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Subtype-selective induction of apoptosis in translocation-
related sarcoma cells induced by PUMA and BIM upon
treatment with pan-PI3K inhibitors
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Translocation-related sarcomas (TRSs) harbor an oncogenic fusion gene generated by chromosome translocation and account for
approximately one-third of all sarcomas; however, effective targeted therapies have yet to be established. We previously reported
that a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, ZSTK474, was effective for the treatment of sarcomas in a phase I clinical
trial. We also demonstrated the efficacy of ZSTK474 in a preclinical model, particularly in cell lines from synovial sarcoma (SS),
Ewing’s sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS), all of which harbor chromosomal translocations. ZSTK474 selectively
induced apoptosis in all these sarcoma cell lines, although the precise mechanism underlying the induction of apoptosis remained
unclear. In the present study, we aimed to determine the antitumor effect of PI3K inhibitors, particularly with regards to the
induction of apoptosis, against various TRS subtypes using cell lines and patient-derived cells (PDCs). All of the cell lines derived
from SS (six), ES (two) and ARMS (one) underwent apoptosis accompanied by the cleavage of poly-(ADP-ribose) polymerase (PARP)
and the loss of mitochondrial membrane potential. We also observed apoptotic progression in PDCs from SS, ES and clear cell
sarcoma (CCS). Transcriptional analyses revealed that PI3K inhibitors triggered the induction of PUMA and BIM and the knockdown
of these genes by RNA interference efficiently suppressed apoptosis, suggesting their functional involvement in the progression of
apoptosis. In contrast, TRS-derived cell lines/PDCs from alveolar soft part sarcoma (ASPS), CIC-DUX4 sarcoma and
dermatofibrosarcoma protuberans failed to undergo apoptosis nor induce PUMA and BIM expression, as well as cell lines derived
from non-TRSs and carcinomas. Thus, we conclude that PI3K inhibitors induce apoptosis in selective TRSs such as ES and SS via the
induction of PUMA and BIM and the subsequent loss of mitochondrial membrane potential. This represents proof of concept for
PI3K-targeted therapy, particularly such TRS patients.
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INTRODUCTION
Soft tissue sarcomas (STSs) are a rare and heterogeneous group of
malignant tumors of mesenchymal origin featuring 100 different
histological subtypes [1]. The outcome of patients with the early
stages of STS have improved over the past few decades; however,
the outcomes for advanced and non-resectable STS are unsatis-
factory due to the lack of effective therapeutic drugs. The first-line
treatment for advanced STS includes classical chemotherapeutic
agents such as doxorubicin, ifosfamide and dacarbazine [2, 3].
However, only three new anticancer drugs (pazopanib, trabecte-
din and eribulin) have been approved in Japan since 2012 as
second-line or subsequent treatment options for patients with
advanced STS; furthermore, the efficacy of these drugs is limited
[4]. Approximately 20% of STSs are classified as translocation-
related sarcomas (TRSs) which harbor oncogenic fusion genes
generated by chromosome translocation [5]. Fusion genes, such as

SS18-SSX, EWSR1-FLI1 and PAX3-FOXO1, are responsible for the
generation of synovial sarcoma (SS), Ewing’s sarcoma (ES) and
alveolar rhabdomyosarcoma (ARMS), respectively [5–10]. Most
fusion gene products found in STSs serve as transcriptional factors
or are involved in chromatin remodeling; however, unlike the
activated kinases found in carcinoma, transcriptional factors are
considered ‘undruggable’ because they lack catalytic active sites
for drugs to bind [5]. However, effective targeted therapies for
these TRSs have yet to be established.
Phosphatidylinositol 3-kinase (PI3K) is strongly activated in

