
REVIEW ARTICLE OPEN

Hippo pathway dysregulation in gastric cancer: from
Helicobacter pylori infection to tumor promotion and
progression
Beatrice Messina1,10, Federica Lo Sardo 2,10, Stefano Scalera 3, Lorenzo Memeo 4, Cristina Colarossi4, Marzia Mare5,6,
Giovanni Blandino 2, Gennaro Ciliberto 7, Marcello Maugeri-Saccà1,8 and Giulia Bon 9✉

© The Author(s) 2023

The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The
pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional
co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional
program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization.
Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative
role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the
Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on
the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic
approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
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FACTS

● The Hippo pathway is a master regulator of tissue homeostasis
acting through its final effectors YAP and TAZ.

● The Hippo pathway controls cytoskeletal remodeling, prolif-
eration, tissue repair, and is involved in multiple cancer-related
processes.

● The crosstalk between dysregulated Hippo pathway and
established oncogenic avenues contributes to gastric cancer
initiation, progression, and resistance to therapy.

OPEN QUESTIONS

● Current evidence indicates Hippo dysregulation since Helico-
bacter pylori infection. Would effective targeting of this
pathway at this stage prevent the onset of cancer?

● Although a number of drugs targeting the Hippo pathway
have been developed, formal proof of clinical efficacy is still
lacking. The dissection of the functional network connecting
Hippo with other oncogenic pathways, and rationally

designed trials aimed at assessing signaling modulation in
response to a given drug, are required to develop novel
therapeutic strategies targeting YAP/TAZ at multiple levels.

INTRODUCTION
The Hippo signaling pathway is a key regulator of organ size and
tissue homeostasis in animals. The first evidence connecting
Hippo to organ size control, achieved by a coordinated regulation
of proliferation and apoptosis, stemmed from Drosophila models.
In this context, inactivating mutations or forced overexpression of
key pathway genes resulted in the overgrowth of various organs
and appendages (the “hippopotamus phenotype”) [1]. Later,
studies in mice revealed that the effects of Hippo pathway
manipulation are conserved in mammals [2, 3]. These sets of early
evidence have also been instrumental in organizing the various
components into a signal transduction pathway, characterizing
the modality of their “vertical” and “lateral” interactions, and the
way in which distal effectors operate to modulate the expression
of target genes [4, 5].
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The Hippo pathway is organized in two modules: (1) a core of
serine-threonine kinases and adaptors with regulatory activity [6]
and (2) a transcriptional effector module containing two related
proteins, the transcriptional co-factor Yes-associated protein (YAP)
and its paralog transcriptional co-activator with a PDZ-binding
motif (TAZ) [7]. YAP/TAZ modulate pathway-responsive genes,
prevalently through the interaction with TEA domain-containing
sequence-specific transcription factors (TEAD1-4) [8–10].
Since the ablation of genes belonging to the regulatory module

resulted in the onset of tumors, and a similar phenotype was
observed with the overexpression of YAP, Hippo is considered a
tumor-suppressor pathway, whose main function is the inhibition
of the downstream YAP/TAZ proteins [11–13]. More than two
decades of intense research revealed novel and unexpected
functions and connections, such as those with the DNA damage
response (DDR) machinery and the immune system [14–19].
Likewise, a wealth of studies conveyed the message that a variety
of cues boosts tumor-promoting activities by dysregulating the
Hippo signaling. As a result, the aberrant YAP/TAZ transcriptional
activity was connected to invasion and distant dissemination
[20–23], chemoresistance [24, 25], and maintenance/expansion of
the cancer stem cell (CSCs) compartment [26–29].
Hippo pathway dysregulation is a common event in gastric

cancer (GC), which is the sixth most diagnosed cancer worldwide
and the third most common cause of cancer-related deaths [30].
First, it is involved in Helicobacter pylori (H. pylori)-induced
processes that lead to gastric carcinogenesis [31, 32]. Second,
downregulation of core regulatory kinases and upregulation/
hyperactivation of YAP/TAZ effectors have been observed in GC
[33–37]. Third, YAP/TAZ nuclear expression, denoting increased
transcriptional activity, was associated with poor prognosis in GC
in retrospective, hypothesis-generating studies [38, 39]. Pathway
deregulation mainly occurs on a functional basis, given that
mutations in core genes occur at a lesser extent than YAP/TAZ
aberrant activation. Seminal large-scale genome studies carried out by
The Cancer Genome Atlas (TCGA) network revealed that mutations
and copy number variations in core genes occur in ~20–30%
of gastric cancers (GC) (available at http://www.cbioportal.org).

Nevertheless, the functional consequences of these alterations remain
unclear.
In this review, we first introduce the organization and functional

regulation of the Hippo signaling. Then, we provide an overview
on the roles of Hippo pathway deregulation in GC, spanning from
H. pylori-induced transformation to GC progression and resistance
to anticancer treatments. Finally, current Hippo-targeting ther-
apeutic strategies are discussed.

ORGANIZATION OF THE HIPPO PATHWAY
In mammals, the central axis of the Hippo pathway comprises a
phosphorylation cascade in which the serine/threonine kinases
Mammalian sterile 20-like kinase 1 and 2 (MST1/2) bind their
cofactor Salvador homolog 1 (SAV1) and phosphorylate and
activate Large tumor suppressor 1 and 2 (LATS1/2). LATS1/2 and
their cofactors MOB kinase activator 1A and 1B (MOB1A/B)
phosphorylate and inactivate YAP/TAZ, promoting their cytoplas-
mic retention and proteasomal degradation [5]. Conversely, when
YAP and TAZ are in the “ON” form, they translocate into the
nucleus and bind TEAD1–4 transcription factors to induce the
expression of target genes [40] (Fig. 1).
Multiple serine residues have been involved in YAP/TAZ

phosphorylation downstream the Hippo pathway (YAP: S61,
S109, S127, S164, and S381; TAZ: S66, S89, S117, and S311) [4].
For instance, LATS1/2-induced phosphorylation of YAP and TAZ
on ser-127 and ser-89 residues, respectively, results in their
binding to 14-3-3 proteins and cytoplasm retention [8]. LATS1/2
also phosphorylates YAP and TAZ on ser-381 and ser-311,
respectively, determining their polyubiquitination and protea-
some degradation. Furthermore, TAZ ser-311 phosphorylation
induces phosphorylation on ser-314 by Casein kinase 1 (CK1),
promoting TAZ interaction with the SCF multisubunit complex
(Skp1, Cullins, F-box proteins) E3 ubiquitin ligases, and thus its
degradation [41].
Under basal conditions, the Hippo pathway is regulated by a

variety of stimuli acting at different levels of the signaling cascade
that ensures tissue homeostasis. These regulatory mechanisms are

