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Circular RNA (circRNAs) is a covalently closed circular non-coding RNA formed by reverse back-splicing from precursor messenger
RNA. It is found widely in eukaryotic cells and can be released to the surrounding environment and captured by other cell types.
This, circRNAs serve as connections between different cell types for the mediation of multiple signaling pathways. CircRNAs reshape
the tumor microenvironment (TME), a key factor involved in all stages of cancer development, by regulating epithelial-stromal
transformation, tumor vascularization, immune cell function, and inflammatory responses. Immune cells are the most abundant
cellular TME components, and they have profound toxicity to cancer cells. This review summarizes circRNA regulation of immune
cells, including T cells, natural killer cells, and macrophages; highlights the impact of circRNAs on tumor progression, treatment, and
prognosis; and indicates new targets for tumor immunotherapy.
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FACTS

● The expression of circRNAs is frequently dysregulated in
human cancers.

● CircRNAs play different roles during tumorigenesis and cancer
progression.

● CircRNAs regulate T cells, NK cells, and macrophages to
reshape the tumor microenvironment.

● CircRNA regulation of the tumor microenvironment provides
potential therapeutic opportunities for cancer treatment.

QUESTIONS

● Why circRNAs have multiple functions in the same or different
human cancers. What are the underlining molecular determi-
nants of this specificity?

● Does dose-dependent targeting of circRNAs work in mouse
models, at least in three-dimensional tumor organoid models?

● Is circRNA targeting applicable in clinical trials?
● Can we design prophylactic or therapeutic anti-cancer

approaches based on genetic of polymorphisms of circRNAs?

INTRODUCTION
Circular RNAs (circRNA) is a closed circular molecule that is
resistant to exonucleases, and is thus stable and widespread in

animals and plants. CircRNA was discovered in 1976 when the
Sanger team studied virus-like RNAs [1]. In 1991, Nigro et al. [2]
accidentally discovered a normal novel RNA product. Due to its
low expression and the limitations of detection technology,
circRNA was originally considered to be an aberrant product of
RNA splicing. Recently, with advances in high-throughput
sequencing technology, increasing numbers of circRNAs have
been characterized and their roles and mechanisms have become
active areas of investigation [3–5].
The immune system maintains homeostasis through immu-

nomodulation, surveillance, and the prevention of pathogen
invasion. The immune response coordinates a variety of
immune cells and has antiviral, antibacterial, and antitumor
functions. With rapid developments in oncology, immunology,
molecular biology, and related disciplines, immunotherapies
such as immune checkpoint inhibitors, tumor vaccines, and
adoptive cell therapy have revolutionized cancer treatment.
However, therapeutic responses, especially those of solid
tumors, have been unsatisfactory in clinical trials and clinical
applications. Recent studies have demonstrated that circRNAs
are involved in cancer development [6–8] and immune
responses [9–12]. In this review, we discuss the roles of
circRNAs in the regulation of immune cells, immune-related
molecules, and tumor immunity. We anticipate that this
summary of current knowledge will facilitate the development
of strategies to target circRNAs in the immune microenviron-
ments of human cancers.
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BIOGENESIS AND FUNCTION OF CIRCRNAS
CircRNA is a class of non-coding RNA generated from precursor
messenger RNA (mRNA). Most circRNAs originate from exons in
gene coding regions; others originate from 3′–untranslated
regions (UTRs), 5'-UTRs, introns, intergenic regions, and antisense
RNA [13, 14]. CircRNAs can be divided into four categories based
on their sequence origin: (1) exonic circular RNAs (EciRNAs)
derived from exons of the parent gene; (2) lasso-type or circular
intronic RNAs (ciRNAs) derived from introns; (3) exonic–intronic
circular RNAs (EIciRNAs) derived from both exons and introns; and
(4) other circRNAs, including those derived from antisense strand
transcripts (antisense circRNAs) and those derived from intergenic
sequences or other unannotated genomic sequences (intergenic
circRNAs) [15]. About 80% of circRNAs are EciRNAs localized
mainly to the cytoplasm, whereas ciRNAs and EIciRNAs are often
localized to the nucleus. CircRNAs are relatively evolutionarily
conserved in different species. Jeck et al. [16] used the genome-
wide RNase R enrichment method to detect >25,000 circRNAs in
fibroblasts. Wang et al. [17] observed circRNA expression in fungi,
plants, and prokaryotes, reflecting a high degree of conservation
and widespread distribution among species. The expression of the
same circRNA varies greatly under diseased and non-diseased
conditions, among tissues, and during different time periods. The
half-life of circRNAs exceeds that of the associated linear mRNA, as
the covalent closed-loop structure lacks 5′ and 3′ends, which
makes circRNAs more resistant to the exonuclease RNase R [18].
CircRNAs have four main biological functions (Fig. 1). (1) As they

