingly, the levels of p-CaMKII
strongly correlate with MMP2 regulation [154]. CCL8, which TAMs
highly express, contributes to the invasion and stem-like
characteristics of GBM cells. Via CCR1 and CCR5, CCL8 activates
ERK1/2 phosphorylation in GBM cells and induces pseudopodia
formation [128].

TAMs generate glioma treatment resistance
Glioma, especially GBM, tends to be treatment resistant.
Proneural-to-mesenchymal transition (PMT) of glioma cells is a
usual mechanism for increased radiotherapy resistance. The
mesenchyme differentiation induces radio-resistance in glioblas-
toma, associated with high infiltration of GAMs and stimulation of
the TNF/NF-κb signaling axis [155]. TAMs enhance the process of
PMT in GSCs through exosomal miR-22-3p, miR-221-3p, andmiR-
27a-3p, which target chromodomain helicase DNA-binding
protein 7 (CHD7) and regulate maintenance and development of
neural stem cell, thus generate the radio-resistance [156]. A
disintegrin and metalloprotease that are upregulated in GBM also
contribute to chemotherapy resistance and recurrence after TMZ
therapy [157].
Under CSF-1R inhibition, the tumor microenvironment drives

treatment resistance via stimulation of the PI3K signaling caused
by tumor cell IGF-1 receptor (IGF-1R) and macrophage-derived
insulin-like growth factor-1 (IGF-1). A combination of IGF-1R/PI3K
disturbance and CSF-1R blockade would be a potential therapeu-
tic approach [158]. Resistance under anti-angiogenic therapies like
an antibody that neutralizes VEGF (bevacizumab) is associated
with the migration inhibitory factor (MIF). Blocking and down-
regulation of MIF induced by bevacizumab efficiently limit the M1
polarization of macrophages [159].
Immune checkpoint therapies of anti-PD-1/PD-L1 and anti-

CTLA-4 show limited efficacy. Researchers have discovered a
unique population of CD73hi macrophages in GBM after treatment
of anti-PD-1, which may be the critical mechanism of TAMs-
generated treatment resistance. Respectively, under-treatment of
anti-PD-1 and anti-CTLA-4, the CD73 negative murine model of
GBM showed improved survival, indicating that CD73 might be
another novel therapeutic target [160].

TAMs contribute to the immunosuppressive
microenvironment
Glioma represents an immunosuppressive immune environment
with a low number of infiltrated lymphocytes and other types of
immune effector cells [12]. In the GME, there is a high
concentration of the classic immunosuppressive cytokines like
TGFβ and IL-10 released by brain stromal cells, large amounts of
indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2
(IDO/TDO) that could both stimulate the accumulation of
regulatory T cells (Treg) and suppressed T cell activity by depleting
tryptophan from the microenvironment. The intercellular commu-
nication between TAMs and other types of immune cells in the
TME provides an added mechanism of immunosuppression.
Chemokines recruit Tregs from TAMs, then secrete IL-10, which

interacts with IFN-γ expression and reduces infiltration of T cells,
creating a positive feedback loop [161].
AHR enhances KLF4 expression and suppresses NF-κB signaling

in TAMs. The ectonucleotidase CD39 of TAMs is subsequently
upregulated, in cooperation with CD73, and promotes CD8+ T
cell dysfunction via enhanced expression of adenosine [102]. Also,
the IDO/TDO induced tryptophan metabolite L-Kynurenine (Kyn)
interacts with AHR to drive the immunosuppressive effects via
Tregs, myeloid-derived suppressive cells, and up-regulated PD-1
on CD8+ T cells [162].
GBM-initiating cells induce mTOR expression in microglia of

mouse models, and the mTOR-mediated signaling of STAT3 and
NF-κB contributes to the M2-like microglial phenotype, which
hinders infiltration of effector T-cells, tumor proliferation, and
immune responses [163]. IL6-activated STAT3 acts on the
promoter of the B7-H4 gene and enhances the expression of
B7-H4 on TAMs, which is an essential pro-tumor step of blocking
effective T-cell immune responses [164].
TAMs also upregulate a variety of surface molecules that inhibit

activation of T cells and even induce the apoptosis of T cells,
including CD80/CD86 (interacts with CTLA-4 on T cells), CD95,
CD70, and programmed cell death ligand 1 (PD-L1, which binds to
PD-L1 on Tregs), Fas linkage (interacts with Fas receptor on
CD8+ T cells). The upregulated B7-H1 expression on TAMs
through IL-10 signaling contributes to the immunosuppressive
phenotype [165]. Consequently, leading to a lower level of
infiltrated immune effector cells and hindering the immune
response against the glioma. Genetically, MYC significantly
controls the expression of CD47, the critical regulator of the
innate immune, and PD-L1, the adaptive immune checkpoint
[166].
β2-microglobulin (β2M), the standard component of MHC-I, is

expressed by cancer cells and directly protects cancer cells from
phagocytosis. Binding to the leukocyte immunoglobulins (LILRB1)
on TAMs, this signaling pathway is associated with inhibiting
phagocytosis by depriving immune surveillance. Disrupting MHC-
1 or LILRB1 signaling would enhance the process of cancer cell
phagocytosis [167].

