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N6-methyladenosine (m6A) is a widely investigated RNA modification in studies on the “epigenetic regulation” of mRNAs that is
ubiquitously present in eukaryotes. Abnormal changes in m6A levels are closely related to the regulation of RNA metabolism, heat
shock stress, tumor occurrence, and development. m6A modifications are catalyzed by the m6A writer complex, which contains RNA
methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP), and other
proteins with methyltransferase (MTase) capability, such as RNA-binding motif protein 15 (RBM15), KIAA1429 and zinc finger CCCH-
type containing 13 (ZC3H13). Although METTL3 is the main catalytic subunit, WTAP is a regulatory subunit whose function is to
recruit the m6A methyltransferase complex to the target mRNA. Specifically, WTAP is required for the accumulation of METTL3 and
METTL14 in nuclear speckles. In this paper, we briefly introduce the molecular mechanism of m6A modification. Then, we focus on
WTAP, a component of the m6A methyltransferase complex, and introduce its structure, localization, and physiological functions.
Finally, we describe its roles and mechanisms in cancer.

Cell Death and Disease          (2022) 13:852 ; https://doi.org/10.1038/s41419-022-05268-9

FACTS

● N6-methyladenosine RNA modification (m6A) is one of the
most abundant modifications in eukaryotic mRNA, which
plays an important role in cancer initiation and progression.

● m6A methylation is catalyzed by a multicomponent methyl-
transferase complex including: METTL3, METTL14, WTAP,
METTL16, KIAA1429, RBM15, RBM15B, ZC3H13. WTAP serves
as an essential regulatory subunit in methyltransferase which
recruits m6A methyltransferase complex to the target mRNA.

● WTAP plays dual roles in cancer either as an oncogene or as a
tumor suppressor. It might regulate cancer though m6A
methylation or other signaling pathways.

OPEN QUESTIONS

● How does WTAP recruit methyltransferase complex to the
target mRNA?

● What determines WTAP localization and in what condition
WTAP forms up complexes as WTAP-BCLAF1-THRAP3, WT1-
WTAP, or METTL3-METTL14-WTAP?

BACKGROUND
Epigenetics is a branch of genetics that investigates heritable
changes in gene expression without changes in the nucleotide
sequence [1, 2]. Epigenetic regulation has been observed in the

context of DNA methylation [3], histone modifications [4],
chromatin remodeling [5], transcriptional control [6], noncoding
RNAs [7], and cancer immunotherapy [8]. Posttranscriptional
modifications, including m1A [9], m5C [10], and m6A [11], are
abundant and significant, especially m6A modifications, because
they are considered the most abundant internal modification in
eukaryotes [12], with approximately 25% of mRNAs carrying at
least one m6A site [13, 14]. m6A modifications can be added not
only to mRNAs but also to rRNAs, small nucleolar RNAs (snRNAs),
and microRNAs [7, 15]. m6A modification affects RNA export, leads
to spliced pre-mRNAs, and impacts RNA translation and stability
[16]. Abnormal regulation of m6A has been observed in cancers,
and its role as an oncogene or tumor suppressor depends on the
cellular environment [17, 18].
The main methyltransferases are METTL3, METTL14, and WTAP,

which form the m6A methyltransferase complex (MTC). The m6A
level is largely dependent on the MTC. Numerous studies have
revealed that the m6A level is of great concern in heart failure [19],
testosterone synthesis [20], liver steatosis [21], and different
cancers [22, 23]. The m6A modification plays a dual role in cancer
biology and is important for the recognition of cancer progression
and cancer therapy [24]. To provide a more comprehensive
understanding of m6A methyltransferase, we focused on WTAP, a
constituent of the m6A methyltransferase complex.
WTAP was first identified as a splicing factor and then confirmed

to be the third component of methyltransferase [14, 25, 26]. In
addition, WTAP fulfils several biological functions, including embryo
development, cell cycle progression, cell differentiation, pre-mRNA
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splicing, and antiviral responses. In this review, we first describe the
biological functions of WTAP in detail. Then, we focus on the role of
WTAP in cancers either dependent or independent of METTL3-
METTL14 methyltransferase and summarize the specific mechanisms
of WTAP in tumorigenesis and development.