Fig. 1 Hippo signaling pathway. Schematic diagram for the Hippo pathway core components and signaling. When Hippo signaling is ON,
the activated Mammalian sterile 20-like kinase 1 and 2 (MST1/2) bind Salvador homolog 1 (SAV1) and phosphorylate/activate Large tumor
suppressor 1 and 2 (LATS1/2) and their cofactors MOB kinase activator 1A and 1B (MOB1A/B). The activated LATS/MOB phosphorylate YAP/TAZ
which results in its cytoplasmic retention by 14-3-3 protein and proteasomal degradation. As a result, YAP/TAZ cannot interact with TEAD in an
active transcriptional unit (targets OFF). When Hippo signaling is OFF, MST1/2 and LATS kinases are inactive. Unphosphorylated YAP/TAZ
translocate into the nucleus and interact with TEAD (TEA Domain transcription factor) to induce the transcription of target genes (targets ON).
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mainly mediated by mechanical cues (e.g., cell–cell interactions,
cell density, and cell polarity), cell surface receptors and adhesion
molecules. A further level of regulation acts downstream, and
inhibits YAP-TEAD interaction. These include Vestigial-like 1-4
(VGLL1-4) [42] and Runt-related transcription factor 3 (RUNX3)
[43], which bind TEAD in a competitive dynamic.

Regulation by mechanical cues
Among proteins involved in mechanical cues, the tight junction
protein Zona occludens-2 (ZO-2) mediates the regulation of Hippo
activity by signals released from cell-cell interactions. ZO-2
represents the main regulator of YAP/TAZ localization upon loss
of cell-cell contact. In low cell density in vitro, ZO-2 promotes YAP
nuclear localization, whereas YAP is enriched at the plasma
membrane in confluent cells [44]. Also, Neurofibromin-2 (NF2) acts
as a regulator of Hippo kinases implicated in cell-cell contact
inhibition. NF2 is localized at tight and adherent junctions, and
when high cell density is reached, it induces the activation of
Hippo core kinases by two mechanisms: (1) interaction with LATS
and stimulation of its complexing with SAV, and (2) promotion of
LATS-YAP interaction by facilitating the assembly of scaffold
proteins [45]. Moreover, NF2 regulates TEAD activity by affecting
its palmitoylation status [46]. Overall, these regulations result in
YAP/TAZ inhibition to limit cell proliferation.
The adaptor protein Scribble is localized at the plasma membrane,

where it plays a key role in the regulation of cell polarity. Scribble
promotes the formation of a complex including MSTs, LATS, and TAZ,
thereby enhancing the Hippo cascade activity [26].
The FAT family of atypical cadherins control a form of tissue

organization known as planar cell polarity via the Hippo pathway
[47]. Mechanistically, FAT1 complexes with and promotes the
assembly of the core Hippo signaling complex, leading to YAP1
phosphorylation and inactivation. Interestingly, FAT1 loss-of-
function mutations are frequent in cancer and result in YAP1
activation [48].
Variations in extracellular matrix (ECM) stiffness or cell stretching

regulate Hippo signaling by YAP/TAZ phosphorylation. This occurs
via the apical crumbs complex (CRB), the angiomotin family (AMOTs)
components, and proteins linking cadherins to the actin cytoskele-
ton, such as α-catenin [49–52]. AMOTs sequester YAP through direct
binding, leading to YAP retention to the plasma membrane. F-actin
polymerization competes for AMOT130 binding, resulting in the
release of YAP and its nuclear accumulation [51].

Regulation by cell surface receptors
Cell surface receptors implicated in the regulation of Hippo
pathway include G-protein coupled receptors (GPCRs) [53] and the
Leukemia inhibitory factor receptor (LIFR) [54]. GPCR is the largest
family of surface receptors comprising more than 800 members,
and are involved in a wide variety of physiological processes by
responding to a plethora of endogenous ligands (e.g., hormones,
neurotrasmitters, chemokines). In the context of Hippo regulation,
stimulation of G12/13-coupled receptors by lysophosphatific acid
(LPA) and sphingosine 1-phosphophate (S1P) inhibit LATS1/2,
thereby activating YAP/TAZ. In contrast, metabolic hormones such
as glucagon or epinephrine activate LATS1/2 through GPCRs,
hence inhibiting YAP/TAZ function. Thus, depending on the
engaged G protein, signaling from GPCR can either activate or
inhibit the Hippo pathway, linking the pathway to many upstream
regulatory signals acting at the systemic level.
LIFR is a multifunctional cytokine involved in cancer promotion,

and an activator of the Hippo pathway [54]. LIFR has been
proposed as a prognostic marker in breast cancer, where its loss is
associated with metastasis and poor clinical outcomes. In studies
exploiting cellular and mouse models, LIFR ectopic expression, or
treatment with its ligand leukemia inhibitory factor (LIF), activates
the Hippo cascade leading to phosphorylation and cytoplasmic
retention of YAP, thereby suppressing metastasis.

