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Mesenchymal stem cell-derived extracellular vesicles for
immunomodulation and regeneration: a next generation
therapeutic tool?
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Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose
tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect
of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play
a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the
function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with
advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and
regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support
tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the
problem of quality heterogeneity.
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FACTS

● MSC-derived EVs have low-immunogenicity and strong
potential for therapeutic applications.

● MSC-derived EVs were used to treat tissue fibrosis and
promote tissue regeneration.

● MSC-derived EVs are proposed as a novel therapeutic agent to
mediate immunomodulation and promote regeneration.

OPEN QUESTIONS

● How can MSC-derived EVs mediate immunomodulation and
regeneration?

● How can MSC-derived EVs be used to aid regeneration of
fibrotic tissue?

● How can mass manufacturing of MSC-derived EVs be achieved
and the problem of quality heterogeneity overcome?

● What are the challenges of MSC-derived EV-based immuno-
modulation and regeneration in clinical practice?

INTRODUCTION
Mesenchymal stem cells (MSCs) exist in various tissues such as
bone marrow (BMSCs), umbilical cord blood (UC-MSCs) and
umbilical cord tissue, placental tissue (hPMSCs), adipose tissue
(ADSCs), and menstrual blood (MenSCs). These cells have multi-
directional differentiation potential [1] to become osteoblasts,
chondrocytes or adipocytes in vitro [2], and have a unique function
of cytokine secretion [3]. Cell models have been applied in
proliferation, transplantation, and differentiation studies, and in
identification of immune responses in vitro [4]. Numerous studies
have shown that MSCs have great potential in immune regulation
and regeneration [5]. The U.S. FDA has approved nearly 60 clinical
trials [6], mainly focused on Hematopoietic Stem Cell Transplanta-
tion (HSCT) [7], tissue healing, Autoimmune Disease (AID), and
genetic therapy vectors [8]. Recently, MSCs have been widely used
in clinical studies as a regenerative agent and to treat a variety of
conditions including osteoarthritis [9], pulmonary fibrosis, spinal
cord injury, myocardial damage, knee cartilage injury, dental pulp
regeneration, and organ transplantation [10]. An increasing number
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of studies has revealed that the powerful therapeutic effects of
MSCs are due to paracrine-like secretion of cytokines (growth
factors and chemokines) [11, 12] and extracellular vesicles (EVs) as
well as their involvement in cellular communication [13–16].
Application of MSCs as cell therapy is based on regulating the

inflammatory response and participating in tissue repair and
regeneration [17]. The therapeutic effect of MSCs is mainly
attributed to their immunomodulatory function regulated by the
inflammatory environment [18]. When stimulated by inflammatory
factors, MSCs produce a large number of immunomodulatory
factors, cell chemokines, and growth factors, thereby regulating
the tissue immune microenvironment and promoting tissue
regeneration [19]. There is accumulating evidence that EVs
derived from MSCs preserve the therapeutic action of the parent
MSCs and their use avoids the safety concerns associated with live
cell therapy [20, 21]. Therefore, use of MSC-EVs to replace MSCs as
cell-free therapy may be the focus of future clinical treatments
[20]. We review recent studies of the role of MSC-EVs in
immunomodulation and regeneration, focusing on their molecular
mechanisms in the treatment of osteoarthritis, spinal cord injury,
skin injury, and liver, kidney, and lung fibrosis.

EXTRACELLULAR VESICLES COMPOSITION
Extracellular vesicles (EVs) exist in body fluids, are released by cells,
and have a membrane structure [22]. They can be divided into four
subgroups according to their diameter: exosomes (30–150 nm),
microvesicles (100–1000 nm), apoptotic bodies (50–5000 nm, gener-
ated during cell apoptosis) [23, 24], and oncosomes (1–10 μm), newly
discovered and observed in cancer cells [25]. EVs encapsulate many
bioactive molecules (proteins, lipids, nucleic acids, and organelles)
[26–28] that can be delivered to target cells. Large amounts of data
suggest that exosomes and microvesicles are vital mediators of EVs
in numerous physiological (pathological) processes [29] (Fig. 1).

Exosomes
Exosomes are microscopic vesicles with a density of 1.11–1.19 g/mL.
They have a typical “disk-like” structure and flat spherical shape when
seen under an electron microscope [24]. Many kinds of cellsin various
body fluids and cell supernatants can secrete exosomes under
normal and pathological conditions. Exosomes were first discovered
in 1983 in sheep reticulocytes and were named “Exosomes” by
Johnstone in 1987 [30]. These tiny vesicles contain specific proteins,
lipids, and nucleic acids that can be transmitted and serve as
signaling molecules to alter the function of other cells [31, 32].
During the formation of exosomes, the extracellular compo-