MOLECULAR MECHANISM OF M6A MODIFICATION
m6A is a widely investigated RNA modification in studies on
“epigenetic regulation” [27, 28]. The m6A RNA modification accounts
for 80% of all RNA modifications related to pre-mRNA splicing,
miRNAs, lncRNAs, circRNA processing, translation efficiency, and
mRNA stability [29]. m6A is a dynamic, reversible posttranscriptional
modification. The residues of adenosine at the N6 position are
localized in the 3ʹ untranslated region (UTR) of the mRNA or close to
the termination codon [30, 31]. This modification can occur in
different biological processes and is mediated by corresponding
enzymes termed “writers,” “erasers,” and “readers” [32].
Methyltransferase-like protein 3 (METTL3) and

S-adenosylmethionine (SAM)-binding protein [33] are the most
significant components of the methyltransferase complex [34–38].
Methyltransferase-like protein 14 (METTL14) colocalizes with METTL3
in nuclear speckles at a 1:1 ratio [39–43], where it stabilizes the m6A
methyltransferase complex (MTC) and recognizes specific RNA
sequences (RRACH) [30, 44]. WTAP recruits METTL3 and METTL14
into nuclear speckles (associated with mRNA export) and is crucial
for this unique localization [14, 25, 26]. Furthermore, RNA-binding
motif protein 15 (RBM15) can bind to WTAP and recruit the MTC to
specific RNA sites for m6A modification [45]. This process is
important for the control of m6A-promoted X-chromosome
inactivation in humans [46]. Zinc finger CCCH-type containing 13
(ZC3H13) interacts with WTAP to retain the MTC in nuclear speckles
via its LC domain and thereby promotes its function [47, 48]. Other
m6A writers have been revealed in recent years, including METTL16,
METTL5, VIRMA, and ZCCHC4 [49–53].
After the “writers” mark the target mRNA, “reader” proteins,

such as YT521-B homology (YTH) domain-containing protein
[54–62], eukaryotic translation initiation factor 3 (eIF3) [63], the
IGF2 mRNA binding protein (IGF2BP) family [64–67], and the
heterogeneous nuclear ribonucleoprotein (HNRNP) protein family
[68, 69], decode m6A methylation to generate signals for nuclear
export, translation, RNA splicing, RNA stabilization, and decay [70].
Fat and obesity-related protein (FTO) [71–73] and alkB homolog

5 (ALKBH5) [74–76] are two essential enzymes for demethylation.
“Erasers” are involved in building up the dynamic, reversible
modification with “Writers” and “Readers” [77].
In general, m6A modification is an abundant and powerful

epigenetic modification in eukaryotes. If one key enzyme is
disordered, this dynamic modification is disrupted, which impacts
human diseases (Table 1, Fig. 1).

OVERVIEW OF WTAP
Structure and cellular localization of WTAP
Wilms’ tumor 1-associating protein (WTAP) is encoded on human
chromosomal region 6q25.3 [78]. WTAP is a 44 kDa protein that
contains 396 amino acids and is encoded by the human homolog
of FL (2)d [79]. WTAP localizes to both the nucleus and cytoplasm
[25, 80]. WTAP is a key component in m6A modification, forming a
complex with VIRMA, CBLL1, ZC3H13 (KIAA0853), RBM15/15B, and
METTL3/14 [80]. WTAP contains an extended N-terminal coiled-
coil region followed by an unstructured C-terminal part [81]
(Fig. 1B). WTAP regulates the localization of the stable heterodimer
core complex of METTL3/14 into nuclear speckles through amino
acids 5–13 of the nuclear localization signal (NLS) (-PLPKKVRL- to
-PLPGGVGL-) at its N-terminus [81]. Notably, the N-terminal coiled-
coil region (1–150 amino acids) that contains the NLS is the
binding surface of METTL3, which links to the helical structure at

the N-terminus of METTL3, called the leader helix (LH) [81].
Although WT1 was found to interact with WTAP, it was confirmed
that WT1 was dispensable for the regulation of m6A modification
by WTAP [25] (Fig. 1B).

Biological functions of WTAP
Embryo development. In mice, WTAP plays an essential role in
embryonic development. WTAP knockout embryos exhibit pro-
liferative failure [82], and heterozygous mice die at embryonic day
10.5 [83]. In pigs, WTAP knockdown reduced the blastocyst rate
and total m6A levels [84].

Cell cycle progression and differentiation. Cell proliferation and
differentiation are the foundation of growth, development,
reproduction, and heredity in organisms [85]. In human umbilical
vein endothelial cells (HUVECs), decreased WTAP levels induced
cell cycle arrest in the G2 phase. At the same time, the protein
levels of cyclin-A2, B1, B2, and CDC20, which are related to the cell
cycle [86, 87], were significantly decreased [82]. Mechanistically,
WTAP stabilizes cyclin-A2 mRNA by binding to its AUUUA motif
ACAAAUUAU, which corresponds to the 3ʹ UTR (1526–1534) [82].
These findings indicated that WTAP promotes the G2/M transition
in HUVECs (Fig. 2) [82].
WTAP regulates CDK2 mRNA stability, which is related to the G1/S