Regulation by crosstalk with other signaling pathways
Interactions of Hippo with other signaling pathways is extensively
investigated (Fig. 2), and highlights the complex molecular
machinery that intersects the pathway. Under homeostatic
conditions, positive and negative signals are balanced to ensure
proper signaling activity [55].
The crosstalk with Mammalian target of rapamycin (mTOR)

pathway is particularly relevant. Indeed, the balanced activity of
Hippo pathway and mTOR signaling ensures cellular homeostasis
and dictates proper organ development. For instance, YAP
downregulates the tumor suppressor Phosphatase and tensing
homolog (PTEN), a negative regulator of mTOR, resulting in
increased cell size [56]. Later, LATS1/2 have been demonstrated to
play a key role in coordinating the two pathways by phosphor-
ylating Raptor, a component of mTORC1, impairing its interaction
with Rheb, and then attenuating mTORC1 activation [57].
YAP and TAZ are binding partners of SMAD family members,

the main signal transducers of the transforming growth factor
beta (TGF-β) and bone morphogenic protein (BMP) growth factors
families [58]. Under high cell density conditions, CRB elements
induce Hippo pathway activation. In this circumstance, cytoplas-
mic YAP and TAZ abrogate TGFβ-dependent activation of SMAD
2/3-4 by cytoplasmic sequestration of the latter. By contrast, at low
cell density YAP and TAZ are active and mainly localized in the
nuclear compartment, enabling TGFβ to phosphorylate SMAD 2/3-
4 and consequently their nuclear translocation [49].
Next, an elegant model was proposed to explain the signaling

framework involving Hippo and Wnt, which is central in organ size
control and tumor suppression [59]. By using cell and mouse
models, the authors have demonstrated that YAP and TAZ are
integral components of the β-catenin destruction complex. Upon
activation of Wnt signaling, both YAP and β-catenin are dislodged
from the destruction complex, and accumulate in the nucleus,
where they synergistically regulate proliferation and differentia-
tion. In this scenario, the release of YAP/TAZ from the complex is a
critical event that enhances Wnt/β-catenin signaling. In support of
the key role played by YAP/β-catenin crosstalk in cancer, YAP and
the transcription factor TBX5 form a complex with β-catenin that
induces the transcription of anti-apoptotic genes. YAP phosphor-
ylation by the Src family kinase c-Yes (YES1) is required for this
regulation [6].
In addition, crosslinking with metabolic pathways suggests a

functional role for the Hippo pathway in cellular metabolism. These
include glucose, fatty acids, the mevalonate pathway, hormones
acting through GPCRs, and energy sensor pathways. For instance,
AMP-activated protein kinase (AMPK) regulates the Hippo pathway
by three different mechanisms, leading to YAP suppression: (i)
through phosphorylation and stabilization of Angiomotin Like 1
(AMOTL1) [60]; (ii) via phosphorylation of YAP at Ser61, Ser94, and
Thr119, together with enhancing LATS-induced phosphorylation of
YAP at Ser127 [61]; and (iii) via competitive interaction with YAP that
disrupts YAP-TEAD complex [62].
Glucose metabolism triggers YAP-dependent transcription

through different mechanisms related to the glycolysis pathway.
Phosphofructokinase 1 (PFK1), a key rate-limiting enzyme of
glycolysis, interacts with TEADs and potentially regulates Hippo
functional output [63]. In the presence of high levels of glucose, YAP
O-GlcNAcetylation by O-GlcNAc transferase (OGT) prevents LATS-
induced YAP phosphorylation, allowing O-GlcNAcetylated YAP to
induce transcriptional activation in the nucleus [64]. Similarly,
GlcNAcetylation of AMOTs, induced by high glucose levels,
contributes to YAP nuclear accumulation and activation [65].
The mevalonate pathway, responsible for the generation of

isoprenoids, is a further regulator of the Hippo pathway. The
geranylgeranyl pyrophosphate produced during the mevalonate
cascade activates Rho GTPases that, in turn, trigger YAP/TAZ
nuclear localization by inhibiting their phosphorylation [66].
Collectively, evidence indicates that multiple pathway-extrinsic
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forces converge on the Hippo cascade, spanning from proliferative
signals to metabolic cues.

Hippo signaling and cell death pathways
As part of the complex network of developmental and environ-
mental signals that control tissue homeostasis in Drosophila,
activation of the Hippo pathway is required for cell death
response elicited by ionizing radiation and p53 ectopic expres-
sion [14]. In mammals, the multifunctional nature of the Hippo
pathway is denoted by the very different outcomes that can be
reached through YAP/TAZ activation: proliferation/oncogenic
transformation [11, 12, 20–23, 28] and cell death/tumor suppres-
sion [67–71]. In tumors, aberrant YAP activation is associated with
multiple cancer-related processes, and the YAP/TEAD transcrip-
tional unit stimulates the expression of pro-survival and anti-
apoptotic genes. However, under DNA damage stress conditions,
nuclear YAP interacts with the p73 transcription factor enhancing
the transcription of pro-apoptotic genes, such as p53AIP1 [67], Bax
[68], DR5 [69], and PUMA [70]. A multitude of Hippo regulators
have been reported to be involved in activating YAP by either
impeding and/or inducing apoptosis. Among the latter, the tumor
suppressor Ras association domain family 1 isoform A (RASSF1A)
enhances MST2-LATS1 interaction leading to YAP nuclear
translocation and interaction with p73 [70]. Similarly, the

transcription factor Early growth response-1 (EGR-1) interacts
with YAP to induce clonogenic cell death in prostate carcinoma
cells [72].
YAP/TAZ activators that impede apoptosis include the tran-

scription factor AP-2 Gamma (TFAP2C), WW domain binding
protein 5 (WBP5), nuclear factor kappa B kinase subunit epsilon
(IKBKE), cAMP response element-binding (CREB) protein, and
Forkhead box protein A1 (FOXA1). The mechanisms through
which these regulators affect apoptosis in a YAP-dependent
manner are described in detail elsewhere [73].
Overall, the conflicting nature of the findings that link Hippo

signaling to cell death pathways suggests that cellular context,
and the specific network of pathway regulations, might be key
determinants of the final outcome.