EXOSOMES AS DRUG DELIVERY PLATFORM
It is well recognized that TAMs play vital roles in glioma
proliferation, vascularization, invasion, metabolic change, treat-
ment resistance, and immunosuppression. Basic investigations
provide many TAM-targeted therapies as potential alternatives for
GBM immunotherapies. Currently, TAM-targeted medicines are
mainly classified into two strategies: (1) inhibiting the recruitment
or reducing the population of TAMs, and (2) reprogramming TAMs
from the immunosuppressive M2 phenotype to the immunosti-
mulating M1 phenotype. The current challenges of TAMs-
targeting therapeutics include the poor distribution of drugs
and systemic side effects.
While traditional methods to deliver targeted therapy, such as

nanoparticles and liposomes, show limited benefits due to the
relatively poor bioactivity, histocompatibility, and tumor selectivity
[168]. As novel drug delivery technologies, exosomes offer
excellent prospects with lower toxicity, better tissue tolerance,
biocompatibility, and unique lipid bilayer to confirm biological
stability. Recently the carefully-designed small extracellular
vesicles with trans-activator of transcription peptides and
angiopep-2 possess dual delivery of targeted drugs and good
cell-penetrating functions, efficiently cross the BBB, reach and
penetrate the glioma niche [169]. In a word, the utilization of
exosomes would undoubtedly represent a distinct and competent
strategy for drug delivery, providing an encouraging vista for the
treatment of glioma.
Targeting the molecular factors involved in the TAMs interac-

tion, such as factors/receptors that modulate the phenotype of
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TAMs toward a proinflammatory behavior, is promising. In
addition, the communication between TAMs and other cells can
be performed through EVs like exosomes. Exploiting the natural
ability of the exosomes as transporters, it is realizable to use them
as drug delivery strategies, thus targeting the TAMs [170]. Actually,
both natural and modified exosomes could offer us the platform
to deliver therapeutic immunology components targeting TAMs.
Modified exosomes with specific cargos, such as tumor drugs and
targeting siRNA, provide us with new vista of tumor therapeutics
(Fig. 4).
In brief, exosome-based nanoimmunotherapy targeting TAMs

can be achieved by inhibiting the recruitment of TAMs, depleting
the number of TAMs, and reprograming TAMs into the tumor-
suppressing phenotype.
There is a successful practice of exosome-based therapeutics

targeting TAMs. Signal transducer and activator of transcription 6
(STAT6), the key transcription factors controlling the M2 pheno-
type, have been “undruggable” selectively in TAMs. Administration
of the engineered exosome delivering an antisense oligonucleo-
tide (ASO) targeting STAT6 (exoASO-STAT6), which could selec-
tively silence STAT6 expression in TAMs, induces reprogramming
of TAMs and remodeling of the tumor microenvironment [171]. In
addition, exosomes own specific tropism ability. The lipid bilayer
and the expression of several surface molecules like prostaglandin
F2 receptor negative regulator (PTGFRN) could enhance the
targeted delivery [172]. For instance, M1-derived exosomes
modified with IL4RPep-1 (a peptide binding to IL4R of TAMs) on
the surface are more efficient than untargeted and control
peptide-labeled exosomes on reprogramming TAMs into M1-like
macrophage [173].

Inhibition of recruitment and reduction of TAMs
The majority of TAMs are recruited peripherally. Inhibition of the
recruitment process and strategies to deplete TAMs significantly
contribute to glioma suppression. To inhibit the recruitment of

macrophages into the GME, a common approach is inhibiting
signaling activities associated with macrophages’ recruitment,
differentiation, and survival. A variety of TAM-targeting agents are
under investigation in early-phase clinical trials. Incorporating
these TAM-targeted agents into exosomes would probably
present a promising result.
The CCL2-CCR2 chemo-attractive signaling pathway provides an