cancer cells by the activation of receptor tyrosine kinase, a gain-of-
function hotspot mutation in the PIK3CA gene or the loss of
phosphatase and tensin homolog (PTEN) expression, thus
contributing to oncogenesis, proliferation and survival [11, 12].
Therefore, targeting PI3K is thought to be a promising therapeutic
option for treating patients with a wide range of cancers featuring
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the activation of PI3K [13]. In fact, many PI3K inhibitors have been
developed and investigated in clinical trials; however, results from
clinical trials testing the use of PI3K inhibitors for solid tumors
have been disappointing [14, 15]. The only exception was alpelisib,
a PI3Kα-selective inhibitor that was approved by the U.S. Food and
Drug Administration (FDA) for patients with PIK3CA-mutated
HR+HER2- breast cancer [16]. In contrast, the cell proliferation
and survival of B-cell malignancies, such as chronic lymphocytic
leukemia/small lymphocytic lymphoma (CLL/SLL) and follicular
lymphoma (FL) have been shown to be dependent on PI3Kδ
which plays a fundamental role in B-cell receptor-downstream
signaling. PI3K inhibitors with potent inhibitory activity on PI3Kδ
have been developed and approved for treating such B-cell
malignancies [17]. The role of PI3K in the proliferation and survival
of sarcoma is largely unknown; however, we previously reported
that ZSTK474, a PI3K inhibitor, showed long-term disease stability
in three out of four sarcoma patients enrolled in a Phase 1b clinical
trial for cancer patients harboring solid tumors [18, 19]. These
results prompted us to determine which subtypes of sarcoma
respond to PI3K inhibitors. To this end, we established a sarcoma
panel consisting of 14 sarcoma cell lines from various origins and
found that the PI3K inhibitor exhibited significant antitumor
activity and induced apoptosis in SS, ES and ARMS cell lines, all of
which harbor chromosomal translocations [20]. However, the
mechanism by which PI3K inhibitors induced apoptosis in these
TRS subtypes and the effects of PI3K inhibitors against other TRS
subtypes remain unclear.
In the present study, we aimed to determine the antitumor

effects and the mechanisms of action, focusing particularly on
apoptosis induction, of PI3K inhibitors using an expanded TRS
panel consisting of cell lines established elsewhere and patient-
derived cells (PDCs) originally established from resected tumors of
various TRS origin. We found that PI3K inhibitors induced
apoptosis selectively in SS, ES, ARMS and clear cell sarcoma
(CCS) but induced only cytostatic effects and not apoptotic cell
death in alveolar soft part sarcoma (ASPS), non-TRS or carcinoma
cells. We also found that the induction of apoptosis was mediated
by the selective induction of proapoptotic BCL-2 family members
such as PUMA and BIM in cells derived from such TRS subtypes.
Thus, we concluded that PI3K inhibitors selectively induce
apoptosis in TRS such as SS, ES, ARMS and CCS due to the
induction of PUMA and BIM expression. These results provide us
with a proof-of-concept for PI3K-targeted therapy especially for
patients with such TRS subtypes, with potential implications for
future clinical applications.

RESULTS
The subtype specificity of TRS undergoing apoptosis upon
treatment with PI3K inhibitors
First, we examined the effects of PI3K inhibitors on PI3K-
downstream signals and apoptotic progression in cell lines
derived from various TRS subtypes. ZSTK474 reduced the
phosphorylation of PI3K signaling molecules including Akt (p-
Akt) and ribosomal protein S6 (p-S6) in all cell lines tested,
indicating the effective blockade of PI3K-downstream signaling. In
contrast, ZSTK474 selectively induced the activation of caspase3
and the cleavage of poly-(ADP-ribose) polymerase (PARP) in SS, ES
and ARMS but not ASPS cell lines (Fig. 1A). Similar results were
obtained with copanlisib, another PI3K inhibitor (Fig. 1B). The
progression of apoptosis was blocked upon pretreatment with Z-
VAD-FMK, a pan-caspase inhibitor (Fig. 1C). In contrast, sarcoma
cell lines without a known chromosomal translocation (non-TRS
cell lines) did not undergo apoptosis after exposure to ZSTK474 for
up to 48 h, as we previously demonstrated [20] (Fig. S1). These
results indicated that the blockade of PI3K activities by ZSTK474 or
copanlisib caused apoptotic caspase activation selectively in TRS

cell lines derived from SS, ES and ARMS, but not in those derived
from ASPS and non-TRS subtypes.
It is well known that the increased permeability of the

mitochondrial membrane causes the loss of membrane potential
and the leakage of cytochrome c into the cytoplasm, thus leading
to the subsequent activation of caspases to execute the apoptosis
process [21]. Therefore, we examined the membrane potential of
sarcoma cells upon treatment with PI3K inhibitors using JC-1, a
mitochondrial membrane potential indicator [22]. Consistent with
the activation of caspase3 and the cleavage of PARP, SS, ES and
ARMS (but not ASPS cells) exhibited increased percentages of cells
with a loss of mitochondria membrane potential in response to
treatment with ZSTK474 or copanlisib (Fig. 2A and B). These results
indicated that PI3K inhibitors induce apoptosis via increased
permeability of the mitochondrial membrane.