nents and cell membrane proteins are wrapped by the
invaginated plasma membrane to form early endosomes. These
can exchange materials with intracellular organelles and develop
into late endosomes, eventually forming intracellular multivesi-
cular bodies (MVBs) [33, 34]. MVBs contain many intraluminal
vesicles (ILVs) [35]. They may be degraded and released into the
cytoplasm by fusion with autophagosomes or lysosomes, or
released into extracellular vesicles by fusion with plasma
membrane, including ILVs, resulting in exosome formation [34].
Exosome-mediated intercellular communication is achieved by
direct membrane fusion, receptor-mediated endocytosis, phago-
cytosis, caveolae, and micropinocytosis [36–38].
Proteins involved in exosome biogenesis (such as transport and

fusion) include Rab GTPases [39–41], ESCRT (endosomal sorting
complex required for transport) [42], annexin, lipid raft proteins, and
four transmembrane proteins (CD63, CD81, and CD9) [43, 44]. In
addition, they also contain biosynthetic antibodies (Alix and TSG101)
involved in MVBs [45, 46], cholesterol, ceramide, phosphoglyceride
that provides structural stability, and immune-related molecule MHC-II
that is involved in antigen binding and presentation. Exosomes also
carry functional mRNAs and miRNAs that can be transferred between
cells [47]. Exosomes released by tumors contain single-stranded DNA,

genomic DNA, cDNA, and a transposable element [48, 49]. It is clear
that exosomes have many functions as biomarkers of disease.

Microvesicles
Microvesicles are also known as microparticles. Biogenesis of MVs
differs to that of exosomes since they are released from outward
budding and fission of plasma membrane when the cell is
stimulated or apoptotic [50]. Nonetheless, they share character-
istics of high biocompatibility, and low immunogenicity and
targeting and can be used as drug carriers [51]. Studies have
shown that the use of tumor cell-derived MVs to deliver
chemotherapy drugs produces in better cancer treatment results
with few side effects or adverse reactions [52, 53].

MSC-DERIVED EXTRACELLULAR VESICLES
Although MSCs derive from a variety of sources, they can all be
adherent in culture and differentiated into a variety of cell types
with specific surface markers [54]. With the need for clinical
treatment with MSCs, the Mesenchymal and Tissue Stem Cell
Committee of the International Society for Cellular Therapy (ISCT)
has proposed minimum criteria for identification of human MSCs:
(1) Cultured under standard conditions they must adhere to
plastic substrates; (2) On flow cytometry, the positive rate of
CD105, CD73 and CD90 expression in MSC surface markers should
reach 95%, and negative expression rate CD45, CD34, CD14 or
CD11b, CD79a or CD19 or HLA-DR (human leukocyte antigen -DR)
(≤2% positive); (3) After induction by standard methods in vitro,
MSCs must be able to induce differentiation into osteoblasts,
chondrocytes and adipocytes [55]. Nonetheless, further research
has revealed that these standards do not fully define MSCs [56].
There is accumulating evidence that heterogeneous MSCs have
multiple cell subpopulations with characteristic surface markers
[57, 58], but the definition of surface markers and biological
functions of these subpopulations requires ongoing exploration.
MSCs are easy to resuscitate and proliferate in vitro, enabling

them to be mass-produced for clinical application [18]. In recent
years, they have been the most studied stem cell type for clinical
application, and have played an effective therapeutic role in graft-
versus-host disease (GVHD) [7], kidney injury [59], tissue and organ
transplantation, immune tolerance [60], nerve injury, rheumatic
disease, and liver disease. At present, MSCs have attracted much
attention in the context of the COVID-19 pandemic [61]. Leng et al.
demonstrated that in an MSC treatment group, patients with
COVID-19 infection were cured or their condition significantly
improved as a result of regulation of increased interleukin 10 (IL
10) expression, inhibition of overactivated immune T cells and NK
cells, and a significantly reduced TNF-α level [62].
Despite their advantages, there are aspects of MSC therapy that

warrant consideration. First, the proliferation ability of MSCs is
gradually weakened and accompanied by a certain degree of
differentiation and even aging with increasing passages during
in vitro culture. This impacts their regulatory and therapeutic
ability [56, 63]. Second, in the in vivo environment, heredity factors
and the self-renewal ability of MSCs cannot be controlled with
consequent potential for tumorigenicity [64]. In addition, although
MSCs have a strong regenerative regulatory potential, it is
uncertain whether they can target or remain at the damaged
site following intravenous injection [65]. There is some evidence
that only a small number of MSCs reach the target site due to the
host body’s scavenging capacity [66, 67]. Although in-situ injection
can partially solve these problems, there remain problems with
cell differentiation and aging, and the clinical effects are not
optimistic [68]. MSCs have also been found to cause and promote
the growth of various types of cancer [69]. In addition, there are
the usual associated risks of cell therapy such as viral infection and
immune rejection as well as problems with storage and
transportation [70].
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The discovery that most therapeutic effects of MSCs depend on
their paracrine action and that EVs can replace their parent cells
offers exciting prospects for researchers [21]. EVs offer great
advantages [71]: they are not self-replicating and largely avoid the
risk of tumorigenicity [72]; compared with cell therapy, EVs are
safer; as nanoparticles they have both biocompatibility and low
immunogenicity, enabling them to cross-protective barriers such
as the blood-brain barrier [73]; they can be continuously secreted
by immortalized cells to obtain a sufficient number [74]; EVs
protect their internal biomolecular activity via their lipid mem-
brane structure, can be preserved for a prolonged period at -80°C,
and are not subject to deactivation, even after repeated freezing
and thawing [75, 76]; and they have an encapsulation capability,
can load specific drugs and transport them to target cells [77].
Notably, MSC-EVs express EV surface markers CD63, CD9 and