alternative target for TAMs recruitment blocking. Clinical efforts
such as CCL2 or CCR2 blockade and CCL2 downregulation are
underway [174]. The well-designed lipid nanoparticles loaded with
CCR2-silencing siRNA blocked the monocyte recruitment and the
consequent generation of TAMs, encouragingly promoting tumor
regression [175]. In addition, CXCR2 antagonization (SB225002)
inhibits glioma growth during tumor initiation and progression
and presents a significantly decreased infiltration of TAM in
recurrent tumors. The CXCR2/CXCL2 signaling represents a
promising therapeutic target in glioma. Encouragingly, Combi-
therapy of TMZ and SB25002 also shows an enhanced anti-tumor
effect in a mouse model [176]. Combining radiotherapy with
AMD3100, the clinically approved agent that inhibits SDF-1/CXCR4
interactions and blocks the infiltration of Tie-2+ monocytes, may
present better outcomes [177]. Other CXCR4 inhibitors like
peptide R [178], LY2510924, and plerixafor [179], are under clinical
investigation with promising prospects.
CD70, a TNF family member on tumor cells but macrophages, is

strongly linked to the infiltration of CD163+ macrophages via its
receptor, CD27, on the cell surface [180]. The CD70/CD27 axis may
be a viable therapeutic avenue. Developing exosomes containing
CD70-blocking molecules may present an excellent curative effect.
Besides, other investigated TAMs-centered therapeutic targets

may present us with a new vista on the exosome-mediated
immunotherapies of glioma. Periostin is an exciting target for
astricting the M2 TAMs by disturbing the integrin αvβ3 signaling
[107]. Disruption of these signaling pathways may give us an
encouraging outcome. Cilengitide, which inhibits signaling of the

Fig. 4 Current exosome-mediated nano immunotherapies are targeting TAMs. TAMs-targeted therapies are roughly divided into inhibiting
recruitment or radically depleting TAMs from the quantity perspective and reprogramming TAMs from the quality standpoint. Exosome
presents us with an encouraging nano platform for targeted drug delivery. Glioma cells are the significant group of cells inducing TAMs
recruitment. There are emerging approaches striking to block or disrupt various signaling pathways between TAMs and glioma cells, such as
the IL-12, CCL2/CCR2, SDF-1/CXCR4, CD70/CD27, CXCR2, CSF-1/CSF-1R, periostin/integrine αvβ3, osteopontin/integrine αvβ5 signaling.
Exosomes loaded with clodronate show considerable effects on depleting TAMs. They block the CD47/SIRPα signaling via exoASO-STAT6
incudes upregulated STAT6, thus reprogramming TAMs to the anti-tumor M1 phenotype. Besides, exosomal miR130, exosomal miR-33,
exosome loaded with curcumin, and M1 macrophage-derived exosomes also significantly re-educate TAMs. Detailed information and
additional promising target are discussed as follows. (By Figdraw).
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αvβ3 and αvβ5, is under investigation in clinical trials. While as for
the recurrent GBM, it’s worthwhile to search for more therapeutic
strategies like integrating cilengitide into combinatorial regimens
[181]. Utilization of exosomes may give us a different result.
More radicle strategies for depleting TAMs are also under

investigation. Several molecules and mAbs targeting the CSF-1/
CSF-1R signaling axis are in clinical development as monotherapy
and combined therapy. Inhibitors of the (CSF-1R) (anti-CSF1R
antibody-like Cabiralizumab, SNDX-6352, BLZ945, PLX3397, etc.) to
diminish the TAMs population in mouse GBM model significantly
increases the survival and shrinks the established tumors [182].
While further preclinical and clinical trials failed to show their
effectiveness [183]. Glioma may acquire resistance driven by
elevating levels of high IGF-1R and macrophage-derived IGF-1,
which enhance survival and invasion of glioma cells [158]. Rational
combination therapies are currently promising strategies under
investigation. Incorporating these therapeutic molecules with
exosomes would be a direction worthy of trying.
MiR-142-3p is revealed to play a unique part in modulating M2

TAMs through the TGF-β signaling. M2 macrophages have a lower
level of miR-142-3p expression compared with M1 macrophages.
Therapeutic administration of miR-142-3p coherently induces M2-
apoptosis and results in glioma growth inhibition [184]. Intracer-
ebral administration of liposome-encapsulated clodronate shows
promising efficacy by inducing microglial apoptosis once phago-
cytosed by macrophages. At the same time, a lack of specificity for
TAMs causes lesions of other brain cells and damages blood vessel
integrity [185]. In this respect, an exosome-based specific delivery
system may present a promising prospect for TAMs-targeted
therapies.
Yuan Qian et al. have developed M2-like TAM dual-targeting

nanoparticles (M2NPs), the lipid nanoparticles modified with a
fusion peptide composed of α-peptide (a scavenger receptor B
type 1 targeting peptide) and linked with M2pep (an M2
macrophage binding peptide). Loaded with siRNA targeting anti-
CSF-1R to inhibit the survival of M2 TAMs, these nanoparticles
could lead to selective depletion, tumor regression, and prolong
the survival of B16 melanoma-bearing mice [186]. The dual-
targeting capacity of M2NPs, combined with RNA interference,
provides new insight into designing TAMs-targeted therapeutics
via exosomes.
Similarly, targeting the overexpressed folate receptors on TAMs,

