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Interactions between EGFR and EphA2 promote tumorigenesis
through the action of Ephexin1
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The cell signaling factors EGFR, EphA2, and Ephexin1 are associated with lung and colorectal cancer and play an important role in
tumorigenesis. Although the respective functional roles of EGFR and EphA2 are well known, interactions between these proteins
and a functional role for the complex is not understood. Here, we showed that Ephexin1, EphA2, and EGFR are each expressed at
higher levels in lung and colorectal cancer patient tissues, and binding of EGFR to EphA2 was associated with both increased tumor
grade and metastatic cases in both cancer types. Treatment with Epidermal Growth Factor (EGF) induced binding of the RR domain
of EGFR to the kinase domain of EphA2, and this binding was promoted by Ephexin1. Additionally, the AKT-mediated
phosphorylation of EphA2 (at Ser897) promoted interactions with EGFR, pointing to the importance of this pathway. Two mutations
in EGFR, L858R and T790M, that are frequently observed in lung cancer patients, promoted binding to EphA2, and this binding was
dependent on Ephexin1. Our results indicate that the formation of a complex between EGFR, EphA2, and Ephexin1 plays an
important role in lung and colorectal cancers, and that inhibition of this complex may be an effective target for cancer therapy.
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INTRODUCTION
Dysregulation of receptor tyrosine kinases (RTKs) is common in
certain cancers. EGFR (Epidermal Growth Factor Receptor) and
EphA receptor are the most well-characterized of the RTKs in
cancer cells [1–5]. Abnormal and uncontrolled activation of the
EGFR pathway correlates with lung and colorectal cancer
progression, and EphA receptor overexpression promotes cancer
malignancy [3–11]. In addition, EphA2 expression is associated
with EGFR inhibitor-resistant lung cancer cells, and combined
treatment of EGFR and EphA2 targeted therapy is more effective
than monotherapy in colorectal cancer and lung cancer [12, 13].
Therefore, understanding the mechanism by which these two
proteins lead to tumorigenesis is an important goal of cancer
therapy.
The best characterized EGFR pathway is the Ras/Raf/MEK/ERK

signaling cascade. Activation of this pathway regulates the
expression of genes involved in tumor progression through the
sequential phosphorylation of RAF/MEK/ERK [8–11]. With no
bound ligand, EGFR exists as a monomer, but when a ligand
such as EGF (epidermal growth factor) binds to the extracellular
domain, it forms a dimer and is activated. Activated EGFR may
form a homodimer or a heterodimer with another tyrosine kinase
receptor [14–18].
EphA2 receptor signaling progresses through one of two

pathways, the Ephrin ligand-dependent or independent pathway,
depending on the cellular environment. Increased expression of
EphA2 is correlated with cancer progression, metastatic spread,
and patient survival [1, 2], and overexpression of EphA2 has been

shown to specifically increase migration, invasion, metastasis, and
angiogenesis [19–24]. Activation of the EGFR/Ras pathway is one
of the ways in which EphA2 levels are increased [25–28].
EphA receptors are members of the Rho family of guanosine

triphosphatases (GTPase) and interact directly with Ephexin1 (Eph-
interacting exchange protein), a member of a subfamily of the Dbl
family of guanine nucleotide exchange factors (GEFs) [29, 30].
Ephexin1 also acts as a GEF for RhoA, Rac1, and cdc42 [29], and is
highly expressed in the nervous system but rarely expressed in
organs other than the liver and kidneys [29, 31]. Ephexin1 has
been shown to associate with EphA and is involved in axon
outgrowth, synapse remodeling, growth-cone collapse, and motor
axon guidance [29, 30, 32–35]. Recently, we found that activating
EGFR through EGF treatment or overexpression of mutant K-Ras
leads to direct interactions with Ephexin1 [36].
Here we show that depletion of Ephexin1 lowers the

tumorigenic effects that are observed when either EGFR or EphA2
is overexpressed. Furthermore, the binding of EGFR and EphA2 to
each other correlates to Ephexin1 levels, and interactions between
EGFR and EphA2 are associated with an increasingly poor tumor
tissue grade.

METHODS
Cell culture and chemicals
Normal cell lines (IMR90, MRC5, WI38, CCD18co, and CCD841coN) were
cultured in MEM medium (Invitrogen, Carlsbad, CA, USA). Lung and
colorectal cancer cells (A549, H23, H358, H1299, H1666, HCC-827, H1650,
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LoVo, HCT15, HCT116) were grown in RPMI-1640 medium (Invitrogen). SK-
MES-1, Calu-3, Caco-2, and LS174T cells were cultured in MEM medium.
HeLa, HEK293T, SW480, SW620, DLD-1, and HT-29 cells were maintained in
Dulbecco’s Modified Eagle Medium (Invitrogen). All cell lines were
purchased from the American Type Culture Collection (ATCC, Manassas,
VA, USA). All media were supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin antibiotic solution. Cells were maintained
in 5% CO2 in a humidified atmosphere at 37 °C. Plasmids were transiently
transfected into mammalian cells using TurboFect (Thermo Scientific,
Waltham, MA, USA). When cells were treated with EGF (Sigma-Aldrich, St.
Louis, MO, USA), they were first starved for serum overnight (14–16 h) and
then EGF (100 ng/ml) was treated for the indicated time.