transition [88], in renal cell carcinoma (RCC) and keratinocytes [89].
During RCC cell proliferation, WTAP enhances the stability of the
CDK2 mRNA by directly binding to its 3ʹ-UTR (Fig. 2) [89]. In psoriasis,
WTAP not only stabilizes the CDK2 mRNA but also stabilizes the
cyclin-A2 mRNA, which promotes the G2/M transition [90]. The
binding motif of WTAP in the cyclin-A2 mRNA is ACAAAAUUAU
(1526–1534) [82]. Smooth muscle cells (SMCs) proliferate during
vascular restructuring and switch to a nonproliferative state when
remodeling is complete [91]. The efficiency of WT1 binding to its
target promoter is affected by WTAP in the nucleus. Amphiregulin
belongs to the epidermal growth factor gene family, which serves as
a strong mitogen in SMCs and is regulated by WT1 [92]. When WTAP
levels decrease in SMCs, more WT1 bound to the promoter of
amphiregulin, switching the cell to a proliferative state. Bcl-2, a
protooncogenic apoptosis suppressor, is also activated by WT1 [93].
WTAP was upregulated when SMCs were in a nonproliferative state
or the late stage of repair in the intima of injured arteries.
Overexpression of WTAP prevents WT1 from binding to the Bcl-2
promoter, thereby downregulating Bcl-2 and activating apoptosis
(Fig. 3A) [94].

pre-mRNA splicing. Alternative splicing of pre-mRNAs plays
important roles in cell differentiation and development, and
recent studies indicated that most human multiexon genes exhibit
alternative splicing [8]. If this process is not highly regulated and
accurate, it will lead to mis-splicing events, which may result in
proteins with altered function [95].
WTAP interacts with the nuclear splicing factor WT1, forming a

splicing complex [96]. Female-specific regulatory protein sex-lethal
(SXL) affects sex-specific splicing by regulating the female-specific
splicing of transformer (tra) pre-mRNA. Moreover, FL (2)D, the
Drosophila homolog of WTAP, forms an RNA-independent
complex with SXL [97]. When Fl(2)D was immunodepleted,
alternative splicing of transformer pre-mRNA, the target of SXL
regulation, was affected [98].
In Drosophila, FL(2)d is distributed throughout the entire eye-

antennal imaginal disc and affects retinal development [96] by
regulating the alternative splicing of the eye developmental gene
Ultrabithorax (Ubx) [99]. In mammalian cells, WTAP and its
complex (VIRMA, CBLL1, and ZC3H13) regulate alternative splicing
and alternative polyadenylation via inhibitory mechanisms in GC-
rich sequences [100].
Furthermore, WTAP was found in complexes related to

splicing factors, including Snf, U170k, and the two U2AF
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subunits U2AF38 and U2AF50 [97]. In conclusion, WTAP is
closely related to pre-mRNA splicing, but its specific role in this
process remains unclear.

Antiviral responses. WTAP is degraded in virus-infected cells
through the K48-linked ubiquitination-proteasome pathway upon
activation of type I interferon (IFN-I) signaling. IFN-regulatory factor 3
(IRF3) and interferon-alpha/beta receptor subunit 1 (IFNAR1) are two
key components involved in IFN-I signaling that are regulated by
WTAP in an m6A-dependent manner. WTAP maintains the expres-
sion of IRF3 and IFNAR1 by enhancing IRF3 translation efficiency via
m6A modification at its 5’UTR and improving IFNAR1 mRNA stability
via m6A modification at its 3’UTR at the same time. Following viral
infection, degradation of WTAP blocks IRF3 mRNA translation and
accelerates IFNAR1 mRNA degradation, which restricts the antiviral
immune response and maintains homeostasis (Fig. 3B) [101].

EXPRESSION OF WTAP IN CANCERS
In patient tissue samples, immunohistochemistry results and
western blot results have shown that WTAP is highly expressed in
dozens of cancers (Fig. 4 Table 2).

WTAP AS AN M6A METHYLTRANSFERASE IN CANCER
WTAP in hepatocellular carcinoma (HCC)
The overexpression of WTAP was found to be correlated with a
poor prognosis in HCC, and WTAP expression promoted prolifera-
tion and metastasis in vitro and vivo [102]. ETS1 is a transcriptional
activator that is typically regulated by the Ras/Raf/MEK/ERK
pathway [103], and it serves as a tumor suppressor in HCC by
downregulating the transcription of p21 and p27 [102]. The
expression of ETS1 is regulated by HuR, an RNA-binding protein
that binds to and stabilizes m6A-modified RNA [104], and WTAP.

Table 1. Summary of m6A modification enzymes.