CD81, as well as mesenchymal stem cell surface markers CD44,
CD73, and CD90 [78]. In addition, proteins contained in the
extracellular vesicles secreted by MSCs are a specific protein
subclass that determines their unique biological functions [36]. At
the same time, the encapsulated mRNA and miRNA in MSC-EVs
form the molecular basis for their function [79]. Accordingly, MSC-
EVs transmit information and communicate with target cells
through internal substances, thus changing the activity and
function of target cells [80].
With their unique advantages, MSC-EVs play an important role

in immune regulation and regeneration. Studies of the promotion
of regeneration through immune regulation are described in

detail below. Meanwhile, in the treatment of autoimmune
diseases, Wu et al. found that BM-MSC-derived EVs targeted
inhibition of the cyclin I-activated ATM/ATR/p53 signaling path-
way by upregulation of miR- 34a, thereby inhibiting RA fibroblast-
like synoviocytes (RA-FLSs) and significantly ameliorating RA
inflammation in vivo [81]. Another study on the regulation of
type-I autoimmune diabetes mellitus (T1DM) showed that AD-
MSC-derived exosomes ameliorated T1DM symptoms by upregu-
lating the expression of regulatory T cells, interleukin 4 (IL 4), IL 10
and transforming growth factor-beta (TGF-β) and down-regulating
IL 17 and interferon-gamma (IFN-γ) [82]. Additional studies of
autoimmune disease regulation have been summarized elsewhere
[83]. Recently MSC-EVs have also been applied in clinical practice.
Nassar et al. are in the process of evaluating the effect of human
UC-MSC-derived EVs on islet β cells in patients with T1DM (trial
NCT02138331). Recent clinical trials have been conducted to
evaluate the safety and efficacy of MSC-EVs in patients with a
variety of diseases based on their potential for immune regulation
and regeneration (Table 1).

APPLICATION OF MSC-EVS IN IMMUNE REGULATION AND
REGENERATION
The therapeutic potential of MSC-EVs has been reported in
immune regulation and tissue regeneration based on EV-
mediated cellular communication between MSCs and several
target cells, including macrophages, microglia, chondrocytes,

Fig. 1 The development and main types of extracellular vesicles. A Exosomes are derived from the endosomal pathway. B Composition of
exosomes.
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articular chondrocytes, endothelial cells, fibroblasts, pericytes,
neural stem cells (NSC), neurons, hepatic stellate cells, and
podocytes. In this paper, we discuss the molecular mechanisms
of MSC-EVs in tissue repair and anti-fibrosis, in which several
clusters of miRNA and their downstream pathways have been
revealed to play important roles in osteoarthritis, spinal cord
injury, skin injury, liver fibrosis, kidney fibrosis, and lung fibrosis
(Tables 2–7).

Support tissue repair
Osteoarthritis. Osteoarthritis (OA) is the principal form of joint
disease with unclear pathogenesis, presenting with pain and
stiffness, and in some cases, disability [84]. Recently, MSC-EVs have
been proven to have both regenerative and immunoregulatory
benefits in OA (Table 2).
Several studies have reported that hBMSC-EVs play a significant

role in the treatment of OA by inhibiting some pro-inflammatory
pathways and factors, and enhancing the proliferation and
migration of chondrocytes. Vonk et al. determined that MSC-EVs
blocked NFκB signaling by inhibiting phosphorylation of IκBα,
thereby down-regulating TNF-α-induced COX2 expression, and
interleukins and collagenase activity. Additionally, MSC-EVs up-
regulated the expression of SOX9 and WNT7A, and promoted the
production of proteoglycan and type II collagen in in vitro studies
[85]. Li et al. concluded that hBMSC-EVs promoted OA-chondrocyte
(OA-CH) proliferation and migration and reduced apoptosis via
downregulation of MMP13, ALPL, IL-1β-activated pro-inflammatory
Erk1/2, PI3K/Akt, p38, TAK1, and NF-κB signaling pathways and
increased gene expression of PRG4, BCL2, and ACAN (aggrecan)
[86]. In addition, in OA-like chondrocytes, MSC-EVs induced the
expression of type II collagen and aggrecan (chondrocyte markers),
while inhibiting MMP-13 and ADAMTS5 (catabolic) and iNOS
(inflammatory markers). In a CIOA model, treated mice also
exhibited reduced cartilage and bone degeneration [87]. In an
OA model, Ruiz showed that the effect of MSC-EVs was due to the
presence of TGFBI mRNA and protein [88]. Analogously, in the
same model, BMSC-EVs promoted the conversion of RAW264.7
from M1 to M2, reduced the expression of proinflammatory
cytokines IL-1β, TNF-α, and IL-6, and enhanced the expression of IL-
10, chondrogenic genes, collagen II and SOX9 [89]. Interestingly,
Woo et al. revealed in their monosodium iodoacetate (MIA) rat and
the surgical destabilization of the medial meniscus (DMM) mouse
model that MSC-EVs could ameliorate cartilage degeneration by
increasing type II collagen synthesis and decreasing MMP-1, MMP-
3, MMP-13 and ADAMTS-5 expression in the presence of IL-1β [90].
Recent studies have also examined the effect of miRNAs in MSC-