Plasmid constructs and cloning
Human EphA1, 2, and EGFR cDNA was amplified from HEK293T cells by RT-
PCR using the following primers and cloned into the pCI-neo-Flag or pCI-
neo-V5 mammalian expression vectors (Promega, Madison, WI, USA). To
prepare serial deletion constructs of EphA2 receptor (ΔSAM/PDZ, ΔKin/
SAM/PDZ, and Extra / TM) or EGFR (ΔRR and ΔKin. RR) the PCR products
were cloned into the XhoI and NotI sites of pCI-neo-V5 vector. The pCI-neo-
Flag-EphA2 mutant (S897D) construct was generated by site-directed
mutagenesis (Quikchange II Site-Directed Mutagenesis® kit, Agilent
Technologies, Santa Clara, CA, USA). All constructs were verified by DNA
sequencing. For cell-free translation, the Flag-EphA2_kinase domain and
HA-EGFR_RR domain constructs were cloned into pALiCE01 (ALiCE®,
Merck). A comprehensive list of all PCR primers used in this study can
be found in Supplementary Table S1.

Immunoblot and immunoprecipitation analysis
Cell extracts were prepared in IP150 lysis buffer (20mM Tris-HCl pH 7.6,
150mM NaCl, 0.5% Nonidet P-40, 10% Glycerol) containing protease
inhibitors (1mM Na2VO4, 10mM NaF, 2mM PMSF, 5 μg/ml Leupeptin,
10 μg/ml Aprotinin, 1 μg/ml Pepstatin A) (Roche, Switzerland). Equal amounts
of protein were separated by SDS-PAGE and transferred onto PVDF
membranes (PALL Life Sciences, USA). Membranes were subsequently
incubated with the appropriate primary antibodies overnight at 4 °C,
followed by incubation with peroxidase-conjugated secondary antibodies
for 1 h at room temperature. Protein bands were visualized using the ECL
chemiluminescent detection system (iNtRON Biotechnology, Korea). For
immunoprecipitation of protein complexes, cell extracts were precleared with
protein G-Sepharose beads (GE Healthcare) and incubated with the
appropriate antibodies. Immune complexes were then analyzed by
immunoblotting, which was performed using the following antibodies:
anti-Ephexin1 and anti-β-actin from Abcam (Cambridge, MA, USA); anti-ERK1/
2, antiphospho-ERK1/2 (T202/Y204), anti-Ki67, anti-EGFR, and antiphospho-
EphA2 (S897) from Cell Signaling (Danvers, MA, USA); anti-HA, antimyc, anti-
V5, and anti-EphA2 from Santa Cruz (Dallas, TX, USA); anti-FLAG (M2) from
Sigma-Aldrich; and anti-Ras from BD Biosciences (San Jose, CA, USA).

Soft agar colony formation assay
Soft agar assays were performed in 6-well plates containing a base layer of
2 ml (at a final concentration of 1X) medium and 0.6% low melting point
agarose (Duchefa Biochemie, Netherland). Plates were chilled at 4 °C until
the media solidified, and then a growth layer of 2 ml growth agar
containing 1 × 104 cells suspended in 1X medium and 0.3% low-melting-
point agarose was added. Plates were chilled again at 4 °C until the growth
layer congealed. An additional 1 ml of 1X medium without agarose was
added on top of the growth layer. Cells were incubated at 37 °C in 5% CO2

for approximately 14–21 days, and colonies were stained with 0.005%
crystal violet (Sigma-Aldrich) and counted. Images were analyzed using an
Olympus microscope (Olympus, Tokyo, Japan) and Image-Pro Plus
4.5 software (Media Cybernetics Inc., Rockville, MD, USA). Assays were
performed in triplicate.

Cell migration assay
In vitro cell migration assays were performed in a 24-well transwell plate
with 8 μm polyethylene terephthalate membrane filters (BD Biosciences)
separating the lower and upper culture chambers. Cells were grown until
they reached sub-confluence (75–80%) and were serum starved for 24 h.
After detachment with trypsin, cells were washed with PBS, re-suspended
in serum-free medium, and then a cell suspension (2 × 104 cells) was
added to the upper chamber. Complete medium was added to the bottom
chamber. The cells that had not migrated were removed from the upper

surface of the filters using cotton swabs, and the cells that had migrated to
the lower surface of the filters were fixed with 4% formaldehyde and
stained with 0.2% crystal violet. Images of 3 random 10X magnified fields
were captured from each membrane, and the number of migratory cells
was counted. The mean of triplicate assays for each experimental
condition was used.

Tumor formation in nude mice
The mice used in this study were 6-week-old male BALB/c nude mice
purchased from NARA Biotech (Seoul, Korea). They were housed in our
pathogen-free facility and handled in accordance with standard-use
protocols and animal welfare regulations. HEK293T cells were harvested
and resuspended in PBS. There after 1 × 106 HEK293T cells were injected
subcutaneously into the left and right flanks of the mice. Once the tumors
became visible, the tumor size was measured every 3 to 4 days using
micrometer calipers. Tumor volumes were calculated using the following
formula: volume = 0.5 a × b2, where a and b represent the larger and
smaller tumor diameters, respectively. After approximately 3 weeks of
injections, mice were humanely sacrificed, and the primary tumors were
excised and immediately weighed. All animal studies were reviewed and
approved by the Institutional Animal Welfare and Use Committee.