Components Enzymes Intracellular
localization

Biological functions References

WRITERS METTL3 Cytoplasm, Nucleus,
Nuclear speckles

m6A methyltransferase, DNA damage responses,
DNA‒RNA hybrid, Cancer cell proliferation, Cell cycle
progression and survival, Cancer cell resistance to
radiotherapy and cisplatin

[35–38]

METTL14 Nucleus m6A methyltransferase, mRNA degradation or
stabilization, LncRNA stabilization, pre-mRNA splicing,
mRNA exportation, mRNA turnover in tumor
proliferation, Metastasis, Self-renewal and tumor-
initiating capacity

[41–44]

WTAP Cytoplasm, Nucleus,
Nuclear speckles

m6A methyltransferase, Embryo development, Cell
cycle progression and differentiation, Pre-mRNA
splicing, Antiviral responses, Alternative splicing

[78, 82–84, 86, 87, 98, 100, 101]

RBM15/
ZC3H13/
VIRMA

Nuclear speckles,
Nucleus, Nuclear
envelope, Nuclear
membrane

m6A methyltransferase, Proliferation, invasion,
migration, and apoptosis, Anchoring the m6A
regulatory complex in the nucleus, Controls mouse
embryonic stem cell self-renewal

[45, 48, 51, 70]

ZCCHC4 Nucleus, Cytoplasm Methylates human 28 S rRNA, Interacts with a subset
of mRNAs, Related to global translation, Cell
proliferation

[52]

METTL5 Nucleus, Cell junction m6A modification of 18 S rRNA, Promotes translation
initiation, S6K activation, and cancer cell growth

[50, 53]

METTL16 Nucleus, Cytoplasm m6A modification of U6 snRNA, lncRNAs, and introns
of pre-mRNAs

[49]

ERASERS FTO Cytoplasm, Nucleus,
Nuclear speckles

Demethylation of m6A and m1A, Regulation of mRNA
splicing and cell differentiation

[71–73]

ALKBH5 Nuclear speckles m6A demethylation, Participates in the regulation of
mRNA nuclear export and mouse sperm
development, Reduces tumoral proliferative,
migration, and invasion activities

[74–76]

READERS YTHDF2/3 Nucleus, Cytoplasm mRNA stabilization/degradation, Regulates mRNA
clearance, Regulates cancer cell proliferation, invasion
and migration

[54, 58, 59, 83]

YTHDC1 Nucleus, Nuclear
speckles

Binds m6A-modified pre-mRNAs and mRNAs, and
facilitates exon inclusion, splicing, mRNA nuclear-
cytoplasmic export

[55, 60, 61]

IGF2BP1–3 Cytoplasm, Nucleus Recognizes m6A through K homology domains and
facilitates m6A-modified mRNA stabilization and
protein translation

[64–67]

YTHDC2 Cytoplasm Regulates mRNA translation or decay and mouse
spermatogenesis

[56]

YTHDF1 Cytoplasm Selectively recognizes m6A-modified mRNA,
Promotes ribosome loading of m6A-modified mRNA,
Interacts with initiation factors to facilitate translation
initiation

[57, 62]

hnRNPC/
hnRNPG

Nucleus Regulates mRNA structure and alternative splicing [69]
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WTAP was confirmed to increase the m6A modification of ETS1
mRNA and interfere with the interaction between ETS1 mRNA and
HuR. Thus, WTAP downregulates p21 and p27 expression to
promote HCC proliferation (Fig. 5, Table 3) [102, 105].

WTAP in osteosarcoma
WTAP was found to be highly expressed in osteosarcoma, and it
was a significant independent prognostic factor for overall survival
[106]. Chen et al. found that upregulation of WTAP reduces the
expression of HMBOX1, an oncogene that inhibits osteosarcoma
proliferation and metastasis by downregulating the PI3K/AKT
pathway. Specifically, WTAP regulated HMBOX1 in an
m6A-dependent manner. The m6A modification sites in HMBOX1
are in the 3ʹUTR at 2767 and 3080 nucleotides. However, the
reader of HMBOX1 m6A remains unclear (Fig. 5, Table 3) [106].

WTAP in gastric cancer
WTAP was found to be highly expressed in gastric cancer tissues,
and its overexpression was correlated with poor prognosis [107].
HK2 plays significant roles in both the Warburg effect, a significant
cause of relapse and pathogenesis in gastric cancer [108], and
cancer cell immortalization [109]. WTAP promoted the prolifera-
tive ability of gastric cancer cells and increased their glycolytic
capacity (glucose uptake, lactate production, and extracellular
acidification rate) by stabilizing the hexokinase-2 (HK2) mRNA by
binding to its 3ʹ-UTR m6A site (Fig. 5, Table 3) [107].

WTAP in hematological malignancies
WTAP was overexpressed in acute myeloid leukemia (AML)
patients, and its expression was related to a poor survival rate.
MYC is known as a master transcription factor that regulates
genes essential for survival, cell proliferation, and metastasis
[110, 111] and may act as a downstream regulator of the PI3K/
AKT pathway [112, 113]. WTAP downregulates c-Myc expres-
sion by increasing the m6A modification of its mRNA [114].
Thus, high WTAP expression predicts poor prognosis in AML,
and WTAP plays an epigenetic role in AML (Fig. 4, Table 2)
[114].
It was also reported that PIWI-interacting RNAs (piRNAs) are

related to diffuse large B-cell lymphoma (DLBCL) [115]. piRNA
30473 was highly expressed in DLBCLs, where it promoted
proliferation and induced cell cycle arrest. Mechanistically, piRNA-
30473 increased WTAP levels to upregulate the global m6A level.
WTAP increased HK2 expression by enhancing its m6A level. The
m6A reader IGF2BP2 was found to bind to the 5ʹUTR of HK2 mRNA,
leading to its stabilization. HK2 is an essential kinase in glucose
metabolism that is associated with tumor cell proliferation by
enhancing aerobic glycolysis [116–119]. Overall, the piRNA-30473/
WTAP/HK2 axis contributes to tumorigenesis by regulating m6A
RNA methylation in DLBCL [115] (Fig. 5, Table 3).
Natural killer/T-cell lymphoma (NKTCL) exhibits high resis-

tance to chemotherapy, which is related to the high expression
of ATP binding cassette (ABC) transporter proteins as drug