EVs. In synovial-derived MSC-EVs (SMSC-EVs), Tao et al. over-
expressed miR-140-5p to block Wnt5a and Wnt5b to activate YAP
via the Wnt signaling pathway and significantly reduce extra-
cellular matrix (ECM) secretion [91]. Wang et al. found that
exosomes derived from miR 155-5p–overexpressing SMSCs (SMSC-
155-5p-Exos) promoted ECM secretion by targeting Runx2, which
enhanced cartilage regeneration and ameliorated OA [92]. Like-
wise, SMSC-EVs highly expressed miR-31 and relieved OA via the
KDM2A/E2F1/PTTG1 axis [93]. Of interest, hypoxia increased the
expression of miR-216a-3p in HIF-1α-induced BMSC-EVs and
promoted down-regulation of JAK2, promoting proliferation,
migration, and reduced apoptosis of chondrocytes via inhibition
of the JAK2/STAT3 signaling pathway [94]. A combination of these
miRNAs and MSC-EVs may serve as a potential therapy for OA. In
contrast, several studies have shown that miRNAs cause side
effects in OA. Intra-articular injection of antagomir-miR-100-5p
dramatically attenuated the infrapatellar fat pad (IPFP) MSC-EV
(MSCIPFP-EVs)-mediated protective effect on articular cartilage
in vivo [95]. MiR-29b-3p targets FoxO3 gene and enhances
chondrocyte destruction. lncRNA H19 from umbilical cord MSC-
EVs could competitively bind to miR-29b-3p to attenuate its
inhibition of the target gene FoxO3 [96].

Spinal cord injury. Spinal cord injury (SCI) arises following
damage to its structure and function by various pathogenic
factors, with consequent spinal cord dysfunction including that of
movement, sensation, and reflexes [97]. Due to the limited
regenerative ability of nerve components, MSC-EVs have been
recently viewed as a promising clinical treatment for SCI (Table 3).
A rat model of SCI has commonly been applied to evaluate

treatment with MSC-EVs. They have been found to be able to
regulate immunity and restore function through a variety of
pathways. First, Huang et al. studied the administration of hBMSC-
Exos in an animal model, and demonstrated that inhibition of
apoptosis protein (Bax) and pro-inflammatory factors (TNFα and IL
1β), and promotion of anti-apoptotic protein (Bcl-2), anti-
inflammatory protein (IL 10) and angiogenesis, could improve
motor function [98]. Interestingly, the reduced pericyte migration
mediated by BMSC-EVs correlated with inhibition of the NF-KB
P65 signaling pathway with consequent weakening of the blood-
spinal cord barrier (BSCB) [99]. In addition, Zhou et al. showed that
treatment with BMSC-Exos suppressed the expression of caspase 1
and IL 1β by reducing pyroptosis, and enhanced neuronal
regeneration to ameliorate motor ability in rats with spinal cord
injury [100]. Han et al. found that TGF-β in BMSC-EVs enhanced
the expression of Smad6, inhibited the excessive differentiation of
neural stem cells (NSCs) into astrocytes, and promoted regenera-
tion of neurons [101]. Consecutively, Nakazaki et al. proposed that
BMSC-EVs should be administered over 3 days to up-regulate
transforming growth factor -β (TGF-β), TGF-β receptor, and relative
proteins of tight junction [102]. More intriguingly, Zhou et al.
provided evidence that exosomes secreted by hPMSCs increased
the activation of proliferating endogenous nerve stem/progenitor
cells in vivo, while promoting NSC proliferation and upregulating
MEK, ERK, and CREB phosphorylation levels in vitro, resulting in
functional recovery [103].
MiRNAs have always been potent biological effectors of MSC-