Immunostaining
Immunohistochemistry was performed on tissue microarrays of lung and
colorectal cancer samples. Tissue microarrays from cancer samples of
different grades and adjacent normal tissues were purchased from Super
Bio Chips (CCA4 and CDA3) (Seoul, South Korea). For immunohistochem-
istry, heat-induced antigen retrieval was performed using 1X antigen
retrieval buffer (pH 9.0) (Abcam) at 95 °C for 15min. After quenching of
endogenous peroxidase and blocking in 3% H2O2 solution, tissues were
incubated with primary anti-Ephexin1 (PA5-52521, Thermo Scientific), anti-
EphA2 (sc-924, Santa Cruz) and anti-EGFR (#4267, Cell Signaling) antibodies
overnight at 4 °C, followed by incubation with HRP-conjugated secondary
antibody for 1 h at room temperature and incubation for 2 min in DAB (3,
3’-Diaminobenzidine). The slides were then counterstained by introducing
Harris’s hematoxylin. The intensity of staining was scored from 0 to 4, and
extent of staining was scored from 0% to 100%. The final quantitation
score for each stain was obtained by multiplying the 2 scores. The slides
were analyzed by 2 independent pathologists.

Proximity ligation assay (PLA)
H1299, HCT116, HEK293T, and HeLa cells were seeded in a 24-well plate
and grown for 3 days. The cells were washed with PBS, fixed in 4%
paraformaldehyde for 10min, permeabilized in 0.25% Triton X-100 for
5 min, washed with PBS, and blocked with Duolink™ blocking solution.
Tissues were incubated with primary anti-EphA2 [#378-440 (host; mouse),
ThermoFisher Scientific] and anti-EGFR [#4267 (host; rabbit), Cell Signaling]
antibodies overnight at 4 °C. Slides were incubated in anti-rabbit MINUS
and antimouse PLUS PLA probes (Duolink, Sigma-Aldrich) for 1 hr at 37 °C.
After a 30min incubation with ligation buffer and ligase (Duolink™, Sigma-
Aldrich) at 37 °C, amplification buffer and polymerase (Duolink™, Sigma-
Aldrich) were added, and incubation continued for 120min at 37 °C. The
Proximity Ligation Assay was performed on tissue microarrays of lung
cancer of different grades along with adjacent normal tissues that were
purchased from Super Bio Chips (CCA4) (Seoul, South Korea). For the assay,
heat-induced antigen retrieval was performed using 1X antigen retrieval
buffer (pH 9.0) (Abcam) at 95 °C for 15min and blocked with Duolink™
blocking solution. Tissues were incubated with primary anti-EphA2 and
anti-EGFR antibodies overnight at 4 °C. Slides were incubated in anti-rabbit
MINUS and anti-mouse PLUS PLA probes (Duolink™, Sigma-Aldrich) for 1 hr
at 37 °C. After a 30min incubation with ligation buffer and ligase
(Duolink™, Sigma-Aldrich) at 37 °C, amplification buffer and polymerase
(Duolink™, Sigma-Aldrich) were added, and incubation continued for
120minutes at 37 °C. Stained samples were analyzed with a fluorescence
microscope (Nikon, Japan).

Bioinformatics Analysis using the TCGA and GTEx databases
The Cancer Genome Atlas (TCGA; https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga) and Genotype-Tissue
Expression program (GTEx; https://commonfund.nih.gov/GTex) were
downloaded using the UCSC Xena browser Data Hub (https://
xenabrowser.net/hub/). RNA sequencing data measured by Illumina HiSeq
(RSEM normalized) was downloaded whenever available. The TCGA mRNA
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expression of discovery set was transformed into log2 scale and correlation
analysis was visualized using the UCSC Xena browser software.

Statistics
Data were presented as mean ± SEM of three independent experiments
and significant differences between groups were assessed by two-tailed
paired Student’s t-test or Two-way ANOVA using GraphPad Prism
(GraphPad Software Inc., CA, USA). Results with a value of *P < 0.05, **P
< 0.01, and ***P < 0.001 were considered statistically significant.

RESULTS
The overexpression of Ephexin1, EGFR and EphA2 receptors is
correlated to lung and colorectal cancers
Recently, we reported that Ephexin1 is abnormally overexpressed
in lung and colorectal cancers and that lack of Ephexin1 effectively
suppresses lung and colorectal cancers [36]. Based on previous
reports, we hypothesized that there may be an association
between EGFR/Ras signaling and EphA/Ephexin1 signaling. To
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demonstrate this, we analyzed RNA sequence data from The
Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) database and correlated Ephexin1 expression levels with
the following proteins: Ki67, EGFR, EphA1, EphA2, EphA3, EphA4,
and EphA5. Ki67 is a cancer growth marker and was used as an
indicator of accurate classification patterns. When colorectal tissue
samples from the databases were analyzed, there was a positive

correlation between Ephexin1 and Ki67, EGFR, EphA1, and EphA2,
and a negative correlation with EphA3, EphA4, and EphA5
(Fig. 1a). When a lung tissue sample was analyzed, Ephexin1
positively correlated with Ki67, EGFR, EphA1, EphA2, and EphA4,
and negatively correlated with EphA3 and EphA5 (Fig. 1b). Since
EGFR, EphA1, and EphA2 positively correlated with Ephexin1 in
both colon and lung tissues, we focused on these three proteins