THE ROLE OF HIPPO PATHWAY DYSREGULATION IN GASTRIC
CANCER
Murine models of gastric carcinogenesis
In cancer, aberrant YAP/TAZ activation can result from
mechanotransduction dysregulations, as a consequence of
alterations in cell polarity/ECM stiffness, and/or loss of cell-cell
contact inhibition [74, 75]. Similarly, YAP/TAZ control tumor
progression and distant dissemination through multiple

Fig. 2 Crosstalk of the Hippo pathway with other signaling networks. A The functional connection between mTOR (regulating cell size) and
Hippo (regulating proliferation) pathways is essential for the proper organ development. At the basis of this crosstalk, YAP can downregulate
PTEN (Phosphatase and tensin homolog), whereas LATS1/2 (Large tumor suppressor kinase 1/2) can phosphorylate Raptor, resulting in
inhibition of mTOR signaling. B Under energy stress condition, the AMP-activated protein kinase (AMPK) phosphorylates and stabilizes
AMOTL1 (Angiomotin Like 1), together with inducing both direct and LATS-mediated YAP phosphorylation, leading to YAP inhibition. C In
conditions of high cell density, the Hippo pathway is activated and cytoplasmic YAP/TAZ retain TGFβ (transforming growth factor β)-activated
SMAD family members 2/3-4 (SMAD 2/3-4) in the cytoplasm. At low cell density, YAP/TAZ and SMAD 2/3-4 translocate to the nucleus to
cooperatively induce transcription. D YAP and TAZ are members of β-catenin destruction complex, responsible for β-catenin inactivation.
Upon activation of the Wnt pathway, YAP/TAZ and β-catenin enter the nucleus and synergistically induce Wnt and TEAD (TEA Domain
transcription factor) target genes. Moreover, by complexing with TBX5 (T-box transcription factor 5), they induce anti-apoptotic genes.
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mechanisms, including autoregulatory feedback loops and
pathway crosstalk [76–81], as well as co-repressor functions
towards tumor-suppressor genes [82–84].
The oncogenic role of YAP/TAZ has exhaustively been

elucidated by studies in engineered mouse models of liver
tumorigenesis [3, 45, 85–89]. Liver-specific deletion of MST1/2 and
SAV1 was sufficient to trigger liver tumorigenesis, and transcrip-
tional profiling revealed the enrichment of Hippo-regulated genes
involved in immune and inflammatory responses [87, 89].
Similarly, conditional expression of YAP in the mouse liver induced
massive hepatomegaly followed by the onset of hepatocellular
carcinoma. A microarray-based analysis at the stage of hyperplasia
revealed that YAP induced the transcription of pro-proliferative
genes such as ki-67, C-Myc, SOX4, H19, and AFP, coupled with anti-
apoptotic genes such as BIRC5/survivin, BIRC2/cIAP1, and the BCL2
family gene MCL1 [3]. While established models of liver
tumorigenesis demonstrated the involvement of Hippo in liver/
biliary tumors, a direct nexus with GC was recently described.
Indeed, YAP/TAZ activation, triggered by conditional knockout of
LATS1/2 in LGR5-expressing pyloric stem cells, was shown to
initiate gastric tumorigenesis in mice. MYC was identified by RNA-
sequencing analyses as a key downstream mediator of this
process, and a direct transcriptional target of YAP [90]. Therapeu-
tically, blocking the YAP-TEAD interaction by the use of a peptide
mimicking the role of VGLL4, suppressed tumor growth in
xenograft and carcinogen-induced murine GC models [91].
Collectively, these data suggest that Hippo dysregulation is
associated with the onset of GC via stem cell expansion and
oncogenic cooperation mechanisms.

Hippo pathway and Helicobacter pylori-mediated gastric
carcinogenesis
H. pylori infection is the strongest known risk factor for stomach
cancer. Through various virulence factors, H. pylori leads to
chronic inflammation by activating a number of pathways, both in
gastric epithelial cells and in immune cells recruited to the site of
infection. The resulting onset of chronic gastritis is a major step in
the initiation and development of gastric cancer. As part of this
process, dysregulation of cell-cell junctions and increased stiffness
of the gastric wall contribute to the disruption of Hippo signaling
and downstream malignant transformation [92–94]. The major
effector is the H. pylori-secreted oncoprotein Cytotoxin-associated
gene A (CagA) [95]. In gastric cells, CagA binds to the tyrosine
phosphatase SH2 containing protein tyrosine phosphatase-2
(SHP2), stimulating its activity. In the cytoplasm, SHP2 is required
for the full activation of the RAS-ERK signaling. Non-
phosphorylated YAP and TAZ have been reported to physically
interact with SHP2 promoting its nuclear translocation [96], which
stimulates TEAD-regulated genes. Nuclear SHP2 also induces the
formation of the transcriptionally active parafibromin/β-catenin
complex, which in turn induces Wnt target genes, thereby
promoting the crosstalk between Hippo and Wnt/catenin path-
ways. In addition, CagA induces the disruption of tight junctions
through the inhibition of Partitioning-defective 1 (PAR1), a serine/
threonine kinase involved in the regulation of cell polarity [97].
Thus, CagA induces loss of cell-cell contact, with consequent
increase in YAP/TAZ-mediated gene transcription (Fig. 3). Accord-
ingly, the transcriptomic analyses of gastric epithelial cells after H.
pylori infection revealed YAP upregulation and activation of the
YAP/TEAD transcriptional machinery, as indicated by the increase
of target pro-survival and pro-proliferation genes [31]. Under the
same conditions, LATS2 is overexpressed in an attempt of the host
cells to tolerate the H. pylori-induced alterations in the gastric
epithelium. The involvement of CagA in these processes is
demonstrated by the lack of YAP1/LATS2 deregulations following
infection of gastric cells with CagA-mutant strains of H. pylori.
Functionally, the activation of YAP/TEAD in H. pylori-infected
gastric epithelial cells is sufficient to promote epithelial to

mesenchymal transition (EMT), and the acquisition of metaplasia
markers [31, 98].
Likewise, TAZ nuclear expression and TAZ/TEAD activity are

required for H. pylori-induced EMT and CSC-related tumorigenic
properties in gastric epithelial cell lines [32]. TAZ and zinc-finger E-
box binding homeobox 1 (ZEB1), a transcription factor closely
associated with EMT, were co-overexpressed in cells with a
mesenchymal phenotype in vitro, in areas of hyperplasia in H.
pylori-infected patients, as well as at the invasive front of gastric
carcinoma. Moreover, the depletion of TAZ reduced ZEB1
expression, mitigated the EMT phenotype, and inhibited H.
pylori-induced invasion and tumorsphere formation.
Overall, these studies indicate that the Hippo pathway is

involved in H. pylori-induced pro-tumorigenic properties, and
provide the rationale for exploring its therapeutic targeting as a
tumor-preventing strategy.