contain a large number of micro-RNA (miRNA) binding sites, they
serve as molecular sponges and compete for miRNA binding to
target mRNAs, thereby upregulating the expression of target
genes [19–22]. (2) They participate in regulatory protein binding.
Various RNA-binding proteins (RBPs) play crucial roles in RNA
splicing, RNA stabilization, and mRNA translation. They bind to
RNA and facilitate its processing and translation. CircRNAs interact
with RBPs to form an RNA-protein complex, affecting RBP-
mediated gene expression [23–25]. (3) They participate in protein
encoding, as some circRNAs can be translated into peptides by
ribosomes [26, 27]. (4) They regulate gene transcription, promot-
ing parental gene expression by interacting with U1 small
ribonucleoprotein or enhancing RNA polymerase activity [28, 29].

CIRCRNAS REGULATE T CELLS
T cells play an important role in the antitumor immune response
[30]. T-cell activation is initiated through interaction with antigenic
ligands, which are short peptide fragments bound to major
histocompatibility complex class I (MHC I) and class II (MHC II)
molecules. CD4+ T cells recognize mainly exogenous antigens
presented by MHC II molecules, whereas CD8+ T cells recognize

mainly endogenous antigens presented by MHC I molecules
[31, 32]. Endogenous tumor antigens are processed intracellularly
into antigenic peptides, and CD8+ T cells are activated upon
recognizing antigenic peptide–MHC I complexes on tumor cell
surfaces; these activated cells kill tumor cells by secreting perforin
and granzymes, tumor necrosis factor, and lymphatic toxins [33].
They also kill tumor cells directly through apoptotic signals by
interacting with human factor–related apoptosis and its ligand
[34, 35]. Soluble antigens secreted by tumor cells are presented to
CD4+ T cells by antigen-presenting cells, activating the CD4+

T cells. Primed CD4+ T cells activate B and CD8+ T cells to kill
tumor cells [36, 37].
Mounting evidence indicates that tumor cells secrete exosomes

into the circulation, which deliver certain intracellular compo-
nents, such as circRNAs, into the tumor microenvironment (TME),
reshaping it [38–40]. Tumor cell-derived circRNAs have recently
been reported to play a vital and direct role in tumor immune
escape (Table 1). Mechanically, circRNAs enhance the interaction
between the immunosuppressive molecule programmed death
receptor 1 (PD-1) and its ligand (PD-L1) by upregulating PD-1
expression in T cells, suppressing T-cell activation and cytokine
secretion. Exosomes derived from different tumor cells deliver
various circRNAs to T cells to inhibit their killing ability via PD-1
upregulation. Those derived from ovarian cancer cells were found
to deliver circ-0001068 into T cells, increasing PD-1 expression via
miR-28-5p sponging and thereby causing T-cell exhaustion [41]. In
lung adenocarcinoma, circRNA-002178 was found to enter CD8+