Tingting Luo et al. synthesized the oxygen/paclitaxel-loaded
microbubbles. Combined with ultrasound-mediated delivery,
these microbubbles act as immunomodulatory agents, efficiently
depleting the TAMs [187].
However, there is also dispute that there are better strategies

than indiscriminately diminishing the TAMs, as TAMs might play
diverse roles according to the GME [188]. Although most evidence
indicates a pro-tumor role of TAMs and prompts the application of
TAM reprogramming therapeutics, some unique exceptions exist.
In Sonic Hedgehog-medulloblastoma, researchers revealed a
surprising group of anti-tumor TAMs. In these cases, TAMs
deletion would instead accelerate tumor growth [189].

Reprogram of TAMs
Reprogramming M2 to M1 macrophages has been acknowl-
edged as a promising therapeutic strategy with better efficiency
than the depletion of TAMs or immune checkpoint inhibitors.
Thus, rebuilding the TAMs landscape gains increasing attention.
Various approaches can achieve it, blocking different surface
molecules involved in the immunosuppressive profile of TAMs
like PD1-PDL1, CD206, CD63, CD204, SIGLEC1, MARCO, TREM2,
etc. Inhibiting the “do not eat me” signaling to promote
phagocytosis or disturbing the epigenetic activities of pro-
tumor TAMs such as prostaglandin (PGE2) signaling, PI3k-γ
signaling, or modulating the histone deacetylases, etc [190].
Simply put, TAMs reprogramming can be realized by inhibiting

the tumor-promoting activities and stimulating the anti-tumor
properties.
Exosomes, the novel nano platform for drug delivery, possess

tremendous advantages in biomedical areas. Increasing attention
has been paid to exosomes to exert their potential to deliver
therapeutic agents. As a novel and promising strategy, the
exosome-based delivery of specific modulators for TAMs repro-
gramming has been investigated in many malignancies. The well-
designed delivery system derived from bone marrow mesench-
ymal stem cells, loaded with galectin-9 siRNA, and superficially
modified with oxaliplatin prodrug (the molecule triggers immu-
nogenic cell death), significantly induces tumor-suppressive
macrophage polarization, achieves considerable therapeutic
efficacy in pancreatic ductal adenocarcinoma [191]. Exertions
have been tried in designing exosomes to deliver various
therapeutic agents to re-educate TAMs, such as siRNA, chemo-
kines, cytokines, bisphosphonate, and TLR agonists.
As aforementioned, exosomal miRNAs regulate TAMs polariza-

tion into the pro-tumor M2 phenotype. Reciprocally, alternation in
levels of related exosomes may induce repolarization of TAMs
toward the M1 phenotype. Exosomes rich in miR-33 and miR-130
increased the expression of M1 signature genes (IRF5, MCP1,
CD80) and secretion of cytokines (IL-1β and TNF-α) as well as yeast
phagocytic activity of macrophages, cheerfully decrease tumor
progression by shifting M2 macrophages to M1 macrophages,
providing us with a potential alternative for tumors [192].
Genetically blocking molecules involved in macrophage polariza-
tion (such as STAT3, STAT6, or homodimers of the NK-κB subunit)
would result in the regulation of macrophage polarization and
activation of specific immunity [193]. Chlorogenic acids (CHA)
have been viewed as a potent molecule that promotes the shift of
M2 TAMs into the M1 phenotype by stimulating STAT1 and
inhibiting STAT6. STAT3 inhibition by siRNA or CPA-7 also shows
its potential to reprogram TAMs and inhibit glioma growth in mice
[194]. A nanoparticles-based delivery of mRNAs encoding inter-
feron regulatory factor 5 and its activating kinase IKKβ promisingly
reprogram TAMs into M1-like phenotype, consequently inducing
anti-tumor immunity and promoting tumor regression in vitro.
Apart from targeted specificity, this immunotherapy is also safe for
repeated dosing [195].
Disturbance of the SIRPα-CD47 signaling provides a promising

target for TAMs reprogramming. In response to CD47 blockade,
microglia, and macrophages show different morphological and
transcriptional changes. Intriguingly, microglia are effectively re-
educated to phenotype with the unleashed potential of tumor cell
phagocytosis [196]. Currently, IBI 188 and SRF-231 are the
monoclonal antibodies ongoing Phase I trials testing. The M1-
derived, azide-modified exosomes are designed with conjugation
of dibenzocyclooctyne-modified antibodies of CD47 and SIRPα.
After systemic administration, they specifically and actively
recognize CD47 on the tumor cell surface and simultaneously
block SIRPα and CD47 on macrophages. This led to the abolition of
the “do not eat me” signal and enhanced phagocytosis of
macrophages. Meanwhile, M1-derived exosomes significantly re-
educate TAMs from M2 to the M1 phenotype [197]. This
engineering strategy provides an exosomal platform to load
modified ligands targeting TAMs.
Inspiringly, the M1-derived exosomes transfected with miR-511-