EVs, and without exception, they play a strong role in immune
regulation and regeneration in spinal cord injury. Jia et al.
confirmed that overexpression of miR-381 in MSC-EVs could
promote SCI repair by up-regulating Ras homologous A (RhoA)/
RHO kinase activity and down-regulating BRD4 expression and
DRG cell apoptosis by WNT5A [104]. Li et al. observed that miR-133
carried by MSC-Exos could directly target and down-regulate the
expression of RhoA, and also promote expression of ERK1/2 STAT3
and CREB signaling pathway proteins related to neuronal survival
and axon regeneration, thus rescuing neuron apoptosis and
promoting axon regeneration [105]. Of interest, when miR-17-92,
miR-26a, and miR-216a-5p were enriched in BMSC-Exos, they
respectively induced activation of mTOR/PI3K/Akt, PTEN/ Akt
/mTOR, and the TLR4/NF-κB/PI3K/ Akt signaling pathway cascade,
with consequent promotion of axonal regeneration and nerve
function repair after SCI [106–108]. In addition, miRNA-22
encapsulated in BMSC-EVs promotes neurogenesis and inflamma-
tion suppression by downregulating the expression of inflamma-
tory cytokines and GSDMD, and blocking the pyroptosis of
microglia after SCI [109]. Overexpression of miR-199a-3p/145-5p in
exosomes secreted by human umbilical cord-derived MSCs has
been shown to activate the NGF/TrkA signaling pathway affecting
TrkA ubiquitination, and improve locomotor function in rats with
SCI [110].

Skin injury. Skin injury is quite common. Skin regeneration is
typically accompanied by four overlapping processes: inflamma-
tion, angiogenesis, new tissue formation, and remodeling
[111–113] (Table 4).
There is recent evidence that human-derived MSC-Exos

effectively benefit skin damage and accelerate wound healing
by modulating related signaling pathways. Intriguingly, Zhou et al.
adopted a combination therapy, applying hADSC-Exos both locally
and intravenously to accelerate skin wound healing.
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Mechanistically, hADSC-Exos achieved this effect by down-
regulating TNF-α, IL-6, CD14, CD19, CD68, and C-caspase 3, and
up-regulating VEGF, CD31, Ki67, PCNA, filaggrin, loricrin and AQP3
[114]. Jiang et al. demonstrated that hBMSC-Exos suppressed TGF-
β1, Smad2, Smad3, and Smad4 by targeting the TGF-β/Smad
signaling pathway, but increased the expression of TGF-β3 and
Smad7, thus improving scar formation and promoting wound
healing [115]. Remarkably, fetal dermal mesenchymal stem cell-
derived exosomes (FDMSC-Exos) have been shown to activate
adult dermal fibroblast (ADFs) to promote cell proliferation,
migration and secretion by targeting Jagged 1 ligand in the
Notch signaling pathway, and ultimately accelerate wound
healing [116].
Similar effects have also been observed for human-derived

MSC-Exos carrying miRNAs. Of interest, He et al. showed that
hBMMSCs and jaw bone marrow MSCs (JMMSCs) could induce
macrophages toward M2 polarization and promote wound
healing. The mechanism suggested that exosomes secreted by
donors may regulate the polarization of macrophages by carrying
miR-223 targeting Pknox1. Nonetheless, researchers cannot
confirm whether other miRNAs or factors carried by these
exosomes are involved in the induction of M2 polarization, and
further studies are needed [117]. Likewise, Wu et al. utilized BMSC-
Exos treated with 50 µg/mL Fe3O4 nanoparticles and 100 mT SMF
to form a functional exosome (mag-BMSC-Exos). Notably, miR-21-
5p was overexpressed in mag-BMSC-Exos and promoted angio-
genesis in vivo and in vitro to accelerate skin wound healing by
targeting SPRY2 to activate the PI3K/AKT and ERK1/2 signaling
pathways [118]. Additionally, Cheng et al. found that hUCMSCs-
EVs are highly enriched with miR-27b and promote the expression
of JUNB and IRE1α by targeting the Itchy E3 ubiquitin-protein
ligase (ITCH), thereby accelerating cutaneous wound healing [119].
In addition, hUMSC-Exos can be enriched with a set of microRNAs
(miR-21, -23A, -125b, and -145) to attenuate excess myofibroblast
formation and scarring via repression of the TGF-β2 /SMAD2
pathways [120]. Another study showed that hADSC-Exos derived
miR-19b regulate the TGF-β pathway by targeting CCL1 [121]. Li
et al. verified that hADSC-Exos down-regulated the expression of
Col1, Col3, α-SMA, IL-17RA, and P-SMad2/P-SMad3, and up-
regulated the level of SIP1 by suppressing multiplication and
migration of hypertrophic scar-derived fibroblasts (HSFs). In
addition, miR-192-5p was highly enriched in ADSC-EXO and
reduced the level of pro-fibrosis protein, improved hypertrophic
scar fibrosis, and accelerated wound healing via targeted
inhibition of IL-17RA expression [122]. Alongside this, overexpres-
sion of miR-486-5P in hADSC-EVs enhanced the migration of
human skin fibroblasts (HSFs) and the angiogenic activity of
human microvascular endothelial cells (HMECs) by targeting Sp5
and motivating CCND2 expression, thereby promoting wound
healing [123]. Interestingly, Gao et al. found that overexpression of
Mir-135a in hAMSC-Exos significantly down-regulated LATS2,
thereby increasing cell migration and promoting wound healing
[124].