EGF 0min EGF 5min EGF 15min EGF 30min

N
C

I-H
12

99

0

10

20

30

EG
FR

/E
ph

A2
 P

LA
 

nu
m

be
r /

 c
el

ls

EGF : 0min 5min 15min 30min

***

***
*

H
eL

a

NCI-H1299

0

5

10

15

EG
FR

/E
ph

A2
 P

LA
 

nu
m

be
r /

 c
el

ls
ns

***
***

HeLa

a

b

Flag-EphA2 - - +     +     +     +    

V5-EGFR - +    +     +     +     +    

0     0     0     5    15   30min

V5-EGFR

V5-EGFR

α-tubulin

Flag-EphA2

Flag-EphA2

EGF(100ng/ml)

c

IP: Flag

Input

d

Full length 

∆SAM/PDZ

∆Kin/SAM/PDZ

Extra/TM

EGFR 
binding 

++++

++

-

-

Extracellular Kinase
SAM

1                                    517          614        872          969

EphA2
TM

JMS

f

Full length 

∆RR

∆Kin.RR

EphA2 
binding

++++

-

-

RR

1                                      620     685               953      1186

EGFR Extracellular Kinase RR
JTTM

e

IP: Flag

Flag-EphA2 : -

EGFR180
250

130

Fu
ll

∆S
AM

/P
D

Z
∆K

in
/S

AM
/P

D
Z

Ex
tra

/T
M

EGFR180
250

In
pu

t

Flag-EphA2

β-actin

100

180
130

75

63

45

100

180
130

75

63

Flag-EphA2

Flag-EGFR - Fu
ll

∆R
R

∆K
in

.R
R

EphA2130
180

In
pu

t

Flag-EGFR

β-actin

100

45

130

100

180
250

75

Flag-EGFR

130

100

180
250

75

EphA2130

IP: Flag

g

Flag-EphA2 Kinase

HA-EGFR RR - - +

- +     -

IP: Flag

HA-EGFR_RR

Flag-EphA2_Kinase35

- +     - +

- - +     +

35

h
Input

EGF : 0min 5min 15min 30min

PDZ

HEK-293T

Fig. 2 Ephexin1 mediates interactions between the kinase domain of EphA2 and the RR domain of EGFR. a Proximity ligation assay (PLA)
was used to detect a complex between EphA2 and EGFR in H1299 and HeLa cells that were starved for serum for 16 h and then treated with
EGF (100 ng/ml). Localization of EphA2 and EGFR together is shown in red. The cells were counterstained with DAPI (blue) to visualize the
nuclei. Scale bar = 20 μm b Quantification of the PLA data shown in (a). c Immunoprecipitation (IP) with an anti-Flag antibody of protein
extracts from HEK-293T cells co-transfected with Flag-tagged EphA2 and V5-tagged EGFR, that were treated with EGF (100 ng/ml) after a 16 h
serum starvation. Western blot analysis was performed with indicated antibodies. d Schematic representation of wild type EphA2 and a series
of deletion mutants. A summary of the degree to which each interacts with EGFR is shown to the right. e Lysates from HEK293T cells
transfected with Flag-tagged wild type EphA2 or deletion mutants were immunoprecipitated with anti-Flag antibody and subjected to
western blot analysis with the indicated antibodies. f Schematic representation of wild type EGFR and a series of deletion mutants. A summary
of the degree to which each interacts with EphA2 is shown to the right. g Lysates from HEK293T cells transfected with Flag-tagged wild type
EGFR or deletion mutants was immunoprecipitated with anti-Flag antibody and subjected to western blot analysis with indicated antibodies.
h Pulldown assay to measure the binding of Flag-tagged EphA2_kinase domain with HA-tagged EGFR_RR domain. Immunoprecipitation was
carried out using the anti-Flag antibody.
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and analyzed the survival rates of lung cancer and colorectal
cancer patients relative to the expression levels of all four proteins.
In an analysis of survival rates among lung cancer patients, the
higher the expression of Ephexin1, EGFR, EphA1, and EphA2, the
lower the rate (Fig. 1c). In contrast, the lower the expression of
EphA3, EphA4, and EphA5, the worse the survival rate

(Supplementary Fig. S1a). Similarly, for colorectal cancer patients,
higher expression of Ephexin1 and EphA2 correlated to worse
survival rates, and lower expression of EphA3 correlated to worse
survival rates (Supplementary Fig. S1b, c). Therefore, we predicted
that EphA1 or EphA2 were the most likely of the EphA receptor
family members to be relevant to Ephexin1 and EGFR signaling.
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To confirm this, we tested whether the overexpression of EphA1
and EphA2 led to predictable changes in the EGFR/Ras pathway.
When Flag-tagged versions of each were individually over-
expressed in HEK293T cells, ERK phosphorylation was higher in
the presence of Flag-tagged EphA2 but not in the presence of
Flag-tagged EphA1 (Fig. 1d). Consistent with these results, the
expression of EphA2, as well as Ephexin1 and EGFR, was aberrantly
upregulated in lung cancer cell lines compared to normal human
primary lung fibroblasts (Fig. 1e) and was also much higher in
colorectal cancer cell lines than normal human colon cells
(Supplementary Fig. S1d). Next, we analyzed changes in protein
expression in normal and cancer tissues using IHC. Again,
Ephexin1, EGFR, and EphA2 were at significantly higher levels in
lung and colon cancer tissues than in normal lung and colon
tissues (Fig. 1f-g and Supplementary S1e-f). Using IHC data in lung
cancer patient tissues, we looked for correlations between protein
levels and observed similar results to the RNA sequencing data
analysis. There was a statistically significant positive correlation
between Ephexin1-EphA2 (r= 0.5206, p= 0.0001), Ephexin1-EGFR
(r= 0.3716, p= 0.0075) and EphA2-EGFR (r= 0.2951, p= 0.0465)
(Fig. 1h–j). Together, these results suggest a link between lung and
colorectal cancers and the expression of Ephexin1, EphA2 and
EGFR, and the possibility that these proteins interact with each
other, either directly or indirectly.