Fig. 1 Mechanism of m6A and fuctional domais in m6A methyltransferase. A The dynamic molecular mechanism of m6A modification. m6A
is installed by “writers” (METTL3/14, WTAP, RBM15/15B, VIRMA, and ZC3H13), removed by “erasers” (FTO, ALKBH5, and ALKBH3), and
recognized by “readers” (YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, HNRNP, and eIF3). B Functional domains in m6A writer, eraser, and reader
proteins.
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efflux pumps [120, 121]. Multidrug resistance-associated
protein 1 (MRP1) and P-glycoprotein (P-gp) are two major
proteins in the ABC transporter family that prevent the cellular
accumulation of chemotherapy drugs [122]. WTAP was
upregulated in NKTCL cell lines. Depletion of WTAP

downregulated the expression of MRP1 and P-gp and blocked
resistance to cisplatin [122, 123]. WTAP also upregulated the
expression of dual-specificity phosphatase 6 (DUSP6) by
stabilizing its mRNA by increasing the m6A modification of its
transcript, which induced tumor progression and contributed

Fig. 2 The function of WTAP in cell cycle transition. In keratinocytes and renal cell carcinoma cells, WTAP enhances the stability of the CDK2
mRNA by directly binding to its 3’-UTR. In human umbilical vein endothelial cells (HUVECs), WTAP stabilizes cyclin-A2 mRNA by binding to its
AUUUA motif ACAAAUUAU, which corresponds to the 3ʹ UTR (1526–1534). These findings indicated that WTAP promotes the G1/S transition
and the G2/M transition.

Fig. 3 AModel of the mechanism through which WTAP regulates SMC proliferation. The balance between WTAP and WT1 influences the state
of SMCs. When the expression of WTAP is reduced, WT1-mediated transcriptional events proceed. Amphiregulin is a direct transcriptional
target of WT1 that drives SMC proliferation by upregulating the EGF pathway. Thus, SMCs switch to a proliferative state. When the balance of
WTAP and WT1 is reversed, WT1-mediated transcription may be blocked, and the transcription of Bcl-2, which is suppressed by WT1, is
activated. SMC apoptosis is increased, and the cells switch to a nonproliferative state. B WTAP in the antiviral immune response. WTAP is
degraded in virus-infected cells. After viral infection, degradation of WTAP leads to a decrease in the m6A level of IRF3 mRNA and IFNAR1
mRNA, which leads to IRF3 mRNA translation blockade and accelerated IFNAR1 mRNA degradation. This biological process restricts the
antiviral immune response and maintains homeostasis.
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to WTAP-induced drug resistance via the WTAP/m6A/DUSP6
axis (Fig. 5, Table 3) [123].

WTAP in endometrial carcinoma (EC)
WTAP was observed to be upregulated in endometrial cancer cell
lines [124, 125]. WTAP activated the nuclear factor‐κB (NF‐κB)
pathway by regulating the m6A modification of caveolin‐1 (CAV‐1)
mRNA. Reduction of CAV-1 levels by WTAP could enhance the
activity of the NF‐κB pathway, contributing to the pathogenesis of
EC [124, 125].

OTHER FUNCTIONS OF WTAP IN CANCER
WTAP in cholangiocarcinoma
WTAP shows a tendency toward overexpression in cholangiocar-
cinoma tissues. In addition, overexpression of WTAP induces the
expression of MMP7, MMP28, cathepsin H, and Muc1 [126].
Notably, these enzymes are all involved in the degradation of the
extracellular matrix, which can explain the increased invasion of
cholangiocarcinoma cells and WTAP overexpression inside lymph
nodes or vessels [127–130]. In addition, Muc1 was shown to
regulate EGFR activity [131] to regulate the motility of cancer cells

Fig. 4 The function of WTAP in biological process. Immunohistochemistry has been performed in many studies. Strong staining for WTAP
was observed in grade IV gliomas, renal cell carcinoma, hepatocellular carcinoma, colorectal cancer, and high-grade ovarian carcinoma, with
low staining in adjacent normal tissues.

Table 2. WTAP expression in different cancers.