T cells via exosomes and upregulate PD-1 expression by absorbing
miR-34a [42]. circRNA can also upregulate the expression of the
immune checkpoint molecules PD-L1 and CD73 on tumor cell
surfaces via miRNA sponging, which helps tumor cells to escape
recognition and death by T cells. Multiple studies have shown that
circRNAs regulate PD-L1 expression via the
circRNA–miRNA–mRNA axis, for instance, the circRNA of vimentin,
CDR1-AS, hsa_circ_0003288, hsa_circ_0000190, hsa_circ_0046523,
circ-CPA4, hsa-circRNA-002178, circ_0000284, circ_001678, circ-
HSP90A, and circIGF2BP3 (Table 1) [43–54]. Mechanistically, they
upregulate PD-L1 expression by sponging miRNAs in tumor cells,
which induces T-cell apoptosis and immune escape (Fig. 2). A
recent study showed that circ_0136666 induces regulatory T
(Treg) cell activation by increasing PD-L1 expression through miR-
497, leading to the immune escape of colorectal cancer (CRC) cells.
Preclinical studies have shown that the upregulation of CD73,
believed to be a novel immune checkpoint molecule, promotes
tumor growth and disease progression by TME remodeling [55].
The inhibition of CD73 may promote the activity of T cells and
other immune cells, enhancing antitumor immune surveillance via
the adenosine pathway [56]. Xu and colleagues found that the
expression of circHMGCS1-016 was upregulated in intrahepatic
cholangiocarcinoma tissue, and that this upregulation correlated
with poor survival; CD73 and GAL-8 were also upregulated in this
tissue. Mechanistically, circHMGCS1-016 induced CD73 and GAL-8
expression by sequestering miR-1236-3p [57].
CircRNAs modulate antitumor T-cell activity through various

mechanisms. In addition to regulating immune checkpoint
molecules, circ_002172 inhibited cytotoxic T cell (CTL) infiltration
and promoted breast cancer development by upregulating C-X-C
motif chemokine ligand 12 (CXCL12) expression via miR-296-5p
[58]. CXCL12 upregulation promotes tumor growth and leads to
the recruitment of immunosuppressive cells to prevent CTL
infiltration of tumors [59]. The dysfunctional expression of chloride
intracellular channel 1 (CLIC1), a member of the chloride channel
protein family, is related closely to tumor invasion, metastasis,
treatment resistance, and prognosis [60]. High CLIC1 levels have
been found in a variety of malignant tumors, including cervical
cancer, breast cancer, hepatocellular carcinoma, gastric cancer,
gallbladder carcinoma, and CRC [61–63]. Li et al. [64] found that
circ_0008287 promotes the immune escape of gastric cancer cells

Fig. 1 Biological functions of circRNAs. (i) Serving as molecular
sponges for miRNA. (ii) Regulating protein binding. (iii) Encoding
protein. (iv) Regulating gene transcription. RBP RNA-binding
proteins.
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by impairing miR-548c-3p–dependent CLIC1 inhibition. CLIC1
depletion in these cells suppresses CD8+ T-cell apoptosis, thereby
increasing interferon (IFN)-γ secretion. CircRNAs have been
demonstrated to suppress CD8+ T-cell activity by regulating
tumor cell metabolism. Glutamine metabolism is partly respon-
sible for the detoxification of reactive oxygen species, which
profoundly influences the TME. circTRPS1 was recently reported to
promote the malignant phenotype of bladder cancer (BCa) and
CD8+ T-cell exhaustion therein. Mechanistically, it regulates redox
equilibrium by altering glutaminase 1–mediated glutamine
metabolism [65]. circRNAs have also been found to affect
glutamate, glucose, and lipid metabolism, among others [66, 67].
Treg cells are subsets of T lymphocytes that mediate immune

suppression through inhibitory cytokine secretion and in many
other ways; they thus play important roles in the TME [68].
Mounting evidence indicates that circRNAs derived from tumor
cells can induce immune escape by regulating Treg cell
function. For example, circ_0069313 induces immune escape
via the miR-325-3p–Foxp3 axis in Treg cells. Consistently, CD8
effector T cells were less infiltrative in oral squamous cell
carcinoma (OSCC) tissues with high circ_0069313 expression.
Treatment with OSCC cell–derived exosomes increased
circ_0069313 and PD-L1 expression in Treg cells. Circ_0069313
depletion inhibited PD-L1 and CD25 expression in OSCC cells,
whereas its ectopic expression increased the expression of
CD25, but not PD-L1 [69]. These findings indicate that
circ_0069313 modulates Treg cell activity. A recent study
showed that circGSE1 not only promotes Treg cell function,
but also expands the Treg cell population by regulating the
miR-324-5p–transforming growth factor (TGF)-β receptor
1–Smad3 axis in hepatocellular carcinoma (HCC). The Treg:
CD8+ T cell ratio is increased when T cells are cultured with
HCC-derived exosomes [70]. In addition, circ_0136666 was
shown to activate Treg cells by targeting the miR-
497–Akt–mammalian target of rapamycin signaling pathway,
to reduce the forkhead box P3 (FOXP3)+:CD8+ T cell ratio, and
to increase the FOXP3+:CD4+ and FOXP3+: CD25+ T cell ratios
[43].
These findings indicate that circRNAs inhibit antitumor effector