Anti-fibrosis
Liver fibrosis. Liver fibrosis is a pathophysiological process and
refers to the abnormal proliferation of intrahepatic connective
tissue due to various pathogenic factors [125]. Recently, use of
MSC-EVs has been considered a new therapeutic approach to
repair liver fibrosis (Table 5). Rong et al. showed that human bone
MSC-EVs inhibited expression of Wnt/β-catenin pathway compo-
nents, α-SMA, and type I collagen, thereby preventing stellate cell
activation and increasing hepatocyte regeneration. In vivo
injection of hBMSC-Exos has been shown to effectively alleviate
CCL4-induced liver fibrosis in rats and restore liver function [126].
Likewise, using a CCL4-induced liver fibrosis animal model, Ohara
et al. proved that EVs from amnion-derived MSCs (AMSC-EVs)
could significantly reduce the number of Kupffer cells (KCs), mRNA

expression of inflammatory factors, activation of hepatic stellate
cells (HSC), and the lipopolysaccharide (LPS)/toll-like receptor 4
(TLR4) signaling pathway, thereby reducing inflammation and
fibrosis [127].
The anti-fibrotic effect of miRNAs in MSC-EVs has become a

focus of research into CCL4-induced liver fibrosis in rats. MiRNA-
181-5p overexpression in ADSC-EVs has been shown to down-
regulate transcription 3 (STAT3) and Bcl-2 and activated autop-
hagy in HST-T6 cells, alongside a significant decrease in collagen I,
vimentin, a-SMA, and fibronectin in liver [128]. Similarly, high
expression of miR-122 in ADSC-EVs modulated the expression of
target genes such as insulin-like growth factor receptor 1 (IGF1R)
cyclin G(CCNG1), and proline-4-hydroxylase A1(P4HA1), thereby
more effectively blocking the proliferation of HSCs and collagen
maturation [129]. Interestingly, Kim et al. reported that miR-486-5p
was highly expressed in T-MSC-EVs that could target the hedge-
hog receptor, smoothened (Smo), and inhibit hedgehog signaling,
thereby attenuate the activation of HSCs and liver fibrosis [130].

Kidney fibrosis. Renal fibrosis is a gradual pathophysiological
process during which kidney function progresses from healthy to
injured, then to damage with an ultimate loss of function [131].
Increasingly, MSC-EVs have been studied in the treatment of renal
fibrosis using various models (Table 6).
Ji et al. determined that hUC-MSC-Exos repressed Yes-

associated protein (YAP) through casein kinase 1δ (CK1δ) and E3
ubiquitin ligase β-TRCP in a rat model of unilateral ureteral
obstruction (UUO), thus ameliorating renal fibrosis [132]. Similar
effects in a UUO model were confirmed in Liu’s study. They
revealed that hUC-MSC-Exos attenuated renal fibrosis by inhibit-
ing the ROS-mediated p38MAPK/ERK signaling pathway [133].
Likewise, Shi et al. showed that milk fat globule–epidermal growth
factor–factor 8 (MFG-E8) was included in BMSC-EVs, and
ameliorated renal fibrosis by blocking the RhoA/ROCK pathway
in a UUO model [134]. Of interest, in a UUO mouse model, BMSC-
Exos loaded miR-34c-5p inhibited core fucosylation (CF) by cd81-
EGFR complex, thereby improving renal interstitial fibrosis (RIF)
[135]. Correspondingly, recent studies also suggest that exosomes
from ADSCs ameliorate the development of DN via miRNAs. Jin
et al. used miRNA-215-5p to inhibit ZEB2 and improved diabetic
nephropathy (DN) symptoms. They also revealed that upregulated
expression of miR-486 could suppress the Smad1/mTOR signaling
pathway in podocytes [136, 137]. MV-miR-451a from hUMSCs
repressed cell cycle inhibitor P15 and P19 expression by targeting
their 3′-UTR sites, thereby decreasing α-SMA and increasing
e-cadherin expression. This resulted in epithelial-mesenchymal
transformation (EMT) reversal and improved DN symptoms [138].
In another study of amelioration of DN, BMSC-Exos significantly
enhanced the expression of LC3 and Beclin-1, and decreased the
level of mTOR and fibrotic markers in a streptozotocin-induced rat
model of diabetes mellitus [139]. Interestingly, Grange et al.
reported that renal fibrosis and the expression of collagen I were
significantly ameliorated via multiple injections of HLSCs (human
liver stem-like cells) and MSC-EVs in NOD/SCID/IL2Rγ KO (NSG)
mice. Additionally, related genes (Serpina1a, FAS ligand, CCL3,
TIMP1, MMP3, collagen I, and SNAI1) were significantly down-
regulated, thereby attenuating DN symptoms [140].