The kinase domain of EphA2 and the RR domain of EGFR are
important for protein interactions
It has been reported that EphA2 binds to EGFR in human cancer
cell lines [25]. However, a role for direct interactions between
these two receptors was not well understood. We looked for
conditions in which the interaction between EGFR and EphA2 was
increased in cancer cells and analyzed the binding site between
the two receptors as a way to identify a functional role. First, we
treated cells with growth factor, because growth factors are
known to lead to re-localization and conformational changes of
several receptors in the cell membrane [37, 38]. When H1299 and
HeLa cells were treated with EGF, the number of foci, as analyzed
through a PLA, indicating interactions between EGFR and EphA2,
was increased (Fig. 2a, b and Supplementary Fig. S2a, b). Similarly,
when HEK293T cells overexpressing Flag-EphA2 and V5-EGFR
were treated with EGF and then immunoprecipitated using an
anti-Flag antibody, interactions between EGFR and EphA2 were
measurably increased (Fig. 2c).
Identifying the specific regions within the two proteins that

interact is very helpful in predicting their role in the cell [39, 40].
Therefore, we analyzed the potential interacting regions in EphA2
and EGFR using Flag-tagged constructs of four different mutants
of each. Full-length and deletion mutants of Flag-EphA2 were
transfected into HEK293T cells and then immunoprecipitated from
cell lysates using an anti-Flag antibody. When the SAM/PDZ
domain was deleted, the binding of EphA2 to EGFR was
significantly reduced compared to the full length, and when the

kinase domain of EphA2 was deleted, EGFR did not bind (Fig. 2d,
e). Likewise, when three different deletion mutations of Flag-
tagged EGFR were transfected into HEK293T cells and immuno-
precipitated from cell lysates with anti-Flag antibody, EphA2
interactions were abolished when the RR domain of EGFR was
deleted (Fig. 2f, g). To demonstrate direct binding of the RR
domain of EGFR to the EphA2 kinase domain, we synthesized a
Flag-EphA2 kinase domain and a RR domain of HA-EGFR using a
cell-free expression system. After combining the two, immuno-
precipitation was performed using an anti-Flag antibody, and
interactions between these domains was confirmed (Fig. 2h).

Low levels of Ephexin1 prevents interactions between EphA2
and EGFR
Ephexin1 has been shown to associate with the kinase domain of
EphA4 [29]. Since the kinase domain of EphA2 is very similar to
that of EphA4 (76.5% identity and 95.0% positive by FASTA:
https://www.ebi.ac.uk/Tools/sss/), we predicted that Ephexin1
would also bind to EphA2 and influence associations with EGFR.
To test this hypothesis, we transfected HEK293T cells with Flag-
EphA2 and V5-EGFR, and immunoprecipitated with anti-Flag
antibodies. Flag-EphA2 simultaneously bound to both EGFR and
Ephexin1 (Fig. 3a). Correspondingly, EGFR, EphA2 and Ephexin1
bound to each other at endogenous levels in H1299 and HCT116
cells (Supplementary Fig. S3a, b). Immunofluorescence of H1299
and HCT116 cells confirmed that Ephexin1, EphA2, and EGFR
localize to the same site in the cell (Supplementary Fig. S3c). These
results demonstrated interactions between EphA2 and EGFR and
between EphA2 and Ephexin1. We next investigated whether
Ephexin1 affects the binding of EphA2 to EGFR. To explore this,
HEK293T cells were transiently transfected with V5-tagged EGFR
and V5-tagged EphA2 along with or without Flag-tagged
Ephexin1, and then Ephexin1 was immunoprecipitated using an
anti-Flag antibody. Indeed, we observed that Ephexin1 increased
the binding of EphA2 to EGFR (Fig. 3b). Correspondingly,
treatment with EGF led to an increase in the interactions between
EGFR and EphA2, as measured by immunoprecipitation with Flag-
Ephexin1 (Fig. 3c). These results suggest that Ephexin1, EphA2,
and EGFR form a single complex.
Based on these results, we tested the effect of Ephexin1

deficiency on the interaction of EGFR with EphA2. In a previous
report, we performed target off effect verification by testing two
Ephexin1 shRNA and sgRNA sequences in various cells [36]. The
change of EGFR and EphA2 interaction according to Ephexin1
deficiency was tested in H1299 cells using PLA assay. Ephexin1
deficiency in H1299 cells decreased the number of PLA-foci
compared to control cells (Fig. 3d, e). Similarly, in HEK293T and
HCT116 cells, Ephexin1 deficiency significantly reduced the
number of PLA-foci of EGFR-EphA2 (Supplementary Fig. S3d, e).
Correspondingly, when EGFR or EphA2 was immunoprecipitated
using an anti-EGFR and anti-EphA2 antibodies in Ephexin1-
deficient H1299 and HCT116 cells, the interaction between EphA2