3p, NF-κB p50 siRNA, and modified with IL4RPep-1 (binding to
IL4R of TAMs) on the surface efficiently inhibit tumor growth by
downregulating target genes, decreasing the levels of M2
cytokines and immune-suppressive cells, while increasing the
levels of M1 cytokines and immune-stimulatory cells, thus
repolarizing TAMs into anti-tumor M1 phenotype [173]. What’s
more, the complex intercellular communication between TAMs
and tumor cells critically contributes to glioma progression.
Glioblastoma-derived exosomes (GBex) repolarize TAMs into M2
phenotype, and subsequently, TAMs reprogrammed by GBex
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produce arginase-1+ exosomes. Selectively inhibiting arginase-1
by nor-NOHA significantly reversed the tumor-promoting effects
[57]. Exosomes derived from M1 macrophages have potential to
repolarize M2 macrophages to M1 macrophages. Researchers also
reveal that exosome-mimetic nanovesicles derived from M1
macrophages (M1NVs) potentially modulate M2 macrophages to
shift toward the M1 phenotype by regulating miRNA and mRNA
expression profiles. Co-injection of M1NVs and PD-L1 induces the
re-education of M2 TAMs into the M1 phenotype, resulting in the
inhibition of glioma in mice models [198].
In addition, it’s reported that the dietary agent curcumin, even

at a low, transient concentration level, profoundly plays a distinct
role in TAM repolarizing into a tumoricidal M1 state. Via induction
of STAT-1, curcumin stimulates the M2 to M1 switch and
recruitment of NK cells and Tc cells to eliminate the tumor in
animal models of glioblastoma [199]. What’s more, the safety and
efficacy of exosomes as curcumin carriers have been evaluated for
the clinical treatment of colorectal cancer [65]. Similarly, several
non-cancer-related FDA-approved drugs like antibiotic thiostrep-
ton, iron supplement ferumoxytol, and vitamin B3, have demon-
strated an incredible ability to stimulate a TAM anti-tumor activity,
indicating the potential to be repurposed as adjunctive treatments
[200].
Apart from the technologies shown above, many agents could

be loaded into exosomes with excellent properties to present us
with better therapeutic results. Programmed cell death protein 1
(PD-1), the essential immune checkpoint receptor upregulated on
T cells to induce immune tolerance, is also highly expressed on
TAMs. Disturbing the PD-1/PD-L1 axis directly affects the
activation of TAMs [201]. A phase III trial of nivolumab (inhibitor
of PD-1) in GBM patients showed comparable results and the
safety profile with other tumor types [202].
Inhibitors and monoclonal antibodies that target TAMs

mediated/secreted angiogenic molecules like VEGFC (VGX-100),
Sema 4D, etc., show encouraging results in limiting cancer
progression and reducing angiogenesis [203]. In a mouse GBM
model, dual inhibition of Ang2/VEGF alters TAMs into an
antitumor M1 phenotype and contributes to vascular normal-
ization and tumor regression [204].
Amphotericin B (AmpB) acts as a stimulant of monocytoid cells

and enhances the microglial effect by influencing the activities of
genes involved in BTIC cycle growth arrest and differentiation,
thus overcoming the tumor immunosuppressive microenviron-
ment and curbing tumorigenicity [205]. AmpB treatments,
however, have substantial toxicity.
Inhibition of CSF-1R (BLZ945) shows the potential to limit

glioma progression by repolarizing TAMs into M1 phenotype in
mouse GBM models. While in preclinical trials, clinical trials failed
to demonstrate effectiveness, partly due to the complicated
actions of non-TAMs cells in response to the agents [206].
Similarly, let-7 miRNA serves as essential TLR7 signaling

stimulants that modulate the multiple functions of microglia in
both healthy brains and glioma via the different expressions of
specific sequences [207]. Previous research shows that miR-340-5p
overexpression restrains TAMs recruitment (miR-340-5p targets
the POSTN, thus recruiting TAMs via integrin αvβ3), M2 macro-
phages polarization (targeting LTBP-1) and tumorigenesis of
glioma. The miR-340-5p feedback loop regulates the tumor
microenvironment and GBM progression, presenting us novel
therapeutic strategy [208].
The mannosylated nanoparticles encapsulated with siRNAs

targeting the NF-κB signaling pathways show good selectivity in
targeting TAMs via the mannose receptor (CD206), successfully
inducing cytotoxic and immunostimulatory activities of TAMs
in vitro [209].
TLR9 could bind with the synthetic unmethylated cytosine-

phosphoguanine (CpG), which subsequently stimulates NF-κβ and
AP-1 signaling and promotes macrophages to express diverse pro-