Hippo pathway in gastric carcinogenesis
Beyond H. pylori, several studies documented the link between
Hippo and GC. Reduced expression of MST1/2 and LATS1/2 kinases
and elevated expression of YAP/TAZ effectors are frequently
observed in GC [33–37]. Low LATS1 expression is associated with
lymph node metastasis, poor prognosis, and disease recurrence in
GC patients. The ectopic expression of LATS1 decreased prolifera-
tion and invasion of GC cells in vitro and impaired tumor growth
and metastatization in vivo through YAP inhibition, whereas LATS1
depletion rescued the invasive phenotype [34]. Also, Tang Y and

Fig. 3 Mechanisms of YAP/TAZ activation induced by Helicobac-
ter pylori infection. The H. pylori-secreted oncoprotein Cytotoxin-
associated gene A (CagA) activates YAP/TAZ through different
mechanisms. CagA mediates the crosslink between Hippo and Wnt
pathways by inducing SHP2 (SH2 containing protein tyrosine
phosphatase-2), that activates RAS-ERK signaling and promotes
YAP/TAZ nuclear translocation and activation of TEAD-regulated
genes. Once in the nucleus, SHP2 interacts with parafibromin/
β-catenin in a transcriptionally active complex, which induces Wnt
target genes. Moreover, by inhibiting Partitioning-defective 1 (PAR1),
CagA induces the disruption of tight junctions, resulting in YAP/TAZ
activation.
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colleagues have reported a mechanism responsible for MST1/2
inactivation. According to this model, Striatin 3 (STRN3), an
essential regulatory subunit of Protein phosphatase 2A (PP2A),
promotes MST1/2 recruitment and dephosphorylation, resulting in
YAP activation. Consistently, STRN3 is highly expressed in GC
patients, where it is associated with YAP activation and poor
prognosis [99].
YAP is overexpressed in high-grade dysplasia, gastric adenocarci-

noma, and metastatic disease [35, 36]. Importantly, overexpressed
YAP is mainly localized at the cytoplasm in the early stages of GC,
whereas elevated levels of nuclear YAP are observed at advanced
tumor stages. In line with this, nuclear accumulation of YAP is
associated with poor survival particularly in early stage GC patients
[38]. In GC cell lines, YAP depletion results in decreased proliferation
and invasion/migration. By contrast, YAP ectopic expression pro-
motes proliferation, anchorage-independent growth, and invasive
properties by activation of the mitogen-activated protein kinase
(MAPK) signaling pathway [38, 100]. Similarly, the overexpression of
TAZ is associated with EMT and reduced survival in GC patients [101].
Interestingly, TAZ expression characterizes gastric signet ring cells
carcinoma, a distinct type of poorly differentiated GC associated with
earlier onset and worse prognosis [102].
YAP/TEAD-negative regulators are often deregulated in GC. The

mRNA levels of VGLL4 are downregulated in a significant fraction
of GC cases and are inversely correlated with tumor stage and
lymph node metastasis [91]. The loss of RUNX3 tumor-suppressor
is observed in 60% of GC specimens, and is associated with higher
TEAD-YAP expression both in GC patients and cell lines [43].
Likewise, RUNX2 plays a key role in promoting GC invasion and
metastatization through YAP activation [103].
Adding a further level of complexity, YAP-activating mechan-

isms involved in GC also include upregulation of Methyltransfer-
ase3 (METTL3) [104], AMOTL1 [105], Fibroblast growth factor
receptor type 2 (FGFR2) [106], Nucleolar and spindle associated
protein 1 (NUSAP1) [107], Microtubule-associated monooxygen-
ase, calponin and LIM domain containing 2 (MICAL2) [108], and
Interferon regulatory factor 3 (IRF3) [109], as well as loss of PTEN
[110] and MST4 kinase [111]. Overall, the variety of mechanisms
that account for aberrant YAP/TAZ activation in GC unveil its
critical contribution to GC tumorigenesis (summarized in Table 1).
Next, many microRNAs (miRs) are involved in deregulations of

the Hippo pathway in GC, including both oncosuppressive and
oncogenic miRs. Among the latter miR-93-5p [112], miR-125a-5p
[113], miR-664a-3p [114], and miR-424-5p [115] deserve to be
mentioned. These miRs mainly act through inhibition of Hippo
core kinases, except miR-125a-5p, that induces TAZ/TEAD2
activation. Likewise, oncosuppressive miRNAs are often down-
regulated in GC, and associated with inferior survival outcomes.
These include miR-375 [116], miR-4269 [117], and miR -145-5p
[118], which share inhibitory effects on YAP/TEAD transcriptional
activity. The targets and functional effects of miRNAs-dependent
regulations of Hippo signaling are reported in Fig. 4.

Hippo pathway, stemness and therapeutic resistance in
gastric cancer
Among the tumor-promoting functions of the Hippo pathway is
the maintenance of the CSC compartment. YAP activation and
nuclear localization are required for Stearoyl-CoA desaturase-1
(SCD1)-dependent induction of gastric CSCs (GCSCs) [119]. SCD1 is
a key enzyme in fatty acid metabolism, that is involved in tumor
progression and metastatization across a range of solid tumors
[120]. SCD1 upregulation in metastatic GC was correlated with the
expression of YAP and TEAD1, and YAP nuclear expression was
reduced in tumor samples characterized by low levels of SCD1.
Moreover, the depletion of YAP reduced the self-renewal and
invasive capabilities induced by SCD1 in GCSC models in vitro.
Accordingly, transcriptomic analyses revealed the enrichment of a
Hippo-related gene signature in CD44+ gastric CSCs, with a

plethora of target genes overexpressed (AREG, BIRC5, CCND1,
CCX2, CYR61, ID1, IGFBP3, JAG1, LATS2, MYC, and SMAD7).
Interestingly, TEAD1 and TEAD4 were also found upregulated in
CD44+ cells compared to CD44- cells (non-CSCs), while VGLL4
and RUNX3 were downregulated [101].
The connection between deregulated Hippo signaling and