Fig. 3 Ephexin1 is required for the binding between EGFR and EphA2. a Immunoprecipitation with anti-Flag antibody of protein extracts
from HEK293T cells co-transfected with Flag-tagged EphA2 and V5-tagged EGFR. Western blot analysis was carried out with the indicated
antibodies. b Immunoprecipitation with anti-Flag antibody of extracts from HEK293T cells co-transfected with Flag-tagged Ephexin1, V5-
tagged EGFR, and/or V5-tagged EphA2 plasmids. Western blot analysis was carried out with the indicated antibodies. c Immunoprecipitation
with anti-Flag antibody of extracts from HEK293T cells transfected with Flag-tagged Ephexin1 and treated with EGF (100 ng/ml) after 16 h of
serum starvation. Western blot analysis was carried out with the indicated antibodies. d Proximity ligation assay (PLA) of EphA2 and EGFR in
either shControl or shEphexin1-H1299 cells showing the location of both proteins (red). The cells were counterstained with DAPI (blue) to
visualize the nuclei. Scale bar = 10 um. e Quantification of the Proximity ligation assay (PLA) shown in (d). Data are shown as mean ± SD. ***P
< 0.001 as determined through a two-tailed Student’s t test. f, g Lysates from shControl or shEphexin1 H1299 cells were immunoprecipitated
with anti-EGFR antibody or anti-EphA2 antibody. western blot analysis with the indicated antibodies. H Immunoprecipitation analysis with
anti-Flag antibody and analysis with the indicated antibodies of HEK293T cells co-transfected with Flag-tagged EphA2, V5-tagged EGFR, and/
or V5-tagged Ephexin1 plasmids. I Pulldown assays using an anti-Flag antibody of the Flag-tagged EphA2_Kinase domain with GST or GST-
Ephexin1. j Pulldown assays using an anti-Flag antibody of the Flag-tagged-EphA2_kinase domain, HA-tagged-EGFR_RR domain, and GST-
Ephexin1 as indicated.
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and EGFR was significantly reduced compared to the control
group (Fig. 3f-g and Supplementary Fig. S3f). Conversely, over-
expression of V5-Ephexin1 increased the interaction between
EphA2 and EGFR (Fig. 3h). The pull-down analysis showed that the
Flag-EphA2 kinase domain and GST-Ephexin1 bind to each other
(Fig. 3i). The binding of the Flag-EphA2 kinase domain with the
HA-tagged RR domain of EGFR was stronger when added together
with GST-Ephexin1 (Fig. 3j). Taken together, these results suggest
that Ephexin1 may play an important role in the interaction
between EphA2 and EGFR.

AKT promotes interactions between EphA2 and both EGFR
and Ephexin1
AKT is a representative downstream effector of the EGFR/Ras
signaling pathway and is known to increase the oncogenic
function of EphA2 [41]. Therefore, we predicted that the binding
of EGFR to EphA2 would be regulated by RAS/AKT signaling. To
test this, we transfected Flag-EphA2, V5-EGFR and HA-K-Ras (WT,
G12V, or Q61L) into HEK293T cells, and then immunoprecipitated
with an anti-Flag antibody. Binding between EphA2 and EGFR was
increased when either of the K-Ras mutants was overexpressed
(Fig. 4a). Likewise, when Myc-AKT myr (constitutively active) was

overexpressed, binding between EphA2 and EGFR was increased
(Fig. 4b). The next question was whether activated Ras signaling
also influenced the binding of these proteins. Indeed, when Flag-
Ephexin1 and HA-KRasG12V (constitutively active Ras) were
expressed in HEK293T cells and immunoprecipitated with an
anti-Flag antibody, increased binding of Ephexin1, EphA2 and
EGFR was observed, confirming a role for Ras (Fig. 4c).

AKT-induced phosphorylation of the Ser897 site of EphA2
promotes interactions between EGFR and Ephexin1
Activated AKT mediates phosphorylation at the Ser897 site of
EphA2, which has been shown to then be associated with cancer
progression [41]. Since deletion of the SAM/PDZ domain of
EphA2 reduced binding to EGFR, and the SAM domain of EphA2
has Ser897 (Fig. 2d, e), we predicted that this phosphorylation
event would promote binding of EGFR. To establish this, we
transfected HEK293T cells with either WT EphA2 (Flag-EphA2 WT)
or a phosphomimetic mutant (Flag-EphA2 S897D), and immu-
noprecipitated with an anti-Flag antibody. Indeed, more sig-
nificant binding to EGFR was observed for the phosphomimetic
mutant (S897D) than for WT (Fig. 4d). To determine whether
binding of Ephexin1 to EphA2 followed the same pattern, we
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Fig. 4 AKT mediates phosphorylation of EphA2 at Ser897 which then promotes binding to EGFR in the presence of Ephexin1. For each
experiment, immunoprecipitation was carried out with protein extracts from the indicated HEK293T cell lines using anti-Flag antibody and
then the precipitate was analyzed by western blot analysis using antibodies indicated in the panels. a Extracts from cells co-transfected with
Flag-EphA2, V5-EGFR and HA-K-Ras (WT, G12V, and Q61L) plasmids. b Extracts from cells transfected with Flag-tagged EphA2, V5-tagged EGFR
along with or without Myc-tagged myr-AKT (constitutively active). c Extracts from cells co-transfected with Flag-tagged Ephexin1 with or
without HA-tagged K-RasG12V plasmids. d Extracts from cells transfected with Flag-tagged EphA2 WT or S897D plasmids. e Extracts from cells
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transfected HEK293T cells with Flag-Ephexin1 and V5-EphA2,
treated with EGF, and immunoprecipitated with an anti-Flag
antibody. EGF treatment led to an increase in phosphorylation of
the Ser897 site of EphA2 and also an increase in the binding of
Flag-Ephexin1 to EphA2, particularly to phosphorylated EphA2
(Ser897) (Fig. 4e). To further explore the role of Ephexin1 in the
AKT-mediated binding of EphA2 to EGFR we overexpressing
Flag-EphA2 (WT or S897D mutant) and V5-EGFR in Ephexin1-
deficient HCT116 cells and control cells and immunoprecipitated
with an anti-Flag antibody. There was no increase in binding
between the EphA2 S897D mutant and EGFR in the absence of
Ephexin1 (Fig. 4f). Taken together, these results indicate that
activation of AKT by EGFR/Ras induces the phosphorylation of
EphA2 at Ser897 and promotes interactions between EGFR and
EphA2. The increased binding of EGFR to EphA2 in the presence
of Ephexin1 suggests that Ephexin1 acts as an intermediate
mediator of this interaction.