Transcriptome analysis of TRS cells treated with ZSTK474
To further investigate the effect of PI3K inhibitors on TRS cell lines,
we compared the transcriptome of SS cell lines treated with or
without ZSTK474. Gene set enrichment analyses (GSEA) demon-
strated that SS cells treated with ZSTK474 significantly reduced
the signatures of PI3K/Akt/mTOR signaling. Furthermore, analysis
revealed that ZSTK474 triggered gene expression changes in the
Reactome pathways involved in apoptosis regulation (Fig. 3A and
B). Gene ontology (GO) analysis identified GO terms related to cell
cycle regulation (GO: 0000278: mitotic cell cycle; GO: 0010564:
regulation of cell cycle process) (Fig. S2A). ZSTK474 significantly
increased the population of cells in G1 phase of the cell cycle in
Aska-SS and SYO-1 cells (Fig. S2B), as well as various carcinoma cell
lines, as we demonstrated previously [23, 24]. In addition to the
cell cycle, GO terms related to various biological events including
cellular response to DNA damage stimulus (GO:0006974), DNA
replication (GO:0006260), organelle assembly (GO:0070925), pro-
tein localization to organelle (GO:0033365), positive regulation of
cell death (GO:0010942) and mitochondrion organization
(GO:0007005) were also identified; these processes could all be
involved in the strong antitumor effect of ZSTK474 in SS cell lines.

PUMA and BIM proteins were upregulated after exposure to
PI3K inhibitors in TRS cell lines
The BCL-2 family of proteins, which include anti-apoptotic, BH3-
only and multi-BH domain-containing proteins, are known to play
critical roles in mitochondria membrane permeabilization [25–27].
The genes encoding these proteins are involved in the positive
regulation of cell death (GO:0010942) and mitochondrion
organization (GO:0007005), as shown by GO analysis (Fig. S2A).
In addition, treatment with PI3K inhibitors increased permeability
of the mitochondria membrane in SS, ES and ARMS cells (Fig. 2).
Thus, we investigated the effect of ZSTK474 treatment on the
expression of BCL-2 family members at the mRNA and protein
levels in TRS cell lines. Notably, of the genes encoding BH3-only
proapoptotic proteins, BBC3 (PUMA) and BCL2L11 (BIM) signifi-
cantly induced in all four SS cell lines upon treatment with
ZSTK474 (Fig. 3C). In parallel, the induction of PUMA and BIM were
observed at the protein level in SS, and also in ES and ARMS-
derived cell lines undergoing apoptosis upon ZSTK474 treatment
(Fig. 4A). In contrast, such events were not observed in cell lines
derived from ASPS and non-TRS subtypes, all of which did not
undergo apoptosis upon ZSTK474 treatment (Fig. 4A and Fig. S1).
The expression of multi-BH domain-containing proapoptotic
proteins, including BAK and BAX, were detected in all TRS cell
lines without drug exposure and their expression levels were
slightly upregulated by exposure to ZSTK474 (Fig. 4A). Since it has
been reported that BAX is cleaved from a 21 kDa native form to an
18 kDa fragment in response to death stimuli [28, 29], we
examined whether treatment with ZSTK474 induces the levels of
cleaved BAX. In parallel with the progression of apoptosis, cleaved
BAX was observed following ZSTK474 treatment in SS, ES and
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ARMS but not ASPS (Fig. 4A). With regards to anti-apoptotic BCL-2
family members, the mRNA expression of BCL-2, BCL-XL and MCL-
1 was hardly decreased by ZSTK474 in SS cell lines (Fig. 3C,
although their protein expression levels were increased, rather
than decreased, upon ZSTK474 treatment in SS, ES and ARMS cell
lines (Fig. S3)). Taken together, of the BCL2 family proteins
examined, the induction of PUMA and BIM is the most relevant
event to apoptosis induction by PI3K blockade and is likely to be
functionally involved in the progression of apoptosis.

Induction of FOXO1/3, but not p53, in TRS cell lines
undergoing apoptosis triggered by PI3K blockade
It was previously reported that PI3K inhibition induces apoptosis by
upregulating forkhead box O1/3 (FOXO1/3), transcription factors
downstream of PI3K signaling, and thereby transactivate the
expression of PUMA or BIM in hepatocellular carcinoma and
colorectal cancer, respectively [30, 31]. Other studies demonstrated
that apoptotic stimuli by DNA damaging agents activate p53,
leading to apoptosis via the transcriptional upregulation of PUMA,
NOXA, BID and BAX [32–35]. In this study, to explore the
involvement of FOXO1/3 and p53 in the transcriptional upregulation
of PUMA and BIM after exposure to PI3K inhibitors, we examined
their expression after exposure to a PI3K inhibitor. As a result, the

upregulation of FOXO1 and/or FOXO3 was observed in most of the
cell lines with upregulated PUMA/BIM expression, but not in ASPS
and non-TRS subtypes cell lines which did not undergo apoptosis
(Fig. S1 and S4A). In contrast, the induction of p53 protein was not
observed in any of the sarcoma cell lines examined, regardless of
apoptosis induction (Fig. S4B). These results suggest that the
induction of FOXO1 and FOXO3, but not p53, could be involved in
the transcriptional activation of PUMA and BIM after PI3K blockade.