Cancer Expression Role References

Hepatocellular carcinoma Upregulated Oncogene [105]

Osteosarcoma tumorigenesis Upregulated Oncogene [106]

Gastric cancer Upregulated Oncogene [107]

Acute myeloid leukemia Upregulated Oncogene [114, 132]

Natural killer/T-cell lymphoma Upregulated Oncogene [123]

Cholangiocarcinoma Upregulated Oncogene [126]

Diffuse large B-cell lymphoma Upregulated Oncogene [134]

Malignant glioma Upregulated Oncogene [135]

Colorectal cancer ? Tumor Suppressor [137]

Pancreatic ductal adenocarcinoma Upregulated Oncogene [142]

Bladder cancer Upregulated Oncogene [143]

Renal cell carcinoma Upregulated Oncogene [89]

High-grade serous ovarian cancer Upregulated Oncogene [145]

Non-small cell lung cancer ? Oncogene [147]
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[126]. Therefore, the function of WTAP is an important in
cholangiocarcinoma (Fig. 6, Table 4).

WTAP in hematological malignancies
In AML, the molecular chaperone Hsp90 interacted with and
stabilized WTAP by decreasing its polyubiquitination, which
promoted chemoresistance (Fig. 5, Table 3) [132]. This phenom-
enon was also observed in diffuse large B-cell lymphoma
(DLBCL), a common type of non-Hodgkin lymphoma [133, 134]
(Fig. 6, Table 4).

WTAP in malignant glioma
WTAP is overexpressed in glioma tissues compared to normal
brain tissues. Furthermore, WTAP expression is associated with
glioma grade and is an independent prognostic factor for
shorter survival in patients with glioma. High expression of
WTAP leads to a much lower overall survival rate than low WTAP

expression in patients suffering from glioma. Therefore, WTAP
may be a novel prognostic marker for glioma (Table 4) [135].

WTAP in endometrial carcinoma (EC)
WTAP also promoted chemoresistance of endometrial carcinoma (EC)
cells to cisplatin by facilitating proliferation and repressing apoptosis.
Mechanistically, WTAP enhanced the phosphorylation of GSK3β at
Ser9, which facilitated the nuclear translocation of β-catenin [136].
Consequently, β-catenin activated the transcription of c-Myc, Survivin,
and Bcl-xl to promote chemoresistance to cisplatin [136]. Overall,
these results shed light on the strategies to modify the treatment
response by altering chemoresistance to cisplatin (Fig. 6 Table 4)
[124].

WTAP in colorectal cancer (CRC)
Carbonic anhydrase IV (CA4) is silenced in colorectal cancer (CRC)
[137]. It was recently identified as a preferentially methylated gene

Fig. 5 WTAP serves as a methyltransferase in cancers. WTAP plays a significant role in RNA methylation by recruiting METTL3/METTL14 to
form a complex that binds to target RNAs. In this process, WTAP regulates the differential expression of oncogenes and tumor suppressor
genes in an m6A-dependent manner. It enhances the stability of the HK2 and DUSP6 mRNAs, inducing drug resistance in hepatocellular
carcinoma, gastric cancer, and NKTCL. Additionally, WTAP induces the degradation of the ETS1, HMBOX1, and c-Myc mRNAs in an
m6A-dependent manner, enhancing HCC proliferation and suppressing the invasion and metastasis of osteosarcoma and acute myeloid
leukemia.

Table 3. WTAP as an m6A methyltransferase in cancer.

Cancer Biological function Mechanism Target Regulator References

Hepatocellular carcinoma Enhance proliferation,
migration

Downregulated the ETS1/
p21, p27 axis in an m6A-
mediated manner

ETS1/p21, p27 / [105]

Osteosarcoma tumorigenesis Enhance proliferation,
migration

Downregulated the
HMBOX1/PI3K/AKT axis in an
m6A-mediated manner

HMBOX1/PI3K/
AKT

/ [106]

Gastric cancer Enhance proliferation,
migration

WTAP enhanced the stability
of HK2 mRNA to regulate the
gastric cancer
Warburg effect

HK2 / [107]

Acute myeloid leukemia Enhance proliferation Performed m6A on c-Myc
mRNA and enhanced its
degradation

c-Myc Cyclins
and Hsp90

[114, 132]

Natural killer/T-cell lymphoma Promote resistance to
cisplatin

Enhanced m6A on DUSP6
and stabilized its mRNA

DUSP6 / [123]
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that is expressed in normal colon tissues [138] and plays a tumor-
suppressive function by inhibiting the Wnt/β-catenin signaling
pathway [139, 140]. CA4 interacts with WTAP and promotes its
polyubiquitination-dependent degradation [137]. WT1 is a nega-
tive regulator of the Wnt signaling pathway [141]. WT1 is released
from the WT1-WTAP complex by CA4, resulting in the induction of
transducing β-like protein 1 (TBL1) and the degradation of
β-catenin. A lack of CA4 results in the activation of WNT/β-catenin
signaling, which promotes CRC progression [137] (Fig. 6, Table 4).