stem-like properties functionally links YAP/TAZ aberrant activity to
therapy resistance. Indeed, the CSC-like subpopulation exhibits
self-renewal and differentiation capabilities that contribute to
resistance. A noteworthy example is the higher activity of YAP/
TAZ/TEAD detected in CD44+ gastric CSCs cells resistant to
conventional chemotherapy [101]. In this biological context, the
GPCR Protease-activated receptor-1 (PAR1) induces stemness and
multi-drug chemoresistance by promoting Rho-dependent inacti-
vation of LATS1/2, which results in YAP activation [51, 121].
Recently, the receptor tyrosine kinase Erythropoietin-producing
hepatocellular receptor A2 (EphA2) has been implicated in
chemotherapy resistance through YAP activation [122]. Impor-
tantly, higher co-expression of EphA2 and nuclear YAP in GC
tumors was correlated with tumor relapse. A further mechanism
linking YAP activation to chemotherapy resistance involves
Annexin A6. Once released in extracellular vesicles (EV) from
cancer-associated fibroblasts (CAFs) in the extracellular matrix,
Annexin A6 activates a β1 integrin-focal adhesion kinase (FAK)-
YAP axis. In a peritoneal metastasis mouse model, CAF-EV induced
resistance to cisplatin, in a process that was attenuated by YAP
inhibition [123].
Also, the oncogenic crosstalk between Hippo and Wnt was

connected to chemoresistance and unfavorable survival outcomes
in GC. In a study including 86 patients with advanced GC treated
with first-line chemotherapy, a significant association between
nuclear TAZ expression and Wnt mutations was revealed [124].
Patients harboring both nuclear TAZ and Wnt mutations had an
increased risk of disease progression and death. Interestingly,
concomitant YAP expression and TP53 mutations are associated
with better survival outcomes in patients receiving first-line
chemotherapy [125]. A possible explanation for this apparent
paradox is that YAP/p53 cooperatively induce a pro-proliferative
program that may render cancer cells more vulnerable to
cytotoxic therapies.
The molecular mechanisms by which YAP determines resistance

to cancer therapies are being thoroughly investigated. By
employing GC cell models, it has been reported that YAP impairs
cisplatin efficacy by inducing Epidermal growth factor receptor
(EGFR) expression and its downstream signaling [126]. A recent
study described the involvement of YAP in the mechanisms by
which lymph node metastasis (LNM)-derived GC (LNM-GCs) cells
reprogrammed bone-marrow-derived mesenchymal stem cells
(BM-MSCs) towards tumor-promoting phenotype and function, via
secreted exosomes. Specifically, exosomal Wnt5a induced YAP
activation by dephosphorylation in BM-MSCs [127]. These cancer-
associated MSCs are fundamental components of the tumor
microenvironment (TME), that dictates cancer cells resistance to
therapies by exerting immuno-suppressive functions and activat-
ing resistance-related mechanisms in cancer cells [128]. In line
with this, in a transwell co-culture system, BM-MSCs increased
cisplatin resistance in CD133+ gastric CSCs through activation of
the PI3K/AKT pathway [129].
Regarding targeted therapies, the activation of a HER4-YAP1

axis-induced EMT, and has been proposed as a mechanism
accounting for trastuzumab resistance. Indeed, HER4, its phos-
phorylated form, and the mesenchymal marker vimentin were
found to be upregulated in trastuzumab-resistant cell and mouse
models, whereas epithelial markers displayed an opposite pattern
[130]. Interestingly, YAP depletion rescues the expression of
epithelial markers while lowering that of mesenchymal proteins in
trastuzumab-resistant cells, indicating that YAP is a downstream
effector of HER4 and is required for the regulation of EMT.
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TARGETING STRATEGIES
YAP/TAZ are attractive drug targets for cancer therapy in
consideration of their high expression in many cancer cell types
and their involvement in cancer progression and resistance. Given

the limited access of macromolecules (e.g., antibodies) to the
nucleus, where YAP/TAZ act as transcriptional cofactors, the
search for targeted inhibitors is mostly focused on small
molecules. The proposed therapeutic strategies encompass the

Table 1. Hippo pathway deregulation events reported in gastric cancer.

Type of deregulation Reference Functional relevance Proposed mechanism

LATS1
downregulation

Zhang J, Oncotarget 2016
[34]

Lymph node metastasis, poor prognosis,
recurrence in GC patients

MST1/2 inactivation Tang Y, Cancer Cell 2020
[99]

STRN3 high expression is associated with
poor prognosis in GC patients

STRN3 promotes MST1/2
dephosphorylation, resulting in YAP
activation

YAP/TAZ
overexpression/
activation

Hu X, Pathol Oncol Res
2014 [35] Da CL, World J
gastroenterol 2009 [36]

Progression, metastasis, poor prognosis
in GC patients

Kang W, Clin Cancer Res
2011 [38]

Nuclear YAP expression is associated with
poor survival, especially in GC patients
with early-stage disease

YAP induces the activation of the MAPK
signaling pathway

Liu H, Oncol Lett 2019
[100]

YAP depletion reduces the viability,
migration, and invasion of GC cell lines

YAP inhibits the endoplasmic reticulum
stress pathway in an ERK-
dependent manner

Giraud J, Int J Cancer
2020 [101]

TAZ expression is associated with poor
overall survival in nonmetastatic GC
patients

Zhou W, J Oncol 2021
[104]

METTL3 sustains proliferative, migrative,
and invasive properties of GC cell lines

METTL3 induces the mRNA levels of YAP as
well as YAP target genes

Zhou Y, Oncogene 2020
[105]

High AMOTL1 expression is associated
with advanced stage and poor overall
survival in GC patients. AMOTL1
depletion impairs invasion and MAPK-
dependent proliferation in GC cell lines

AMOTL1 interacts with YAP promoting its
nuclear translocation

Zhang J, Oncogene 2020
[106]

High FGFR2 expression is associated with
advanced stage and predicts poor
survival in GC patients. FGFR2 depletion
inhibits the growth and cell cycle
progression in GC cell lines

FGFR2 induces YAP activation through
MAPK-c-Jun signaling

Guo H, Front Oncol 2021
[107]

NUSAP1 upregulation is associated with
unfavorable clinical outcomes in GC
patients. NUSAP1 depletion impairs
oncogenic properties of GC cell and
mouse models

NUSAP1 acts as a positive regulator of YAP
protein stability

Qi C, Oxid Med Cell
Longev 2021 [108]

High MICAL2 expression is associated
with poor overall survival in GC patients.
The knockdown of MICAL2 attenuates
proliferation in GC cell lines