inflammatory cytokines like IL-6, type I IFN, and IL-1β [210].
Encapsulating CpG onto nanoparticles may contribute to macro-
phage uptake and act as immunostimulating modulators. For
instance, the self-assembled CpG-shell gold nanoparticles power-
fully modulate macrophage polarization via a TLR9-dependent
manner [211].
Stimulators of interferon genes (STING) agonists are another

potential group of immunotherapeutic drugs that regulates innate
immunity and potentially modulates the polarization of TAMs.
Delivering STING agonists via exosomes may present us with
superior therapeutic efficacy. Indeed, researchers have designed
the 2′3′-cGAMP loaded nanoparticles, which efficiently enhanced
STING signaling in the TME and converted TME from an
immunosuppressive to an immunostimulatory one. Administration
of STING-activating nanoparticles strongly remodels the tumor
immune microenvironment, induces potent limitation of tumor
growth, prolongs the overall survival, and improves the response
of immune checkpoint inhibitors [212, 213].
In addition, exosomes may present us with a favorable

alternative to deliver cytokines and innate immune adjuvants to
re-educate TAMs. Similarly, researchers have synthesized
microenvironment-responsive nanoparticles which could effec-
tively administrate and release IL-12 into the tumor microenviron-
ment, and the responsive actions could subsequently repolarize
TAMs [214]. Marimastat, a famous mimetic molecule inhibiting the
MMP family, is investigated in clinical trials as a promising
therapeutic agent for GBM. At the same time, the result was far
from satisfactory for the nonnegligible toxic side effects [215, 216].
Besides, mTOR inhibition result entirely prevents glioma-induced
M2 polarization of microglial cells and increases their cytotoxic
potential [217].
In addition, there is a close relationship between the

reprogramming of metabolic traits and the polarization of TAMs.
In the tumor microenvironment, TAMs predominantly promote
oxidative glucose metabolism via aerobic glycolysis. Inhibiting the
aerobic glycolysis of TAMs can shift M2 TAMs to M1 TAMs,
contributing to tumor regression. Various factors are reported to
take part in regulating macrophage metabolism [218].
In general, therapeutic strategies meet significant hurdles of

substantial toxicity, poor and targetless delivery, etc. Exosomes
would promisingly present better therapeutic effects as strong
drug carriers. As aforementioned, therapeutic agents that could
disturb the functioning of TAMs are worth investigating.

EXOSOMES AS POTENTIAL BIOMARKERS OF TAM STATES
Besides drug delivery platforms targeting TAMs, exosomes can act
as robust biomarkers for glioma diagnosis, therapeutic response
monitoring, and prognosis evaluation. Developing new combina-
tory diagnostic tools in clinical practice to track TAM activation
states in the brain is needed. Acting as prognostic indicators of
disease outcome and monitoring new therapeutic strategies
aimed at quelling a progressive pro-tumor response, exosomes
would present us with encouraging vista for glioma. With
profound advantages of convenient access, abundant quantity
and information, biocompatible stability, and potential to cross
the BBB, exosomal molecules provide an ideal alternative as
glioma biomarkers [219].
Recent research indicates that circNEIL3 is related to

YAP1 signaling activation and CCL2 and LOX secretion, thus
driving the infiltration of macrophages. Exosomal circNEIL3 could
be transmitted to infiltrating TAMs, thereby enabling them to
acquire pro-tumor functionality by stabilizing IGF2BP3 [78]. Kristan
E van der Vos et al. revealed that high levels of exosomal miR-451/
miR-21 were transferred from glioma cells to microglia, which
increased microglia proliferation and shifting of cytokine profile
toward glioma promotion [220]. Mingyu Qian et al. discovered
that by targeting TERF2IP to activate the STAT3 signaling pathway
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and inhibit the NF-κB signaling pathway, miR-1246 mediated M2
macrophage polarization [221]. MiR-1246 in the CSF might present
us a novel biomarker for glioma diagnosis. Moreover, therapeutics
targeting microRNA-1246 may assist the anti-glioma immunother-
apy. Erik R. Abels et al. confirmed that glioma cells could
reprogram microglia in part by transferring exosomal miR-21
[222], which also opens up opportunities for therapeutics aiming
at disrupting this form of communication between glioma cells
and TAMs. A recent study indicated that exosomal the long
noncoding RNA (lncRNA) TMZ-associated lncRNA in GBM recur-
rence (lnc-TALC) could be delivered to TAMs and then promote
M2 polarization of the microglia [223]. Liangyi Zhu et al. lately
demonstrated that downregulated exosomal let-7i-5p and miR-
221-3p could trigger M2 polarization of TAMs-through upregulat-
ing peroxisome proliferator-activated receptor gamma [224].
Nevertheless, the specific mechanisms by which exosome

signals regulate TAMs in gliomas still need to be defined.
Understanding the intricate interaction between gliomas and
TAMs could open a new vista for the therapy. The utilization of
exosomes as clinical biomarkers still demands further evaluation
and investigation. The main requirements are validation in larger
patient cohorts, more standardized methodologies for identifying
exosomal biomarkers, better-isolating exosomes, more accurate
quantifying of miRNAs or proteins, etc. With increasing research
efforts on these applications of exosomes and continuous
technological advances, diagnostic applications of exosomes in
glioma will be promising shortly.