Ephexin1 deficiency reduces tumor growth and migration
ability induced by EphA2 and EGFR
Overexpression of EphA2 and EGFR is known to increase
tumorigenesis [26, 42–51]. In this study, we show that Ephexin1
may play an important role in the binding of EphA2 to EGFR.
(Figs. 3, 4) Therefore, we predicted that a deficiency in Ephexin1
would also decrease the oncogenic effects of EphA2 and EGFR.
Because HEK293T cells are frequently used in tumorigenesis and
xenograft models of multiple gene transfection [52–56], we
tested anchorage-independent growth and migration of cells
overexpressing V5-EphA2 or V5-EGFR in either Ephexin1-
deficient HEK293T cells or control cells. In control cells,
anchorage-independent growth and migration were signifi-
cantly increased when either V5-EphA2 or V5-EGFR were
overexpressed. However, in Ephexin1-deficient cells, there was
no change in either cell behavior. (Fig. 5a-e) To confirm that the
tumor suppression observed in vitro could be recapitulated
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in vivo, equal numbers of cells were injected subcutaneously
into the right and left flanks of BALB/c nude mice and tumor
volumes were measured every 3-4 days. When V5-EphA2 and
V5-EGFR were overexpressed, tumors collected at 20 days post-
injection were significantly larger than tumors that developed

with control cells. However, in an Ephexin1-deficient cell
background, overexpression of the two proteins did not lead
to an increase in tumor size (Fig. 5f, g). These results suggest
that the levels of Ephexin1 regulate the oncogenic functions of
EphA2 and EGFR.
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In lung and colorectal cancer, a complex of EphA2 and EGFR is
clinically relevant
To investigate the importance of Ephexin1, EGFR and EphA2 in
lung and colorectal cancer patient tissues, we analyzed the TMA
database for lung and colorectal tissues composed of carcinomas
and metastatic tumors of different grades to determine the
expression levels of each of the three proteins. EGFR and EphA2
were expressed at significantly higher levels in cancer tissues than
in normal tissues, and levels increased to significant degrees with
advancing tumor cell grade (Supplementary Fig. S4a-d). Point
mutations in EGFR are frequently found in patients with lung
cancer of this type, and those known to activate EGFR include
L858R and T790M [57]. To confirm that EphA2 binds to mutated
forms of EGFR and is relevant in these lung cancers, HEK293T cells
transfected with Flag-EphA2 and EGFR (WT, L858R, or L858R/
T790M) were immunoprecipitated with anti-EGFR antibody. The
results showed that, not only did EphA2 bind to the EGFR mutants
(L858R and L858R/T790M), but it also bound more tightly than to
wild-type EGFR (Fig. 6a). Consistent with our previous results,
when binding was assessed in an Ephexin1-deficient background
by transfecting Ephexin1-deficient HEK293T cells and control cells
with Flag-EphA2 and V5-EGFR (WT or L858R/T790M) and
immunoprecipitating with anti-Flag antibody, no increase in
binding was observed. (Fig. 6b) Likewise, in H1299 lung cancer
cells, there was no increase in binding of EphA2 to the EGFR
mutant when Ephexin1 was absent (Fig. 6c). We then used PLA
analysis to look for in vivo interactions between EGFR and EphA2
in both normal and cancerous cells using lung and colorectal
cancer patient tissues. There was a significantly higher number of
foci representing the protein complex in cancer tissues than in
normal tissues, and the number of foci increased significantly with
worsening tumor cell grade and metastatic tumors status (Fig. 6d-
g). These results show that an interaction between EGFR and
EphA2 is clinically relevant in human lung and colorectal cancers,
and provide the basis for the development of targeted anticancer
drugs to inhibit this interaction.

DISCUSSION
In the present study, we found that the expression of EGFR,
EphA2, and Ephexin1 was upregulated and correlated to lung and
colorectal cancers. Interestingly, anchorage-independent growth,
migration, and xenograft tumor growth were increased when
either EGFR or EphA2 was overexpressed, but these effects were
dependent on the presence of Ephexin1. These results point to an
important role for Ephexin1 in regulating the tumorigenicity of
EGFR and EphA2 expression.
We show that EGFR, EphA2, and Ephexin1 bind directly with

each other to form a single complex. Overexpressed Ephexin1
increased the binding of EphA2 to EGFR, whereas a lack of
Ephexin1 had the opposite effect. The kinase function of the EphA
receptor plays a role in the functional regulation of downstream
effectors [58], but EphA has other distinct functions as well [59].