The upregulation of PUMA and BIM contributed to apoptosis
induced by a PI3K inhibitor
To determine whether the induction of PUMA and BIM expression
and the subsequent activation of BAK/BAX contributed to the
induction of apoptosis by PI3K inhibitors, we employed specific
siRNAs to knockdown BAK, BAX, PUMA or BIM in TRS cells treated
with a PI3K inhibitor. The transfection of siRNA resulted in the
partial knockdown of BAK, BAX, PUMA and BIM, and in parallel,
impaired the activation of caspase3 and the cleavage of PARP by
ZSTK474 treatment in SYO-1 and SJCRH30 cells, except for BAK in
SYO-1 cells (Fig. 4B). These results suggest that ZSTK474 induces
apoptosis in TRSs including SS, ES and ARMS at least in part
through the induction of PUMA and BIM expression and the
subsequent activation of BAK/BAX.

Fig. 1 Treatment with PI3K inhibitors induced apoptosis in translocation-related sarcomas (TRSs) including synovial sarcoma (SS),
Ewing’s sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS) but not alveolar soft part sarcoma (ASPS). A, B Effects of the PI3K inhibitors
ZSTK474 (A) and copanlisib (B) on PI3K signaling and apoptosis in the indicated TRS cell lines. TRS cells were treated with ZSTK474 or
copanlisib at the indicated concentrations for 48 h. Lysed samples were immunoblotted to detect the phosphorylation of signal molecules
including Akt (Ser473), S6 (Ser235/236) and ERK (T202/Y204) and the expression of apoptosis markers including cleavage of PARP and
activation of caspase3 and α-Tubulin. C The effect of ZSTK474 on PI3K signaling and apoptosis in Aska-SS and SYO-1 upon treatment with Z-
VAD-FMK. Aska-SS and SYO-1 cells treated with or without Z-VAD-FMK at 40 μM were treated with ZSTK474 at the indicated concentrations for
48 h. Lysed samples were immunoblotted to detect the phosphorylation of Akt (Ser473), cleavage of PARP, activation of caspase3 and
expression of α-Tubulin. These experiments were performed independently at least two times with similar results.
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ZSTK474 induced apoptosis and the expression of PUMA and
BIM in SS cell lines in vivo
We previously reported that the administration of ZSTK474 to
mice bearing SYO-1 xenografts exhibited a preferable antitumor
effect [20]. To examine whether ZSTK474 induced apoptosis and
the expression of PUMA and BIM resulting in a preferable
antitumor effect in in vivo xenografted tumors, we employed
mice bearing Aska-SS xenografts as well as SYO-1. Similar to SYO-1
xenografts, for which we reported high sensitivity in the previous
paper [20], the treatment of mice bearing Aska-SS xenografts with
ZSTK474 achieved remarkable antitumor effects (Fig. 5A). Immu-
nohistochemistry revealed that the administration of ZSTK474
induced apoptosis, as shown by the increased activation of
caspase3 in the xenograft tumors; furthermore, ZSTK474 induced

the upregulation of PUMA and BIM (Fig. 5B and C). These results
strongly suggest that ZSTK474 induced apoptosis via the
induction of PUMA and BIM expression in SYO-1 and Aska-SS
tumors in vivo, as well as in vitro.

PI3K inhibitors induced apoptosis and the expression of
PUMA and/or BIM in PDCs of TRSs
To further investigate the effect of PI3K inhibitors in a wide variety
of TRS subtypes, we exploited a series of patient-derived tumor
cells (PDCs) originally established from surgical tumor specimens
of various origins including SS, ES, ASPS, clear cell sarcoma (CCS,
harboring the EWSR1-ATF1 fusion gene), CIC-DUX4 sarcoma (CDS,
harboring the CIC-DUX4 fusion gene) and Dermatofibrosarcoma
protuberans (DFSP, harboring the COL1A1-PDGFB fusion gene). In