T cells and promote Treg-cell expansion and activity via miRNA
sponging (Fig. 2). As we described as above, the regulation of
circRNAs on T cells and tumor cells is the activation of PD1 /
PDL1 signaling pathway. It also indicated that circRNAs are
promising potential targets in cancer immunotherapy [71].
However, the binding of PD1 and PDL1 not only reduces the

viability and proliferation ability of T cells, but also affects the
treatment of immune checkpoint inhibitors in tumors. In addition,
the tumor microenvironment of different cancers of different
patients are heterogeneous, the roles of circRNAs in cancer
immunotherapy is also complicated. Given the important roles of
circRNAs in the regulation of T-cell functions, thorough assess-
ment of whether circRNAs regulate the TME in vivo and the
translation of these findings into applicable clinical practice would
be of interest.

CIRCRNAS REGULATE NATURAL KILLER CELLS
Natural killer (NK) cells are composed mainly of T-cell receptor–, B
lymphocyte antigen receptor–, CD56+, CD16+ lymphoid cells that
spontaneously kill tumor cells. Their function depends mainly on
the balance between their surface activating receptor natural killer
group 2 member D (NKG2D) and the inhibitory killer
immunoglobulin-like receptor (KIR). The binding of KIR on NK
cells to MHC molecules on a tumor cell inhibits the killing function,
whereas activation of the NKG2D ligand on NK cells promotes this
function [72].
NK cells kill tumor cells and mediate cytotoxicity mainly by

secreting perforin and granzymes. They also express death
receptors that mediate the apoptosis of target cells. Increased
CD16 and chemokine receptor-3 expression allows NK cells to
accumulate and kill cells expressing the chemokine ligand. NK cell
dysfunction has been reported to play crucial roles in tumorigen-
esis and cancer progression [73]. Emerging evidence indicates that
circRNAs induce NK cell disability and exhaustion in the TME
(Table 2). Various circRNAs, including circUHRF1, circARSP91,
circ_0007456, and circ_0048674, play different roles in NK cell
regulation via signaling pathways, contributing to the develop-
ment of cancers including HCC, renal cell carcinoma, and
pancreatic cancer (Table 2). In human HCC tissue, high expression
levels of circUHRF1 (circ0048677), which originates from ubiquitin-
like containing PHD and RING finger domains 1 (UHRF1), are
associated with poor clinical prognosis and NK cell dysfunction.
Mechanistically, circUHRF1 inhibits NK cell–derived IFN-γ and
tumor necrosis factor (TNF)-α secretion and decreases the
proportion and tumor infiltration of NK cells by regulating the
miR-449c-5p–TIM-3 axis. TIM-3 upregulation induces NK cell
exhaustion and promotes HCC progression [74]. Circ_0048674,
which also originates from UHRF1, facilitates HCC progression and
NK cell exhaustion through a different mechanism; it serves as an
miR-223-3p sponge to alter PD-L1 expression. Circ_0048674