Lung fibrosis. Pulmonary fibrosis is a terminal change in lung
disease characterized by fibroblast proliferation and accumulation
of a large amount of extracellular matrix accompanied by
inflammatory injury and destruction of tissue. Normal alveolar
tissue is damaged and abnormal repair leads to structural
abnormalities [141, 142]. The etiology in the vast majority of
patients with pulmonary fibrosis is unknown [143]. Idiopathic
pulmonary fibrosis (IPF) manifests mainly with pulmonary fibrotic
lesions and is a serious interstitial lung disease that can lead to
progressive loss of lung function. IPF has a higher mortality than
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most tumors and is considered a tumor-like disease [142].
Recently, MSC-EVs have become an effective treatment for
pulmonary fibrosis (Table 7).
BMSC-Exos exert their therapeutic effect through immunomo-

dulation. In a mouse model, BMSC-Exos have been shown to
significantly ameliorate hyperoxia (HYRX)-induced bronchopul-
monary dysplasia (BPD), alveolar fibrosis, and pulmonary vascular
remodeling by suppressing M1 macrophage production and
enhancing M2 macrophage generation [144]. Likewise, BMSC-
Exos have been shown to significantly reverse fibrosis in a
bleomycin-induced pulmonary fibrosis model by regulating total
lung imbalance of MΦ phenotype [145]. In addition, the Wnt5a/
BMP signaling pathway regulated by UC-MSC-Exos can enhance
Wnt5a, Wnt11, BMPR2, BMP4, and BMP9 expression, and down-
regulate that of β-catenin, Cyclin D1 and TGF-β1. In a monocrota-
line (MCT)-induced rat model of pulmonary hypertension (PH),
MSC-Exos were shown to significantly ameliorate pulmonary
vascular remodeling and pulmonary fibrosis [146]. Of interest,
Chaubey et al. showed that UC-MSC-Exos played a therapeutic
role in improving pulmonary inflammation, pulmonary simplifica-
tion, pulmonary hypertension, and right ventricular hypertrophy
through immunomodulatory glycoprotein TSG-6 in a neonatal
BPD mouse model [147].
Additionally, MSC-EVs can reverse lung injury and pulmonary

fibrosis by expressing influential miRNAs. Wan et al. determined
that high expression of miR-29b-3p by BMSC-EVs ameliorated IPF
by FZD6 [148]. Zhou et al. found that miR-186 enriched by BMSC-
EVs repressed the expression of SOX4 and Dickkopf-1 (Dkk1),
thereby effectively inhibiting fibroblast development and attenu-
ating IPF [149]. In addition, Lei’s study revealed that hPMSC -EVs
could carry miR-214-3p and downregulate ATM/P53/P21 signaling,
thus relieving radiation-induced lung inflammation and fibrosis
[150]. In BLM-induced lung fibrosis and a mouse model of alveolar
epithelial cell damage, exosomes secreted from MenSCs (MenSCs-
Exos) have been shown to ameliorate pulmonary fibrosis by
transferring miRNA Let-7 to suppress reactive oxygen species
(ROS), mitochondrial DNA (mtDNA) damage, and activation of
NLRP3 inflammasome [151]. Similarly, Xiao et al. used another LPS-
induced Acute Lung Injury (ALI) mouse model and demonstrated
that MSC-Exos repressed NF-κB and hedgehog pathways by
transporting miR-23a-3p and miR-182-5p, thereby improving lung
injury and fibrosis [152].

CHALLENGES AND APPLICATION OF MSC-EVS AS AN
ADVANCED THERAPY
Although MSC-EV-based therapy holds great promise as a novel
“cell-free” therapeutic product, there remain many challenges to
overcome prior to their clinical application. At present, several
limitations restrict the clinical translation of MSC-EVs including the
discrepancies in the components of EVs from various sources and
the lack of standard operation processes for largescale production,
both of which largely depend on quality control of the sources of
EVs. It is plausible to overcome these hurdles by introducing a
strategy to control the quality of MSCs from the original source
of EVs.

The quality of MSC-derived EVs from different groups and
batches is heterogeneous
MSCs are most commonly derived from bone marrow, fat,
umbilical cord and other tissues, but maintaining consistent
quality of MSCs and their EVs from different sources and across
batches is difficult. This severely restricts the quality control and
management of MSCs and their EVs as drugs, and increases the
problem of drug resistance [153]. This results in limited
reproducibility of functional measurements in vitro and in vivo
[154].
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In the angiogenesis study, BMSC-, ADSC-, and UCBMSC-derived
EVs were compared and found to reduce myocardial apoptosis,
facilitate angiogenesis, and improve cardiovascular function.
Notably, EVs from ADSCs stimulated cardioprotection factors
VEGF, bFGF, and HGF [155]. In addition, BMSC-derived EVs
appeared to have a greater angiogenic potential than ADSC-
derived EVs when compared in two independent ischemic model
studies, with an approximately 4-fold increase in endothelial cell
numbers compared with controls, and a 1.5-fold change in the
latter [156, 157]. Nonetheless, another study showed that EVs from
endometrial mesenchymal stem cells resulted in a greater level of
angiogenesis than EVs from BMSCS or ADMSCs [158].
In studies of osteogenesis studies, in two separate rat skull

defect studies, BMSC-EV treatment increased bone volume four-
fold relative to the control group [159], while ADSC-EV increased
bone volume by about 1.33 times [160]. In other studies, BMSC-
and ADSC-derived EVs accelerated chondrocyte proliferation,
migration, and osteogenic differentiation [161, 162].
Comparison of the immunomodulatory differences of MSC-

derived EVs from different sources revealed that BMSC-EVs and
ADSC-EVs could induce M2 polarization of macrophages in vivo
and in vitro [163, 164]. Interestingly, in a separate experiment,
Wang et al. showed that BMSC-EVs prompted a significant (3.2-
fold) increase in the expression of CD206 of M2-polarization
marker in an acute lung injury mouse model [163]. Nonetheless
Liu et al. reported that the M2 polarization ability of ADSC-EVs
increased only by a factor of 1.5 in a mouse model [165].