MICAL2 promotes YAP nuclear translocation
through ROS generation

Jiao S, J Exp Med 2018
[109]

IRF3 is often upregulated in GC patients.
High levels of both IRF3 and YAP predict
lower survival in GC patients

IRF3 interacts with both YAP and TEAD4 in
the nucleus to enhance their occupancy on
target genes

Xu W, J Exp Clin Cancer
Res 2018 [110]

PTEN inactivation promotes the
proliferationa and migration of GC
in vitro and in vivo

PTEN inactivation induces YAP-TEADs
activity by abolishing MOB1-LATS1/2
interaction and links Hippo and PI3K/Akt
patways to promote GC

An L, J Exp Med 2020
[111]

Loss of MST4 is associated with poor
prognosis in GC patients and promotes
gastric tumorigenesis in mouse model

MST4 phosphorylates YAP at Thr83 leading
to its cytoplasmic retention and inactivation

YAP/TEAD-repressors
downregulation

Qiao Y, Oncogene 2016
[43]

RUNX3 downregulation is associated with
high TEAD-YAP expression, that predicts
lower survival in GC patients

RUNX3 inhibits YAP-TEADs activity by
binding TEAD and impairing its DNA-
binding ability

Jiao S, Cancer Cell 2014
[91]

VGLL4 downregulation is inversely
correlated with tumor size and stage and
lymph node metastasis

VGLL4 competes with YAP for TEADs
binding, resulting in inhibition of YAP-
TEADs transcriptional activity

AMOTL1 angiomotin like 1, c-Jun JUN proto-oncogene, ERK extracellular-signal regulated kinase, FGFR2 fibroblast growth factor receptor 2, GC gastric cancer,
IRF3 Interferon regulatory factor 3, Akt AKT serine/threonine kinase 1, LATS1/2 large tumor suppressor kinase 1/2, MAPK mitogen-activated protein kinase, METTL3
methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit, MICAL2 microtubule associated monooxygenase, calponin and LIM domain
containing 2, MOB1 MOB kinase activator 1, MST1/2 mammalian STE20-like protein kinase 1/2, MST4 mammalian STE20-like protein kinase 4, NUSAP1 nucleolar
and spindle associated protein 1, PI3K phosphoinositide 3-kinase, PTEN phosphatase and tensin homolog, ROS reactive oxygen species, RUNX3 RUNX family
transcription factor 3, STRN3 Striatin 3, TEAD TEA domain transcription factor, VGLL4 vestigial like family member 4, YAP1 yes-associated protein 1.
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disruption of YAP/TAZ-TEAD interaction, inhibition of YAP/TAZ
nuclear localization, and inhibition of mechanical cues (Fig. 5). An
updated list of clinical trials on Hippo inhibitors in gastrointestinal
cancers has recently been reported elsewhere [131].

Drugs targeting YAP-TEAD complex
In 2012, Liu-Chittenden and colleagues screened more than 3,300
FDA-approved drugs for their ability to disrupt the physical
association between YAP and TEAD. To this end, the authors
exploited a luciferase reporter assay in which the transcriptional
activity of TEAD4 is stimulated by YAP. With this approach,
verteporfin (VP), a benzoporphyrin derivative compound FDA-
approved for the photodynamic therapy of ocular diseases, was
identified as an efficient inhibitor of YAP/TEAD complex [85].
Further studies revealed that VP acts at different levels: in addition
to inducing a conformational change in YAP and hindering its
interaction with TEAD [85], VP upregulates the protein level of 14-
3-3σ, which retains YAP/TAZ in the cytoplasm targeting their
proteasomal degradation [132], and downregulates both YAP and
TEAD mRNA levels [101]. Interestingly, VP treatment inhibited the
proliferation of gastric CSCs in vitro and GC tumor growth in vivo
[101]. Among the involved mechanisms, downregulation of the
pro-invasive FAT1 adhesion molecule by VP has been reported
[133]. However, VP is associated with non-negligible side effects
and off-target activity, that reduce its therapeutic window as a
specific YAP/TAZ inhibitor [134].
Super-TDU is a VGLL4 mimetic peptide that exploits the ability

of VGLL4 to impair YAP-TEAD functional interaction. It was
developed based on the observation that VGLL4 strongly
suppresses GC growth, and tandem Tondu (TDU) domains of
VGLL4 are sufficient for its inhibitory activity towards YAP. Super-
TDU systemic administration markedly reduced tumor growth
both in a H. pylori-infected mouse model and in GC patient-
derived xenografts. Interestingly, super-TDU was more effective in
GC cells with a higher YAP/VGLL4 ratio, providing clues of possible
predictive biomarkers of drug sensitivity [91].
A smaller, YAP-like peptide inhibiting YAP-TEAD interaction

in vitro is peptide 17 [135]. In GC cell models, this peptide reduces
METTL3 expression, resulting in YAP1 downregulation and
impairment of its tumor-promoting effects [104]. Unfortunately,
low stability and limited membrane permeability of peptides
hinder their therapeutic use in the clinical setting.

Drugs inhibiting YAP/TAZ nuclear localization
A number of drugs have been explored relying on their ability to
promote YAP phosphorylation and cytoplasmic retention. Statins

are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
inhibitors used for lowering cholesterol levels. Studies suggested a
link between statins use and reduced risk of developing GC
[136, 137]. In GC cells, simvastatin impaired both Wnt/β-catenin
and YAP activity, resulting in decreased proliferation and
migration/invasion in vitro [138]. Mechanistically, simvastatin
suppresses the activity of Rho GTPases, that results in F-actin
cytoskeleton remodeling and inhibition of YAP and β-catenin
signaling.
As previously discussed, STRN3 regulates the PP2A-dependent

MST1/2 dephosphorylation. This concept has been exploited to
develop a highly selective STRN3-derived Hippo activating
peptide (SHAP). SHAP inhibits STRN3/PP2A interaction and
restores MST1/2 phosphorylation, which results in YAP phosphor-
ylation/cytoplasmic retention. SHAP administration resulted in
decreased expression of YAP target genes, and reduced cell
viability and tumor growth in GC models [99].
The antidiabetic drug metformin and the multi-RTK inhibitor

pazopanib have also been investigated for their ability to hamper
YAP/TAZ activity. In CSCs from gastric cell lines and patient-
derived PDXs, metformin-induced cell cycle arrest and reduced