Fig. 2 Circular RNAs modulate T-cell function. TGF-β transforming growth factor-β. TGF-βR I transforming growth factor beta receptor I. IFN-γ
interferon γ. Treg regulatory T cells. PD1 programmed cell death. PDL1 programmed cell death ligand 1.
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knockdown inhibits tumor cell proliferation, migration, and
apoptosis and impairs NK cell function [75]. Whether these
circRNAs work cooperatively or competitively to support tumor
immune evasion remains largely unknown.
In contrast to the role of circRNAs in suppressing NK cells

described as above, mounting evidence has indicated that
some circRNAs enhance the cytotoxicity of NK cells and inhibit
the malignancy of HCC. CircARSP91 was reported to coordinate
with tumor suppressors to exert anti-HCC effects. Specifically, it
boosts the expression of UL16 binding protein 1, which binds to
the NKG2D ligand on NK cell surfaces, mediating NK cell
activation and cytotoxicity [76]. Similarly, circ_0007456 influ-
ences HCC susceptibility to NK cells by enhancing intercellular
cell adhesion molecule-1 (ICAM-1) expression through miR-
6852-3p sponging [77]. ICAM-1, also called CD54, is a member
of the immunoglobulin superfamily of adhesion molecules that
plays a crucial role in adhesion reaction mediation. Recent
studies show that ICAM-1 on tumor exosome surfaces mediates
the adhesion of the exosomes to CD8+ T cells, which is
prerequisite for PDL1–mediated immunosuppressive effects
[78, 79]. Accordingly, ICAM-1 may function as an essential
checkpoint or potential therapeutic target downstream of
circ_0007456 in the setting of HCC.
CircRNAs have also been reported to regulate the NK cell

immune response against many other cancer types. For example,
circ_0000977 was reported to be upregulated in pancreatic
cancer cells under hypoxia and to induce tumor immune escape
via the miR-153–hypoxia inducible factor 1α–a disintegrin and
metalloprotease (ADAM) 10 axis. ADAM10 upregulation
prompted membrane major histocompatibility complex class I
chain-related gene A (MICA) shedding from pancreatic ductal
adenocarcinoma cell surfaces and conversion to soluble MICA to
degrade NKG2D on NK cells. This reduction of NKG2D expression
resulted in NK cell hyporesponsiveness, and thus the inactivation
of innate and adaptive immune responses and escape from
immune surveillance [80]. CircZKSCAN1 is generally upregulated
in clear cell renal cell carcinoma (ccRCC), and its downregulation
significantly enhanced NK cell–mediated toxicity to RCC cells. It
was found to modulate proviral integration site for Moloney
murine leukemia virus-1 (PIM1) expression to inhibit NK
cell–mediated toxicity to ccRCC cells via miR-1294 sponging
[81]. However, the exact molecular mechanism underlying the
role of PIM1 in NK cells remains unknown. Kruppel-like factor
(KLF) is a transcription factor with a zinc finger structure that
participates in the regulation of gene transcription, which is
related to cell proliferation and differentiation and tumorigenesis
[82, 83]. KLF2 inhibits early-stage NK cell proliferation and
maintains a static late-stage NK cell state [84]. In addition,
KLF16 has been shown to have an important role in suppressing
NK cell–mediated cytotoxicity. It transcriptionally activates
circFOXO3, which sponges miR-29a-3p and miR-122-5p to
aggravate NK cell toxicity to ccRCC cells [85]. The androgen
receptor, an oncogene, is associated closely with invasion and
drug resistance in different cancers, including prostate cancer
(PCa) and BCa [86]. It has been reported to upregulate
circ_0001005 expression, attenuating NK cell killing efficacy by
affecting PD-L1 expression via miR-200a-3p sequestration in BCa
[87]. In addition, circRHOT1 upregulation has been found in BCa
and is associated with the attenuation of NK cell–mediated
toxicity to BCa cells. ZNF652, a member of the largest family of
transcription factors that plays roles in the proliferation, invasion,
and metastasis of many cancer types, induces circRHOT1
expression [88–90]. Although many circRNAs serve as miRNA
sponges, some regulate the antitumor toxicity of NK cells through
distinct mechanisms. circARSP91 was recently reported to bind
directly to tumor suppressors to exert anti-HCC effects [91]. Thus,
circRNAs can act as pleiotropic TME modulators by regulating
tumor and NK cells (Fig. 3).Ta
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CIRCRNAS REGULATE MACROPHAGES
Macrophages are major lymphocytes that infiltrate solid tumors.
Those infiltrating tumor tissues or distributed in the TME are called
tumor-associated macrophages (TAMs) and have a central role in
initiating the innate immune response, which leads to activation
of the adaptive response in the later phase. Macrophages present
two polarized states: classical (M1) and alternative (M2) activation,
which occur through distinct pathways during mature differentia-
tion. M1 TAMs are induced by IFN-γ, granulocyte-macrophage
colony-stimulating factor (CSF), TNF-α, and many other cytokines
and are able to kill tumor cells, whereas M2 TAMs are activated
mainly by interleukin (IL)-4, IL-13, TGF-β, macrophage CSF, and
other cytokines to promote tumor progression by activating a
type 2 helper T cell–type immune response [92]. In addition to
causing immunosuppression, M2 TAMs promote tumor growth
and metastasis through many other mechanisms, such as tumor
invasion, leakage to blood vessels, and angiogenesis promotion
[93]. Most tumors do not have M1 macrophages without specific
antigens and other factors. Thus, most TAMs have the M2, which
promotes tumor occurrence, development, and metastasis,
although they have the potential to repolarize to M1 macrophages
[94].
Some circRNAs have been reported to regulate macrophage