The proliferation capacity of MSCs extracted from adult
tissues was limited, and affected the largescale production of
EVs
To develop MSC-EVs into commercially advanced therapeutic
products (ATPs), quality assurance (QA) is required of the original
material, including parental groups or cells used in the
manufacture of MSCs. There remain many difficulties in mass
production of EVs from adult tissues for clinical trials since
proprietary MSCs have a limited number of passage times, age
easily, and come at a high financial cost. In addition, their
heterogenicity makes traditional cell culture inefficient in terms of
time and cost.

MSCs derived from pluripotent stem cells overcome the
problems of mass production of MSC-EVs and quality
heterogeneity
The original source MSCs requires good, consistent, and
controllable quality, with a strong ability to proliferate and to
secrete large numbers of EVs. To achieve this, we established an
induction system of MSCs using pluripotent stem cells to
overcome the problems of mass production of MSC-EVs and
variation in quality. We successfully induced MSCs from pluripo-
tent stem cells (PSC) [166–170]. Compared with MSCs extracted
from traditional sources, our MSCs were derived from the same
parent PSCs, consequently overcoming the problem of EV
heterogeneity when MSCs from a variety of sources are used.
Recently, GMP-grade MSCs derived from human PSCs (hPSC) have
been used in clinical trials for refractory graft-versus-host disease
(GVHD) [171]. The therapeutic potential of MSC-EVs has been
shown in preclinical studies of both acute GVHD (aGVHD)
[172–174] and chronic GVHD (cGVHD) [175] models. The
preliminary benefits of hPMSC-EVs have been reported in a
patient with cutaneous cGVHD. The stiffening and dryness of skin
were improved significantly after intravenous injection of hPMSC-
EVs [176]. Based on the preliminary efficacy and safety profiles, a
phase 1 study has been launched to evaluate the safety and
efficacy of BM-MSC-derived EVs in patients with acute or chronic
rejection following abdominal solid organ transplantation
(NCT05215288, Table 1). It is plausible that hPSC-MSC-derived
EVs will promote the clinical translation of MSC-EVs owing to theTa
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quality control and largescale productive advantages of hPSC-
MSCs compared with traditional MSC. hPSC-MSCs have more
passages (more than 30 generations), strong amplification ability,
can withstand senescence [166, 167, 170], and have strong
secretion ability (including cytokines and exosomes) [168]
compared with the traditional MSCs. Nonetheless, the passage
times of traditional MSCs are generally less than 10 generations,
and the proliferation and differentiation abilities of MSCs are
reduced after numerous passages in culture, and affects the
secretion of extracellular vesicles. Therefore, our hPSC-MSCs have
great advantages for large-scale production and cost control of
EVs. Mass production of MSCs and their EVs is now possible using
bioreactors and microcarriers to maximize MSC growth and EV
release per unit surface area. We evaluated mesenchymal stem
cells from different sources and found that PSC-MSCs had the
highest EV production. To optimize EV production, we acquired
hPSC-MSCs in a scalable cell factory-based culture and were able
to overcome the major obstacles during transformation of MSC-
EVs into ATPs.

CONCLUSIONS AND FUTURE PERSPECTIVE
Extracellular vesicles derived from mesenchymal stem cells play a
critical role in the development of immune regulation and
regeneration. These EVs mimic the effects of stem cells and
perform powerful functions by modulating immune pathways,
promoting effector cell migration and proliferation, and reducing
apoptosis. To date, 15 clinical trials have been registered in
ClinicalTrial.gov, but none has been completed. Although EVs
compared with MSC cell therapy incite a lower immune response
and have a higher safety profile, there remain challenges to their
clinical application [56]. In addition, the successful application of
EVs depends on low cost for mass production, as well as improved
separation efficiency and more accurate characterization methods.
This review has discussed the therapeutic effects of EVs based on
the function of MSCs or the introduction of specific molecules
(such as miRNAs and lncRNAs). As work continues, researchers are
actively developing engineered EVs that are more effective and
capable of targeting, through loading of bioactive molecules and
surface modification. Of interest, Feng et al. developed
ε-polylysine-polyethylene-distearyl phosphatidylethanolamine
(PPD) to modify MSC-EVs and invert their surface charge. As a
result, the steric and electrostatic hindrance of cartilage matrix
were alleviated, and the efficiency of MSC-EVs in the treatment of
OA was improved [177]. These treatment strategies have achieved
promising results at the initial stage and provide exciting new
avenues for regenerative medicine therapy.
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