CONCLUSIONS, CHALLENGES, AND PERSPECTIVES
For glioma, conventional therapies provide unsatisfactory efficacy.
Most therapeutic attempts to incorporate immune therapeutics
have been futile, mainly due to BBB, the complex GME, the
heterogeneity of glioma tissues, off-target effects, and low
immunogenicity. It is relatively challenging to “awaken” the
immune activities in the complicated GME. To overcome these
obstacles and achieve better efficacy, some potential directions
are worth investigating: (1) develop a drug delivery platform that
could efficiently cross BBB, (2) identify the complicated signaling
intracellular or intercellular for developing new drugs, (3) find
convincing biomarkers for more timely and precise glioma
diagnosis and monitoring.
TAMs, the significant component of GME that exert nonnegli-

gible effects on glioma proliferation, vascularization, invasion,
metabolism, and treatment resistance and significantly contribute
to immunosuppressive GME, is closely associated with the genetic
phenotype of glioma and primarily influence the treatment
response, prognosis of glioma. As TAMs potentially establish the
complicated, unique intercellular interactions of the glioma
ecosystem, they also provide a potent alternative for the targeted
therapeutics. Indeed, various potential targets have already been
identified and evaluated by further trials. Increasing attention has
been paid to disrupting the specific signaling pathway using
diverse interventions—nucleic acids, gene therapy, small molecule
inhibitors, antagonistic or agonistic antibodies, synthetic mole-
cules, etc. Nanoimmunotherapy targeting TAMs, the ideal
weapons for precision and personalized medicine, opens a new
era of eradication of tumors under immunoregulation. At the
same time, the targeted delivery of therapeutic agents is still
challenging to achieve and represents a significant obstacle that
limits cancer treatment results. Currently, exosomes are studied as
promising nanoplatforms for drug delivery with enormous
advantages, including low toxicity, enhanced bioavailability, good
permeability, and specific tissue tropism. More than nanosized
extracellular vehicles, exosomes also act as essential regulators of
intercellular communication, indicating the vast potential of
exosomes to assist the diagnosis and treatment of glioma as
less-invasive, real-time liquid biopsy biomarkers, which could

provide a promising application for diagnosis and simultaneous
monitoring. Advances in the exosomes field and a more profound
understanding of the underlying function of exosomes would
significantly lead to breakthroughs in clinical applications to
benefit patients. Engineering the novel therapeutic exosomes,
combined with TAM-targeted immunotherapy, may herald a new
era of cancer immunotherapy that potentially brings opportunities
to overcome existing limitations.
Deeper investigations and further understanding of the

intercellular interactions between TAMs and various tumor cells
and other cells in glioma would conclusively yield new glioma
treatment strategies. Given that TAMs might be the potent target
to facilitate immunotherapeutic efficacy, multiple directions have
been investigated for qualitatively repolarizing macrophages
toward the anti-tumor subtype. Besides, reducing the amounts
of TAMs by inhibiting the recruitment of glioma or radically
depleting TAMs also provided us with alternative methods.
Microglia and bone marrow-derived macrophages show different
potentials in various aspects of glioma development. Knowledge
about distinctions between microglia and bone marrow-derived
macrophages still needs to be improved. Further investigations
into different types of macrophages are required.
The tumor microenvironment restrains the diffusion of nano-

drugs, thus decreasing the therapeutic effectiveness. Martin et al.
propose that nanomedicines should integrate anti-tumor agents
and factors that “normalize” the diverse composition of the tumor
microenvironment, inducing increased cancer perfusion and
decreased levels of hypoxia. These efforts may ease drug delivery
and transform the microenvironment from immunosuppressive to
immunostimulating [225]. In another aspect, further investigation
to realize a stimuli-responsive release of immunomodulatory
therapeutic agents may present us with better efficacy.
In conclusion, TAMs significantly contribute to glioma progres-

sion via various signaling molecules, providing new insight into
therapeutic strategies. The TAMs-centered strategies can be
mainly divided into reducing recruitment or depleting TAMs and
reprograming the M1-like phenotype into M2-like. Exosomes
would significantly assist the TAMs-centered treatment as drug
delivery vehicles and liquid biopsy biomarkers. And much work
remains to be done to push forward the hopeful progress
established in preliminary work. This would be crucial for
developing different therapies that re-modulate the tumor
microenvironment to benefit patients with glioma. With more
profound knowledge of TAMs and exosomes, exosome-mediated
nanoimmunotherapy may transform glioma immunotherapy in
the future. We hope this review contributes to deeper investiga-
tions to advance the current understanding and continue
challenging the status quo of standard glioma therapy to improve
its clinical efficacy.