polarization in many cancers. CircTMEM181 prompts T-cell
exhaustion by sponging miR-4883p to upregulate CD39 expres-
sion in macrophages, indicating that it affects mainly the
macrophages in the immune microenvironment, rather than
HCC cells [95]. Consistently, elevated circTMEM181 expression is
correlated with anti–PD-1 treatment resistance and poor prog-
nosis in patients with HCC. As another example, circ_0110102
upregulates C–C motif chemokine ligand (CCL) 2 expression by
inhibiting miR-580-5p in HCC. CCL2 then activates the cycloox-
ygenase-2/prostaglandin E2 pathway in macrophages via FoxO1
in a p38 mitogen-activated protein kinase–dependent manner
[96]. Tumor cells can recruit macrophages into tumor tissue
through the secretion of many chemokines; tumor cells then
secrete various cytokines, metabolites, and exosomes to alter and
polarize the function of TAMs. Circ_0003410 was shown to
promote HCC cell proliferation and migration via miR-139-3p
sponging and thus the upregulation of CCL5 expression, which
recruits M2 macrophages to enhance HCC deterioration in vitro
and in vivo [97]. Similarly, circ_0074854 was shown to inhibit HCC

tumorigenesis, mainly through the suppression of M2 macro-
phage polarization in vitro and in vivo [98]. However, the
mechanism underlying this polarization regulation needs to be
investigated further. CircASAP1 was found to regulate the
expression of CSF-1, which controls the macrophage production,
differentiation, and function [99], through the miR326/ miR-532-
5p–CSF-1 signaling pathway, resulting in CD68+ TAM infiltration
and HCC growth and metastasis [91].
Many reports describe circRNA regulation of macrophages in

the microenvironments of tumors other than HCC, such as
esophageal squamous cell carcinoma (ESCC), non-small cell lung
cancer (NSCLC), and PCa. Different circRNAs affect TAMs through
different pathways or regulators. For example, circRNA TCFL5
promotes esophageal cancer progression by regulating M2
macrophage polarization via the miR-543–formin-like protein 2
axis [100]. Similarly, circ-0048117 upregulates toll-like receptor 4
expression via miR-140 sponging to promote M2 macrophage
polarization, prompting ESCC invasion and metastasis [101].
CircPLCE1 and Circ_0006990 have been demonstrated to motivate
TAM M2 polarization in the TME through the miR-485-5p–actin-γ1
and miR-132-3p–mucin 13 cell surface associated axes, respec-
tively, in CRC [102, 103]. A recent study showed that the flavonoid
quercetin significantly reversed the promotion of M2-TAMS on
proliferation of CRC cell by downregulating circ_0006990 [103].
CircSHKBP1 and circFARSA promote NSCLC migration and
invasion by inducing M2 macrophage polarization and impairing
CD8+ T cell function in vitro and in vivo [104, 105]. Similarly, Gao
et al have demonstrated that exosomal circZNF451 could induce
M2 polarization of macrophages and exhaustion of cytotoxic
CD8+ T cells to reshape the TME via the FXR1- ELF4-IRF4 axis.
More importantly, they will limit the sensitivity of anti-PD1
treatment in vitro and in vivo (or in C57BL/6 J mice) [106].
Myeloid-derived suppressor cells (MDSCs) are bone
marrow–derived immature cells that suppress T cells and are
activated and mobilized under pathological conditions, such as
cancer. Their main functions are to promote tumor development
and tumor-related TAM transformation [107, 108]. In lung cancer,
circPTK2 and circHIPK3 play important roles in monocytic MDSC
differentiation into CD163+ M2 macrophages [109].
Cytokines and chemokines play crucial roles in M2 macrophage

polarization. CircSMARCC1 has been shown to regulate CCL20
expression by suppressing miR-1322 activity, thereby mediating