The kinase domain of EphA4, a receptor that is structurally very
similar to EphA2, was not required for binding to Ephexin1
[29, 33]. However, our results showed that the kinase domain of
EphA2 is required for interactions with the RR domain of EGFR in
an Ephexin1-dependent manner. The activation of EGFR by
growth factor signaling is known to lead to autophosphorylation
of the RR domain, which then triggers downstream signal
transduction events [60–63].
Activation of K-Ras activates AKT, which then phosphorylates

Ser897 of EphA2 and results in increased cancer proliferation
[41, 64, 65]. The SAM domain of EphA2, which includes Ser897, is
not important for the kinase activity but does influence protein-
protein interactions [59, 66]. We show that overexpression of
either Ephexin1 or mutant K-Ras increased interactions between
EphA2 and EGFR. In addition, we found that an EphA2
phosphomimetic mutant (pSer897) increased this interaction,
suggesting that phosphorylation is relevant. However, again, no
increase in interactions between EGFR and EphA2 S897D mutant
was observed in Ephexin1-deficient cells.
Among non-small-cell lung cancer (NSCLC) patients that are

non-smokers, 15-50% have EGFR mutations and 15-25% have
K-Ras mutations, both of which play an important role in tumor
progression and metastasis [67, 68]. Therefore, many researchers
are developing cancer treatments targeting EGFR, K-Ras, Ras-
downstream effectors, and EphA2. For example, Gefitinib and
Erlotinib, EGFR-tyrosine kinase inhibitors (EGFR-TKI), prolonged
progression-free survival compared to conventional platinum-
based chemotherapy in a randomized controlled phase 3 clinical
trial [69, 70]. Osimertinib, a third-generation EGFR-TKI, is currently
undergoing phase 3 clinical trials (Phase3, NCT02296125). BT5528
is a bicyclic peptide that binds to EphA2, and is currently
undergoing phase 1 clinical trials (Phase 1, NCT04180371), and
EphA2 monoclonal antibody DS-8895a has completed phase 1
clinical trials (Phase 1, NCT02252211). However, despite these
excellent therapeutic results, current cancer cell-targeted thera-
pies have increased the survival rate of patients, but long-term
administration often leads to recurrence and resistance [71–74].
For example, long-term administration of an inhibitor that
specifically blocks the K-Ras mutant protein has resulted in
resistance and the observable recovery of phospho-ERK and
phospho-EGFR levels [75–77]. In addition, re-activation of Ras
signaling is induced when there is an increase in the expression of
RTK [13, 78–80]. Our results suggest that when resistance to
cancer treatments targeting Ras signaling arises, the observed re-
activation of Ras may have been due to an increase in the levels of
the EphA2 / EGFR / Ephexin1 complex.
Since the EGFR/RAF/MEK/ERK pathway is essential for normal

cellular processes, indiscriminately inhibiting this pathway would
target both normal cells and cancer cells. A more effective
treatment would target proteins that are differentially expressed
in cancer cells. Ephexin1 is rarely expressed in normal cells besides
neurons [29, 31]. Therefore, a combination treatment that includes
an Ephexin1-specific inhibitor and targeted inhibitors of EGFR,

Fig. 6 Interactions between EGFR and EphA2 are associated with poor prognosis in lung cancers. a Immunoprecipitation with anti-EGFR
antibody and western blot analysis with the indicated antibodies of HEK293T cells co-transfected with Flag-tagged EphA2 and EGFR (WT,
L858R, or L858R / T1790M mutant) plasmids. b Immunoprecipitation with anti-Flag antibody and western blot analysis with the indicated
antibodies of extracts from HEK293T cells co-transfected with Flag-tagged EphA2 and V5-tagged EGFR (WT or L858R / T790M), with or without
the shEphexin1 plasmid. c Immunoprecipitation with anti-Flag antibody and western blot analysis with the indicated antibodies of extracts
from H1299 cells transfected with Flag-tagged EGFR (WT or L858R / T790M), with or without the shEphexin1 plasmid. d Proximity ligation
assay (PLA) was performed to identify interactions between EGFR and EphA2 (red) in grade I (n= 13), grade II (n= 14), and grade III/V (n= 13),
and metastatic (n= 10) lung cancer tissues and their corresponding normal tissues (n= 9). DAPI (blue) was used as a counterstain to visualize
the nuclei. Scale bar = 50 μm. e Quantification of the PLA data shown in (d). f Proximity ligation assay (PLA) was performed to identify
interactions between EGFR and EphA2 (red) in grade I/II (n= 13), grade III (n= 15), grade IV (n= 12), and metastatic (n= 10) colorectal cancer
tissues and their corresponding normal tissues (n= 9). DAPI (blue) was used as a counterstain to visualize the nuclei. Scale bar = 50 μm.
G Quantification of the PLA data shown in (f). h A model to describe the major mechanisms behind the tumorigenic effects of the EGFR-
Ephexin-EphA2 complex.
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EphA2, or K-Ras is predicted to improve the effectiveness of
cancer treatment.
In conclusion, Ephexin1 is proposed as an effective target

protein for the therapy of tumors in lung and colorectal cancers
since it plays an important role in regulating interactions between
EGFR and EphA2.
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