Fig. 2 SS, ES and ARMS but not ASPS cell lines lost mitochondria membrane potential upon treatment with PI3K inhibitors. A, B Effects of
the PI3K inhibitors ZSTK474 and copanlisib on mitochondrial membrane potential in TRS cell lines including SS, ES, ARMS and ASPS. TRS cells
were treated with ZSTK474 or copanlisib at the indicated concentrations for 48 h. To examine the loss of mitochondria membrane potential,
TRS cells were stained with JC-1 and analyzed by flowcytometry. JC-1 aggregates in healthy mitochondrial matrix; this can be visualized as red
fluorescence. However, in dysfunctional mitochondria, JC-1 effluxes to the cytoplasm and exists as monomers with green fluorescence.
Representative flow cytometric analysis (A) and summaries of triplicate data (B) are shown. The numbers in the panels (A) indicate the
frequencies of JC-1 monomer positive cells. Data are means ± SD. These experiments were performed in triplicate and independently at least
two times with similar results. Statistical analyses were performed by Dunnett’s test (B). *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 3 The treatment of synovial sarcoma cells with PI3K inhibitors inhibited PI3K signaling, induced apoptosis and increased the
expression of PUMA and BIM in comprehensive gene expression analysis. Aska-SS, SYO-1 Yamato-SS and Fuji cells were treated with the
PI3K inhibitor ZSTK474 at 3 μM for 24 h and subjected to microarray analysis. A, B Representative GSEA plots showing enrichment for the gene
signature associated with PI3K signaling (A) and apoptosis (B) in the indicated cell lines treated with and without ZSTK474. C Microarray
expression data of BCL-2 family genes in Aska-SS, SYO-1 Yamato-SS and Fuji cells treated with ZSTK474 at the indicated concentrations for
24 h.
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accordance to the results obtained from cell lines derived from SS,
ES and ASPS in Fig. 1A, ZSTK474 induced apoptosis in PDCs
established from SS (NCC-SS1-C1) [36], ES (NCC-ES1-C1) [37] but
not in ASPS (NCC-ASPS1-C1) [38]. Furthermore, ZSTK474 also
induced apoptosis in PDCs derived from CCS (NCC-CCS1B-C1) [39],
but not in those derived from CDS (NCC-CDS2-C1) [40] and DFSP
(NCC-DFSP2-C1) [41] (Fig. 6). Consistent with the induction of
apoptosis, the expression of activated BAX was detected in NCC-
SS1-C1 and NCC-CCS1B-C1 but not NCC-CDS2-C1, NCC-DFSP2-C1
and NCC-ASPS1-C1, although activated BAX was barely detected
in NCC-ES1-C1 (Fig. 6). In addition, PUMA and/or BIM were
induced by treatment with ZSTK474 in NCC-SS1-C1, NCC-ES1-C1
and NCC-CCS1B-C1 but not NCC-CDS2-C1, NCC-DFSP2-C1 and
NCC-ASPS1-C1 (Fig. 6). Similar results were obtained with
copanlisib treatment (Fig. S5). Across the sarcoma cell lines and
PDCs tested in this study, the expression levels of PUMA and BIM
were significantly upregulated by treatment with ZSTK474 in cell
lines undergoing apoptosis, while PUMA and BIM expression was
not induced in cell lines not undergoing apoptosis (Fig. S6). These
results suggest that PI3K inhibitors selectively induce apoptosis in
SS, ES, ARMS and CCS but not CDS, DFSP and ASPS due to the

induction of PUMA and BIM expression and thereby the activation
of BAK/BAX.

DISCUSSION
In this study, we aimed to determine whether and how PI3K
inhibitors induced apoptosis in different TRS subtypes using an
expanded sarcoma cell panel including cell lines and PDCs. The
major finding of this study is that PI3K inhibitors induced
apoptosis in TRSs especially in SS, ES, ARMS, and CCS, but not
ASPS. We also found that PI3K inhibitors increased mitochondrial
outer membrane permeability, the activation of BAK/BAX, the
upregulation of PUMA, BIM, FOXO1 and FOXO3 expression. Thus,
we concluded that PI3K inhibitors selectively induced apoptosis in
TRSs such as SS, ES, ARMS, and CCS in a manner that was
mediated by increased mitochondrial outer membrane perme-
ability via the upregulation of PUMA and BIM expression probably
due to transcriptional activation by FOXO1 and FOXO3.
All of the 12 cell lines from SS (7), ES (3), ARMS (1) and CCS (1)

underwent apoptosis, while cell lines from ASPS (3), DFSP (1) and
CDS (1) did not. Notably, the induction of apoptosis after exposure