Fig. 4 miRNAs implicated in Hippo pathway dysregulation in gastric cancer. Oncogenic miRNAs activating YAP/TAZ signaling are often
upregulated (in red) in human GC. By contrast, YAP/TAZ inhibiting oncosuppressive miRNAs are reported to be downregulated (in blue) in GC.
For each miRNA are indicated the Hippo target/targets, and the functional effects of its/their regulation. The stable circular RNA LARP4
(circLARP4) can reverse the oncogenic role of miR-424-5p, resuming YAP phosphorylation and retention in the cytoplasm, and is often
downregulated in GC. Similarly, the long intergenic non-coding RNA linc01133 competes with miR-145-5p to promote YES1-dependent YAP1
nuclear translocation and is upregulated in GC tissues.

Fig. 5 Drugs targeting the Hippo pathway. Hippo-targeted drugs
act at different levels of the signaling cascade: some of them directly
target the YAP-TEAD complex (red squares), while others inhibit
YAP/TAZ nuclear localization (sky blue squares) or act at the level of
upstream regulators, mainly linked to mechanical cues (green
squares).
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the number of tumor-spheres, and decreased the expression of
the stemness markers CD44 and Sox2. Consistently, in vivo tumor
growth was delayed by metformin treatment [139]. Mechanisti-
cally, metformin induces YAP phosphorylation by AMPK-
dependent phosphorylation and stabilization of the Hippo
adaptor protein AMOTL1 [60]. Regarding pazopanib, this estab-
lished anticancer treatment induced YAP/TAZ phosphorylation,
triggering their proteasomal degradation [140]. Nevertheless, no
significant signals of antitumor activity were observed in clinical
trials investigating this agent in GC [141, 142].

Drugs affecting upstream mechanical cues
In the domain of potential agents directed against mechano-
transduction, attention has been focused on drugs targeting
cytoskeletal tension and cell adhesion, which play a key role in
regulating the Hippo pathway. FAK, a regulator of focal adhesion
and cytoskeletal proteins, is involved in many oncogenic proper-
ties in GC and in other tumors [143, 144]. Recently, a mechanistic
connection between RhoA and FAK was described, resulting in the
activation of PI3K/AKT, β-catenin, and YAP-TAZ signaling in GC. In
this context, the FAK inhibitors defactinib and PF-573228 had
potent activity in GC organoids and mouse models, and reduced
YAP/TAZ expression in GC cell lines [145].
Lastly, dasatinib is a small molecule used for the treatment of

chronic myeloid leukemia. It targets the proto-oncogene Src and
has been reported to inhibit YAP/TAZ signaling and the migration
of GC cells [146, 147].

FUTURE PERSPECTIVES
In GC, different inputs contribute to aberrant YAP/TAZ activation,
and multiple connections with oncogenic pathways (e.g., Wnt/
β-catenin, TGF-β) concur to the multifaceted tumor-promoting
activity elicited by aberrant YAP/TAZ activity. This complexity
highlights the central role played by dysregulated Hippo signaling
in GC progression, distant dissemination and therapeutic resis-
tance, making Hippo a versatile target in GC. However, the
following points represent critical hurdles in the translational
process: (i) The close relationship with an array of activators/
inhibitors; (ii) The impact of pathway feedback loops and the
mixed transcriptional outputs of YAP/TAZ (activators and repres-
sors); (iii) The tumor-intrinsic and -extrinsic nature of the stimuli
that regulate its activity, which emanate from both the local
microenvironment and the systemic level.
In our opinion, the following strategies should be pursued to

better frame the potential of Hippo-related biomarkers and
therapeutic targeting. First, while the extensive deregulation of
the pathway in GC suggests that Hippo-linked markers deserve to
be investigated as prognostic/predictive factors, specific assays
should be conceived by taking into account its cooperation with
other oncogenic avenues (e.g. upstream regulators, mutations in
components of connected pathways, and YAP/TAZ target genes).
Coupling high-throughput technologies (e.g., RNA-Seq) and
adequately powered studies with an identification-validation
design is instrumental to provide formal evidence that Hippo
signatures efficiently predict survival outcomes. At the same time,
the role of mutations and copy number alterations (CNAs) hitting
the pathway or its connections should be clarified to avoid
overlooking the impact of genetic deregulations.
Regarding therapeutic interventions, different molecules acting

at various levels of the signaling cascade have been proposed.
Regardless of the specific mechanism of action, YAP/TAZ inhibitors
should be developed in association with companion biomarkers.
Indeed, avoiding “all-comers” studies is necessary to limit the high
drug attrition rate characterizing investigational anticancer agents.
An example is represented by the predictive potential of the YAP/
VGLL4 ratio towards Super-TDU efficacy. Rationally designed trials
aimed at detecting pathway modulation might help determine

the therapeutic potential of putative YAP/TAZ inhibitors. To this
end, window-of-opportunity trials represent an excellent platform
for these purposes. Given that these studies envision the
administration of investigational agents in the period elapsing
between diagnosis and surgical resection, tumor molecular
analysis can be performed prior to, and following, therapy. Thus,
this specific type of trial design holds the potential to provide
knowledge on the molecular mechanisms underlying YAP/TAZ
targeting, the magnitude of their modulation, and the anti-
tumoral effects elicited by the treatment.
A further consideration refers to Hippo signaling dysregulation

in H. pylori-induced infection. Early YAP/TAZ aberrant activation
suggests a critical role for Hippo in triggering tumorigenesis. Trials
exploring Hippo targeting at this early stage may provide
paramount information on the role of Hippo in the evolutionary
trajectories of GC, from pre-cancerous lesions to gastric cancer. In
conclusion, deregulated Hippo pathway and YAP/TAZ activation
have increasingly been tied to the onset and progression of GC.
Nevertheless, the clinical implications of aberrant YAP/TAZ activity
remain to be elucidated. A coordinated workflow envisioning
biomarker validation studies and biomarkers-driven interventional
trials is necessary to transfer the knowledge acquired in preclinical
models to the clinical setting.
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