Fig. 3 Circular RNAs have bidirectional modulatory effect on NK cells. A Circular RNAs promoting NK-mediated antitumor responses.
B Circular RNAs suppressing NK cell activity to trigger tumor immune escape. ULBP1 human UL 16-binding protein 1, ICAM-1 intercellular cell
adhesion molecule-1, NKG2D natural killer group 2 member D, TIM-3 T cell immunoglobulin and mucin domain-containing protein 3.
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M2 macrophage polarization and infiltration, in PCa [110]. In
breast cancer cells, circWWC3 upregulates IL-4 expression and
secretion to induce M2 macrophage polarization [111] and T-cell
inactivation, leading to immune escape [112]. In addition,
CircITGB6, circsafb2, and circNEIL3 promote M2 macrophage
polarization in ovarian cancer, kidney cancer, and gliomas,
respectively [113–115].
TAMs form the most abundant immune cell population in the

TME. CircRNAs in tumor cells can regulate macrophage polariza-
tion through multiple pathways in the TME (Table 3, Fig. 4): (1)
they induce crosstalk between tumor cells and macrophages (Fig.
4A), (2) they promote chemokine secretion from tumor cells (Fig.
4B), (3) tumor cell-derived circRNAs in exosomes enter macro-
phages to play a regulatory role (Fig. 4C), and (4) they promote
tumor-cell expression of cytokines such as IL-4 and PD-L1 (Fig. 4D).
In-depth investigation of the mechanisms underlying these roles
and preclinical studies are urgently needed.

CIRCRNAS REGULATE NEUTROPHILS, MYELOID-DERIVED
SUPPRESSOR CELLS, AND CANCER-ASSOCIATED FIBROBLAST
The neutrophils are also an important component in the TME,
participating in different stages of tumor development and
progression such as tumorigenesis, proliferation and metastasis.
Neutrophils could play dual roles as a pro-tumor(N2) or tumor
suppressor (N1) in the tumor microenvironment due to hetero-
geneous phenotypes and functional diversity. Recently, mounting
evidence show that circular RNA affects tumor development by
regulating the function of neutrophils. In bladder cancer,
circDHTKD1 recruited and activated neutrophils by inducing
CXCL5 expression, and then neutrophils participated in lymphan-
giogenesis by secreting VEGF-C, facilitating lymphatic metastasis
of bladder cancer cells [116]. But in CRC, circPACRGL mainly

promoted differentiation of N1 to N2 neutrophils by sponging
miR-142-3p/miR-506-3p, N2 neutrophils increased the expression
of transforming growth factor-β1 (TGF-β1), which promoted CRC
cell proliferation, migration and invasion [117]. Although the
underlying mechanism is not very clear, but the diversity and
plasticity of neutrophils maybe act as a potential and promising
immunotherapy target in clinical treatment.
Myeloid-derived suppressor cells (MDSC) are also another key

player in TME. In addition to the immunosuppressive effect, MDSC
can also exert tumor-promoting effects by promoting angiogen-
esis, invasion and metastasis. More details about non-coding RNAs
including circRNAs modulate MDSCs in TME have been summar-
ized elsewhere [118].
Cancer-associated fibroblasts (CAFs), also named as tumor-