Fig. 4 An increase in the expression of BIM and PUMA and the subsequent activation of BAK/BAX contribute to the induction of
apoptosis by a PI3K inhibitor. A Immunoblot analysis to examine the effect of the PI3K inhibitor ZSTK474 on the expression of proapoptotic
BCL-2 family proteins including BAK, BAX, PUMA and BIM in the indicated TRS cell lines including SS, ES, ARMS and ASPS. TRS cells were
treated with ZSTK474 at the indicated concentrations for 48 h. B Effect of siRNAs specific to BAK, BAX, PUMA and BIM on the induction of
apoptosis by ZSTK474. TRS cells transfected with siRNAs were incubated with or without ZSTK474 at 10 μM for 24 h. Lysed samples were
immunoblotted to detect BAK, BAX, PUMA, BIM, phosphorylated Akt at Ser473, cleavage of PARP, activation of caspase3 and α-Tubulin. These
experiments were performed independently at least two times with similar results.
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to PI3K inhibitors correlated quite well with the induction of PUMA
and BIM, whereas the substantial inhibition of PI3K-downstream
signaling, as demonstrated by the downregulation of phosphory-
lated Akt, was observed in cell lines not undergoing apoptosis, as
well as in those undergoing apoptosis. In other words, PI3K
signaling seems to play an important role in maintaining cell
survival by repressing the expression of PUMA and BIM in cell lines
including SS and ES, which both exhibited susceptibility to PI3K
blockade.
The involvement of BCL-2 family proteins in the progression of

apoptosis triggered by other molecular target drugs has been
reported previously. For example, EGFR inhibitors and BRAF
inhibitors induce apoptosis by increasing the expression of BH3
only proapoptotic proteins such as BIM, PUMA and NOXA, and/or
by decreasing expression of anti-apoptotic proteins such as BCL-2
and MCL-1 in cells derived from EGFR-mutant non-small cell lung
cancers and BRAF-mutant melanomas, respectively [42–44]. In
osteosarcoma, dinaciclib, a pan-cyclin-dependent kinase inhibitor,

induced apoptosis by suppressing the expression of MCL-1 and
BCL-XL and by inducing the expression of BIM [45]. In the present
study, PI3K inhibitors upregulated proapoptotic BCL family
members including PUMA and BIM both at the mRNA and protein
levels, whereas neither of the anti-apoptotic BCL family members
including BCL-2, BCL-XL and MCL-1 were not downregulated in
TRS-derived cell lines such as SS, ES and ARMS. The upregulation
of FOXO1 and/or FOXO3 in cells undergoing apoptosis after
blockade of the PI3K pathway suggested the involvement of
FOXO1/3 in the induction of PUMA and BIM, as previously
reported in cell lines derived from hepatocellular carcinoma and
colorectal cancers [30, 31]. FOXO transcription factors are known
to be downstream factors of the PI3K/Akt signaling pathway and
their expression can be degraded by the ubiquitin-proteasome
pathway via phosphorylation by Akt [46]. Therefore, the inhibition
of PI3K is likely to upregulate FOXO1/3 and thereby transactivate
the expression of PUMA and BIM. In contrast, Hata et al. reported
that BIM protein levels are regulated by MEK/ERK signaling while
the expression of PUMA is regulated by PI3K signaling in cancers
driven by oncogenic driver mutations on tyrosine kinase, thus
resulting in the constitutive activation of downstream kinase
signaling pathways including the MEK/ERK and PI3K signaling
pathways [44]. In our present study, the phosphorylation level of
MEK/ERK remained unchanged in TRS cell lines undergoing
apoptosis after exposure to ZSTK474 (Fig. 1A), thus suggesting
that MEK/ERK signaling does not seem to be involved in the
upregulation of BIM.
In the present study, it was unclear as to why SS, ES, ARMS and