WTAP in pancreatic ductal adenocarcinoma (PDAC)
The nuclear and cytoplasmic levels of WTAP were much higher in
PDAC than in adjacent nontumor tissues [142]. High nuclear levels of
WTAP were correlated with a more advanced tumor stage, while
cytoplasmic WTAP levels were associated with histological trade and
perineural invasion. In addition, high expression of WTAP in the
nucleus and cytoplasm differed significantly by sex. Nuclear WTAP
levels were identified as an independent prognostic indicator for
PDAC and were associated with poor overall survival. Overall, WTAP
may be a molecular biomarker in PDAC [142] (Table 4).

WTAP in bladder cancer
Immunohistochemical staining showed that WTAP expression in
bladder cancer was significantly higher than that in normal tissues,
and high expression of WTAP indicated a poor prognosis [143].
Moreover, both the mRNA and protein levels of WTAP were
upregulated in bladder cancer, offering a potential novel
approach for the diagnosis and treatment of bladder cancer
(Table 4) [143].

WTAP in renal cell carcinoma (RCC)
In RCC, WTAP binds to the transcript of CDK2, a cell cycle-related
protein [144], to enhance the stability of its mRNA, thus
decreasing the percentage of cells in the G1 phase (Table 4) [89].

WTAP in high-grade serous ovarian cancer (HGSOC)
WTAP expression was correlated with a poor prognosis in high-
grade serous ovarian cancer (HGSOC) [145]. Mechanistically, WTAP
affected migration by regulating proteins related to the epithelial-
mesenchymal transition (EMT) by decreasing E-cadherin expres-
sion and increasing vimentin expression. In addition, WTAP
promoted the phosphorylation of AKT, JNK, ERK, and p38,
indicating that WTAP might be involved in activation of the AKT
and MAPK signaling pathways (Fig. 6, Table 4) [145].
It was also reported that family with sequence similarity 76-

member A (FAM76A) and HBS1-like translational GTPase (HBS1L)
are positively correlated with WTAP according to weighted gene
coexpression network analysis (WGCNA), and both were corre-
lated with a poor prognosis [146].

WTAP in non-small cell lung cancer (NSCLC)
High levels of the lncRNA PCGEM1, which is considered to promote
cell growth, were detected in NSCLC. PCGEM1 was mostly
distributed in the cytoplasm, indicating that it mostly performs its
function at the posttranscriptional level. Furthermore, PCGEM1 was
found to act as a sponge for miR-433–3p in NSCLC. WTAP is a
downstream target of the PCGEM1/miR-433-3p axis. Overall,
PCGEM1 plays an important role in NSCLC and can accelerate
cancer progression via the miR-433-3p/WTAP axis (Table 4) [147].

WTAP in hepatoblastoma
Hepatoblastoma is a common primary malignant hepatic tumor of
infancy and childhood that usually occurs in the first two years of
life [148]. Hepatoblastoma susceptibility was correlated with WTAP
gene variants. The genotype frequencies of three WTAP single
nucleotide polymorphisms (SNPs: rs7766006 G > T, rs9457712
G > A, and rs1853259 A > G) were evaluated in Chinese children,
including 313 hepatoblastoma patients and 1446 controls.
However, only the rs7766006 GT/TT genotype exhibited a

Fig. 6 Other functions of WTAP in cancers.WTAP regulates the differential expression of oncogenes and tumor suppressor genes at the non-
posttranscriptional level. WTAP induces the expression of Muc1, which regulates EGFR activity in cholangiocarcinoma. Hsp90 forms a complex
with WTAP and stabilizes its protein level to promote chemoresistance in AML. In DLBCL, Hsp90 also stabilizes the WTAP protein, which forms
a complex with BCL6. In colorectal cancer, CA4 interacts with WTAP and promotes its degradation in a polyubiquitination-dependent manner
so that WT1 is released from the WT1-WTAP complex, resulting in the induction of transducin β-like protein 1 (TBL1) and the degradation of
β-catenin, which blocks the Wnt pathway. WTAP was found to facilitate the nuclear translocation of β-catenin and enhance the
phosphorylation of GSK3b at Ser9, which induced chemoresistance to cisplatin in endometrial carcinoma by activating the Wnt/β-catenin
pathway. Additionally, WTAP was found to regulate the expression of the EMT-related proteins E-cadherin and vimentin. Furthermore, WTAP is
involved in the activation of the AKT and MAPK pathways. Overall, WTAP contributes to cell proliferation, apoptosis, invasion, metastasis, and
chemo- or radioresistance in different cancers.
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significant association with hepatoblastoma risk. Rs7766006 T was
associated with a decrease in WTAP mRNA levels. Thus, WTAP
SNPs potentially play a role in hepatoblastoma via genetic
modification [149].