associated fibroblast, are a key factor in tumor microenvironment.
It plays important role in tumor growth and metastasis due to diverse
functions, such as interactions with cancer cells and crosstalk with
infiltrating leukocytes and so on. In pancreatic cancer, Hu et al found
that circFARP1 upregulated the expression and secretion of LIF via
CAV1 in CAFs to induce chemoresistance [119]. In addition, in other
cancers, circRNAs derived from CAFs also can promote tumor
progression. For example, circEIF3K from CAF promotes CRC
progression via miR-214/PD-L1 axis [120]. Exosomal circSLC7A6 from
CAF promote tumorigenesis of CRC by regulating CXCR5 [121]. CAF-
derived CXCL11 modulates HCC migration and metastasis through
the circUBAP2/miR-4756/IFIT1/3 axis [122]. All evidence suggesting
an oncogenic role of CAFs in tumorigenesis and indicating CAFs or
circRNAs can considered as potential target in immunotherapy.

CONCLUSION AND PERSPECTIVES
For several decades following the discovery of RNA viruses in 1976
and eukaryotes in 1979 [1, 123], circRNAs were considered to be

Fig. 4 Circular RNAs (circRNAs) regulate macrophage polarization to promote tumor progression. A CircRNAs mediate crosstalk between
tumor cells and macrophages, induce M2 macrophage polarization, and impair T cell function, resulting in the formation of an
immunosuppressive tumor microenvironment (TME). B CircRNAs upregulate chemokine expression in tumor cells and induce M2
macrophage polarization. C Tumor cells release exosomes containing circRNAs into macrophages to enhance M2 macrophage polarization.
D CircRNAs promote the secretion of inflammatory factors and immunosuppressive molecules in tumor cells to recruit and induce M2
macrophage polarization and disable T cells.
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splicing errors. With the rapid development of RNA sequencing
technologies and bioinformatics, numerous circRNAs have been
identified and their roles in various diseases, especially cancer, have
been investigated extensively. As reviewed here, circRNAs form a
multifaceted class of regulators that play multiple roles in
tumorigenesis, tumor progression and metastasis, and treatment
resistance. They can act as miRNA sponges or interact with RBPs.
Different circRNAs may regulate the same downstream gene
expression by sequestering different miRNAs; for instance,
circ_0046523 induces PD-L1 expression via miR-148a-3p sponging
in pancreatic cancer [48], whereas circKRT1 induces PD-L1 expression
via miR-495-3p sponging in OSCC [54]. However, our current
knowledge of circRNA functions has been obtained mainly from
cell-based studies. The examination of whether circRNA loss
regulates tumor immune responses and cancer development in
genetic mouse models would be of great interest. Despite much
progress in past decades, the establishment of circRNA nomenclature
rules remains a pressing issue. The production of different circRNAs
from the same gene due to alternative splicing can cause confusion.
Additionally, the molecular mechanisms underlying this process and
the different roles of these circRNAs need to be elucidated.
The TME is a complex integrated system containing tumor cells,

tumor-infiltrated immune cells, blood vessels, extracellular matrix,
and signaling molecules. Accumulating evidence has revealed that
circRNAs play crucial roles in TME regulation, such as tumor
immune evasion, metastasis, and metabolism. However, the
precise physiological and pathological roles of circRNAs in the
TME and related underlying mechanisms remain largely unclear. In
this review, we have described the roles of circRNAs in the TME,
especially in TME-related immune cells such as T cells, NK cells,
and macrophages. CircRNA in the TME can upregulate the
expression of the immune checkpoint molecules PD-L1, PD-1,
and CD73 on tumor cell surfaces via miRNA sponging, helping
tumor cells to escape recognition and death by T cells [51–53, 57].
Stromal cells, such as cancer-associated fibroblasts, endothelial
cells, and pericytes, are important TME components, and much
more research is warranted to explore their potential regulation.
Although TME reprogramming is considered to be a potentially
effective strategy for tumor eradication and the improvement of
tumor immunotherapy efficacy, there is still a long way to go
before we can conquer cancer. For example, does dose targeting
of circRNAs work in mouse models, at least in three-dimensional
tumor organoid models? Is circRNA targeting applicable in clinical
trials? Thorough investigations of circRNAs using animal models
would help to accelerate the translation of basic research into
clinical practice. We believe that an improved understanding of
circRNA functions and mechanisms related to tumorigenesis and
immunotherapy would certainly contribute to the development of
new therapeutic strategies for cancer.
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