CCS, but not ASPS, underwent apoptosis upon PI3K blockade. One
possible explanation for this difference is that it arises from the
preference of upstream receptor tyrosine kinase (RTK) depen-
dence. Reportedly, the proliferation and survival of SS, ES, ARMS
and CCS cells, which underwent apoptosis upon PI3K blockade in
this study, are dependent on insulin like growth factor 1 receptor
(IGF1R) signaling due to the induction of IGF1, IGF2 and IGF1R
expression by the respective fusion genes such as SS18-SSX,
EWSR1-FLI1, PAX3-FOXO1 and EWSR1-ATF1 [5, 47–49]. In contrast,
ASPS cells did not undergo apoptosis and were shown to be
preferentially dependent on MET, vascular endothelial growth
factor (VEGF) and platelet derived growth factor (PDGF) instead of
IGF1R [50]. In general, RTK-downstream signaling is dependent on
two major pathways, the PI3K/Akt- and MEK/ERK pathways; of
these, IGF1R predominantly utilizes the PI3K/Akt pathway whereas
MET, VEGF and PDGF are dependent on both pathways [51, 52].
This may be a reason why cell survival in SS, ES, ARMS and CCS,
but not ASPS, was highly dependent on PI3K. Indeed, multi-
targeted RTK inhibitors (TKIs) such as sunitinib, VEGFR inhibitors
such as pazopanib and bevacizumab, and MET inhibitors such as
crizotinib, have been reported to be effective for ASPS in some
clinical trials [50, 53, 54].
In conclusion, PI3K inhibitors selectively induced apoptosis in

SS, ES, ARMS, and CCS, but not in ASPS among the TRSs examined
so far; this effect occurred via the upregulation of PUMA and BIM
and the subsequent increased permeability of the mitochondrial
membrane; however, the precise regulatory mechanisms under-
lying the selective induction of apoptosis in cell lines derived from
specific TRS subtypes including SS and ES remains to be
elucidated. However, our present findings provide us with a
promising therapeutic modality that would satisfy unmet needs
for patients with such TRS subtypes.

MATERIALS AND METHODS
Drugs
ZSTK474 was provided by OHARA Pharmaceutical Co., Ltd. (Tokyo, Japan).
Copanlisib was purchased from Selleck Chemicals (Houston, TX) and Z-
VAD-FMK was purchased from Adipogen Life Sciences (Liestal, Switzer-
land). These compounds were dissolved in dimethyl sulfoxide.

Fig. 5 Administration of a PI3K inhibitor induced apoptosis and
the expression of PUMA and BIM resulting in a preferable
antitumor effect in a SYO-1 and Aska-SS xenograft model. A In
vivo antitumor activity of the PI3K inhibitor ZSTK474 against Aska-SS
xenografts. Data are means ± SD. n= 9 for a vehicle group and n= 7
for a ZSTK474 treated group. Statistical analysis was performed by
Welch’s t-test. ***P < 0.001. B, C The expression levels of cleaved
caspase3, PUMA and BIM in SYO-1 (B) and Aska-SS (C) xenograft
tumors from mice treated with or without ZSTK474 at 400mg/kg
once a day for 3 days were analysed by immunohistochemistry.
Scale bars, 100 μm.
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Cell lines and patient derived cells (PDCs)
The cell lines and PDCs used in this study are listed in Table S1 and S2,
respectively [10, 55–68]. All cell lines were maintained in RPMI
1640 supplemented with 5% (v/v) fetal bovine serum and 1 μg/mL of
kanamycin at 37 °C in humid air containing 5% CO2. All PDCs used in this
study were established from resected tumor specimens at National
Cancer Center Hospital/Research Institute, Tokyo, Japan. PDCs were
maintained in DMEM or DMEM/F12 supplemented with 10% (v/v) fetal
bovine serum and 1 μg/mL of kanamycin at 37 °C in humid air containing
5% CO2.

Immunoblotting
Immunoblot assays were carried out on cell extracts using the primary
antibodies listed in Table S3. Visualization and quantification of the bound
antibody was carried out using an anti-rabbit or anti-mouse immunoglo-
bulin secondary antibody labeled with Alexa Fluor Plus 680 or 800 (Thermo
Fisher Scientific, Waltham, MA) and the Odyssey Infrared Imaging System
(LI-COR Biosciences, Lincoln, NE).

JC-1 staining
Changes in mitochondrial membrane potential were assessed by JC-1
staining (PK-CA707-70014, PromoCell, Heidelberg, Germany) [22]. Cells
were incubated in complete medium with JC-1 at 1.7 μM and verapamil at
50 μM for 30min at 37 °C. The stained cells were analyzed with BD
FACSMelody (BD Biosciences, Franklin Lakes, NJ) and FlowJo software (BD
Biosciences).

Cell cycle analysis
Cell cycle analysis was performed by flow cytometry using the Vybrant
DyeCycle Violet (Thermo Fisher Scientific). Cells were incubated in 1ml of
complete medium with 1 μL of Vybrant DyeCycle Violet for 30min at 37 °C.
The stained cells were analyzed with BD FACSmelody (BD Biosciences) and
FlowJo software (BD Biosciences).