FUTURE PROSPECTS
WTAP was first reported to be a splicing factor. In the following
years, its biological functions have gradually been uncovered,
including functions in m6A modification, embryo development, cell
cycle progression and differentiation, pre-mRNA splicing, and
antiviral responses. With the development of techniques for
detecting m6A modification, WTAP was revealed to be a part of
the MTC and to participate in m6A modification with both METTL3
and METTL14 and other methyltransferases. In human umbilical vein
endothelial cells, WTAP promotes G2/M transition, while in smooth
muscle cells, overexpression of WTAP prevents WT1 from binding to
the Bcl-2 promoter, thereby downregulating Bcl-2 and activating
apoptosis. In renal cell carcinoma, keratinocytes, and psoriasis, WTAP
regulates the G1/S transition and G2/M transition by stabilizing
specific mRNAs. Thus, WTAP may be a potential biomarker for
changes in cell proliferation and differentiation. WTAP is also
associated with chemoresistance in hematological malignancies and
endometrial carcinoma by upregulating the expression of MRP1 and
P-gp and enhancing the phosphorylation of GSK3β at Ser9. These
results shed light on the potential of targeting WTAP for the
prevention of chemoresistance to cisplatin. During metabolism,
WTAP can stabilize the HK2 mRNA, which is associated with aerobic
glycolysis and the Warburg effect in diffuse large B-cell lymphoma.
The therapeutic schedule can be developed according to this
metabolic phenomenon. High expression of WTAP was confirmed in
malignant gliomas, renal cell carcinoma, hepatocellular carcinoma,
colorectal cancer, and ovarian cancer, which is related to progression
and poor prognosis (Fig. 6, Table 4), suggesting that WTAP might be
a biomarker for the above cancers. In liver cancer, WTAP was
observed to increase the m6A level of the ETS1 mRNA, thereby
facilitating cancer progression. Similarly, WTAP was found to induce
the proliferation and metastasis of osteosarcoma by regulating
HMBOX1 m6A modification. In gastric cancer, WTAP enhanced HK2

mRNA stability through m6A modification. In natural killer/T-cell
lymphoma, WTAP upregulated DUSP6 expression through m6A
modification, inducing drug resistance. In acute myeloid leukemia,
WTAP downregulated c-Myc expression by increasing the m6A
modification of its mRNA, making cells resistant to chemotherapy
drugs. These cases indicated that the role of WTAP as a
methyltransferase is vital in cancer progression. Although no
small-molecule inhibitors of RNA methyltransferases and WTAP
have been discovered, FTO demethylation inhibitors have been
identified. Rhein can bind the FTO catalytic domain to suppress m6A
demethylation [150]. CHTB, N-CDPCB and meclofenamic acid 2
(MA2) have been revealed to be FTO inhibitors through structure-
based virtual screening and biochemical analyses [151, 152]. R-2-
hydroxyglutarate (R-2HG) inhibits FTO activity and increases global
m6A modification, which has been tested in vitro and in mice [153].
These effects suggest that WTAP-targeted inhibitors may be
developed in the future and that a deeper understanding of m6A
modification is warranted.

CONCLUSION
At present, our understanding of WTAP is insufficient due to a lack
of further experiments and additional samples. m6A has gradually
become a significant focus of cancer research, but the role of
WTAP in this process is still at an early stage. Furthermore, the
localization of WTAP in nuclear speckles and the formation of a
complex with METTL3 and METTL14 need to be further
investigated, since this knowledge may be useful for under-
standing the role of m6A modification in cancer biology. In
conclusion, many studies have revealed WTAP as a potential
biomarker for predicting cancer progression, since it participates
in alternative splicing, cell cycle regulation and methylation. Thus,
efforts should be made to develop the potential of WTAP for
therapies targeting tumorigenesis and tumor development.
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Table 4. Other functions of WTAP in cancer.

Cancer Biological function Mechanism Target Regulator References

Cholangiocarcinoma Promote invasion,
migration

/ MMP7,
MMP28,
Cathepsin
H, Muc1

/ [126]

Diffuse large B-cell lymphoma Promote proliferation,
counteract etopside-
mediated apoptosis

/ / Cyclins
and Hsp90

[134]

Colorectal cancer / WTAP supports CA4 in
performing its tumor-
suppressive function and
releasing WT1 from the
WTAP-WT1 complex

Carbonic
anhydrase
IV (CA4)

/ [137]

Renal cell carcinoma Promote invasion
proliferation and
migration, accelerate cell
cycle progression

Binds to the CKD2 transcript
to enhance the function of
its mRNA

/ / [89]

High-grade serous
ovarian cancer

Proliferation, migration
and inhibition of
apoptosis abilities

Regulates the epithelial-
mesenchymal transition
(EMT) pathway and AKT and
MAPK signaling pathways

E-cadherin,
Vimentin,
AKT, JNK, ERK
and p38

/ [145]

Non-small cell lung cancer Proliferation, migration
and inhibition of
apoptosis abilities

/ / PCGEM1/miR-
433–3p axis

[147]
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