Overcoming challenges of clinical application of exosomes
Exosomes could transmit therapeutic factors to the targeted cells
for therapeutic applications. While there is a necessary condition
that exosomes need be able to find their target and release the
cargo specifically. At present, the molecular mechanisms of the
related exosomes remain undefined. More basic research to better
understand these unknowns would aid diagnosis and therapy of
glioma shortly.
Besides, clinical applications of exosomes face several chal-

lenges, such as massive production, standard isolation, drug
loading, stability, and quality control. During the past decade,
efforts on basic exosome research, while challenges still exist for
the therapeutic delivery of drugs via exosomes [226]. Ivano Luigi
Colao et al. reviewed the present manufacturing technologies and
strategies that may aid the clinical production of exosomes [227].
Important technologies available for exosome isolation have been
precisely discussed by Sergio Ayala-Mar et al. [228]. For the
preservation of exosomes, present data indicate that −80 °C
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remains the promising mode. While considering cost and poses
challenges in transportation, alternatives such as lyophilization
and the incorporation of additives may be needed [229]. The
heterogeneity of exosomes poses a big challenge for the isolation,
suitable methods to profile exosome heterogeneity have pre-
viously been reviewed [230, 231].
Artificial nanocarriers are the novel direction of drug delivery

systems in nanomedicine [54]. Efforts and advances in exosome-
related technologies are simultaneous and of significant value.

Designing rational combined modality therapy
Considering the complex intercellular communication in the GBM,
employing one effective single drug seems unrealistic. The high
loading capacity and rich surface modification characteristics of
exosomes provide us with possibilities for improving therapeutic
agents’ biocompatibility and targeting capacity. Potently to load
multiple drugs simultaneously, exosomes can enhance the efficacy of
drugs. Engineering multifunctional exosomes is a step toward
efficient immunotherapy and may even replace the current and
traditional therapeutic strategies. At the same time, a deeper
understanding of the complex intercellular communication between
the immune system and cancer cells is required to further increase
therapeutic agents’ efficacy. Targeting molecular signatures identi-
fied in the glioma context and combining several levels of TAM
functionality, from genetic to epigenetic to metabolic molecules,
would be a promising direction for TAM-targeted therapeutics.

Transition from pre-clinical trials to clinical applications
Although some strategies have shown considerable therapeutic
efficacy in preclinical trials, no single agent has succeeded in
clinical trials. The transition from pre-clinical trials to clinical
applications is still difficult. The heterogeneity and complexity of
human glioma, which induces the discrepancy between patients’
responses under immunotherapies, cannot be entirely simulated
by animal models or cell lines. Some may result in unexpected
human side effects that animal models cannot affect. In short,
more laboratory and clinical efforts are still required.
Therapeutic approaches of targeting, more specifically, the

disease-associated microglia and TAM subsets while preserving
the homeostatic ones provide us with a grand vista for glioma
[232]. TAMs, including microglia and these bone marrow-derived
macrophages, reveal diversified phenotypic identity and function,
thus resulting in a continuum of states responding to environ-
mental signals. Future studies may focus on sex differences, how
bone marrow-derived macrophage subsets interact with resident
microglia to regulate their phenotypic state, and whether this
cross-talk can be re-directed to control the expression of pro- and
anti-tumor responses. Surprisingly, the host microbiome produces
some crucial signals that influence microglia. Identifying those
signals and to exploiting them therapeutically is prospective [233].
In addition, identifying the pro-resolving TAMs subsets that are
long-lived in the brain under disease conditions [91] may provide
us with a novel direction for glioma.
Anna Gieryng et al. reviewed the glioma-derived signals and

mechanisms driving bone marrow-derived macrophage accumula-
tion and reprogramming [234]. Several glioma-derived factors are
revealed to trigger the migration, proliferation, and reprogramming
of TAMs. Many preclinical analyses focus on the interaction of TAMs
and glioma cells, while the communication between TAMs and
other immune cells is still poorly understood [87]. Much remains
unclear about the complex cell-cell interactions in the glioma
microenvironment. In a clinical setting, it is crucial to figure out the
cellular and extracellular matrix-dependent relationships unique to
the glioma microenvironment, identify potential targets involved in
the intricate intracellular communication, and then find the
exceptional opportunities of therapeutic approaches, hopefully
contributing in the future to a better outcome for glioma [234].
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