RNA interference
siRNAs specific to BAK (Hss184086, Hss184087), BAX (s1888, s1889), PUMA
(s25840, s25841), BIM (s195011, s195012) and the negative control siRNA
(4390843) were purchased from Thermo Fisher Scientific. Cells were plated
on 6-well plates and transfected with 44 nmol/L of siRNAs using RNAiMAX
(Thermo Fisher Scientific) according to the manufacturer’s instructions. The
transfected cells were then incubated with or without drugs for 24 h and
lysed with lysis buffer for immunoblotting [69].

Mouse xenograft model
Female BALB/c nude mice (The Jackson Laboratory Japan, Kanagawa,
Japan) were inoculated subcutaneously (into the back) with Aska-SS cells
or SYO-1 cells. When tumors reached 100–300mm3 in volume, the mice
were randomized into a vehicle control group and a ZSTK474-treated
group. Oral administration was performed once a day with ZSTK474
(400mg⁄kg suspended in 5% hydroxypropylmethylcellulose in water)
except for days 5 and 6 from the day of first administration (day 0). Tumor
volume (TV) was monitored three times a week by measurement of the
length (L) and width (W) of the subcutaneous tumor mass using calipers;
TV was calculated as TV= (L ×W2)/2. The sample size (n= 7 to 9) was
based on the results of preliminary experiments. The investigators were
not blinded during evaluation in in vivo experiments. The experimental
protocol was approved by the Institutional Animal Experimental Commit-
tee at Japanese Foundation for Cancer Research.

Immunohistochemistry
Xenograft tumors were fixed in 10% Formalin Neutral Buffer, embedded in
paraffin and sectioned at 4 μm. The sections were deparaffinized in xylene
and taken through a series of graded alcohols to water. Endogenous
peroxidase activity was quenched using 3% hydrogen peroxide and
antigen retrieval was performed by heating at 95°C for 40min in Target
Retrieval Solution Citrate (PH6.0, Dako, Glostrup, Denmark). After blocking
with 10% goat serum, the sections were incubated with a primary antibody
(Table S3) at 4 °C overnight. Following incubation with HRP-conjugated

Fig. 6 Treatment with a PI3K inhibitor induced the expression of PUMA and/or BIM and the activation of BAK/BAX, thus leading to
apoptosis in patient derived cells (PDCs) of TRSs. The effects of the PI3K inhibitor ZSTK474 on PI3K signaling, induction of apoptosis and the
expression of proapoptotic BCL-2 family proteins in PDCs of TRSs including SS (NCC-SS1-C1), ES (NCC-ES1-C1), clear cell sarcoma (NCC-CCS1B-
C1), CIC-DUX4 sarcoma (NCC-CDS2-C1), dermatofibrosarcoma protuberans (NCC-DFSP2-C1) and ASPS (NCC-ASPS1-C1). PDCs were treated
with ZSTK474 at the indicated concentrations for 48 h. Lysed samples were immunoblotted to detect the phosphorylation of Akt (Ser473) and
S6 (Ser235/236), cleavage of PARP, activation of caspase3 and the expression of BAK, BAX, PUMA, BIM and α-Tubulin.
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secondary antibody for 1 h at room temperature, the sections were stained
with diaminobenzidine and counterstained with hematoxylin.

Microarray analysis
Total RNA from TRS cells was extracted by the RNeasy kit (Qiagen, Hilden,
Germany). Microarray analysis was performed using the GeneChip Human
Genome U133 Plus 2.0 Array (Thermo Fisher Scientific) according to the
manufacturer’s instructions. GeneSpring software v.14.9.1 (Agilent, Santa
Clara, CA) was used for quantile normalization and data processing. Gene
ontology (GO) analysis was performed using Metascape. Gene set
enrichment analysis (GSEA) was performed using GSEA v4.1.0 software.
PI3K signaling and apoptosis signatures were downloaded from MSigDB:
Hallmark mTORC1 signaling, Hallmark PI3K/Akt/mTOR signaling, Reactome
Apoptosis and Reactome Regulation of apoptosis.

Statistics
The significance of differences between groups was determined with Excel
and EZR software using one-way analysis of variance (ANOVA) with post
hoc Dunnett’s test, one-way repeated measures ANOVA with post hoc
Dunnett’s test and unpaired two-tailed Welch’s t-test.

DATA AVAILABILITY
The datasets generated or analyzed during the current study are included either in
this article or in the supplemental materials files. The microarray data discussed in the
current study are available in the Gene Expression Omnibus and the data can be
accessed by the accession number GSE221131.
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