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We present a multiscale agent-based model of ductal carcinoma in situ (DCIS) to study how key phenotypic and signaling pathways
are involved in the early stages of disease progression. The model includes a phenotypic hierarchy, and key endocrine and
paracrine signaling pathways, and simulates cancer ductal growth in a 3D lattice-free domain. In particular, by considering
stochastic cell dedifferentiation plasticity, the model allows for study of how dedifferentiation to a more stem-like phenotype plays
key roles in the maintenance of cancer stem cell populations and disease progression. Through extensive parameter perturbation
studies, we have quantified and ranked how DCIS is sensitive to perturbations in several key mechanisms that are instrumental to
early disease development. Our studies reveal that long-term maintenance of multipotent stem-like cell niches within the tumor are
dependent on cell dedifferentiation plasticity, and that disease progression will become arrested due to dilution of the multipotent
stem-like population in the absence of dedifferentiation. We have identified dedifferentiation rates necessary to maintain
biologically relevant multipotent cell populations, and also explored quantitative relationships between dedifferentiation rates and
disease progression rates, which may potentially help to optimize the efficacy of emerging anti-cancer stem cell therapeutics.
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INTRODUCTION
Female breast cancer diagnoses in the United States exceeded
250,000 for the first time in 2017 (the latest year data available)
[1]; up to 25% of these diagnoses are ductal carcinoma in situ
(DCIS) [2], the earliest and non-invasive form of breast cancer,
representing a major risk factor for invasive cancer [3]. Women
who have breast-conserving surgery (lumpectomy) for DCIS have
about a 25% to 30% chance of recurrence, but the mechanistic
link between DCIS and invasive breast cancer remains largely
unclear. Currently, there are no effective diagnostics that are able
to accurately predict which patients will experience disease
progression beyond stage zero to invasive cancer, and as a result
many patients are often exposed to overtreatment and may even
receive surgery and radiation therapy [4]. Even the most
aggressive estimates predict that only 1 in 3 DCIS patients will
progress to invasive disease [5], further highlighting the need
for a better understanding of the biophysical mechanisms
involved in DCIS.

DCIS originates from luminal epithelial cells within the mature
mammary duct, which undergo unregulated proliferation into
the luminal cavity. In the healthy state, bipotent epithelial stem
cell niches [6] and a complex interplay of endocrine and
paracrine signaling within the mammary gland epithelia are
integral to gland homeostasis, where stem cells give rise to
daughter cells (daughters) with a proliferative phenotype
capable of self-renewal and production of terminally differen-
tiated daughters [7] (Fig. 1). Increasing evidence suggests that
tumors originate from cells that gain one or more genetic
alterations, resulting in “cells of origin” that initiate cancer and
spearhead tumor formation [8]; we refer to these as tumor
initiating cells (TICs) in this work. These cells of origin must
possess the hallmarks of cancer, and the cancer stem cell (CSC)
model has emerged to explain these cells of origin [9], which are
thought to both maintain a CSC population within the tumor
through self-renewal, while also producing daughters through a
process of asymmetric division, giving rise to cells that also retain
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self-renewal capacity but with more differentiated phenotypes
[7]. Cell proliferation is regulated by a complex interplay of
endocrine and paracrine mechanisms, in part by estrogen-
induced stimulation of estrogen receptor positive (ER+ )
mammary epithelial cells to upregulate amphiregulin (AREG)
production, which stimulates estrogen receptor negative (ER–)
cells via fibroblast growth factor (FGF) [10] (Fig. 1c). These

pathways are central to cell proliferation in mammary gland
development, but may become dysregulated, leading to loss of
homeostasis and a transition to a cancer phenotype [11, 12].
Increasing evidence has emerged for the existence of cellular

plasticity in differentiation within tumors. In this process, cancer
cells may experience phenotypic reversal [9], leading to a
transition back to a more stem-like state, and resulting in CSCs

Fig. 1 Model schematic and included biology. a The mammary gland is composed of bilayered epithelial walls surrounding an inner luminal
cavity. This tree-like structure branches away from the nipple into the fat pad, and ducts are terminated by ductal lobular units. b The duct
wall is composed of outer myoepithelial and inner luminal epithelial cell monolayers. In our model, cancer is initiated by transition of a stem
cell within the luminal epithelium into a tumor initiating cell (TIC), which is able to proliferate indefinitely, placing its daughters adjacently into
the luminal cavity. c Mammary epithelial cells are phenotypically distinct cells and are characterized based on their proliferative potential and
the presence or absence of estrogen receptor α (ER+ /− , respectively). Proliferation within the DCIS population is regulated by simplified
endocrine and paracrine pathways, as shown. d Model legend.
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that may not have originated from a healthy (non-malignant)
stem-like cell [8]. This process is often referred to as dedifferentia-
tion [13], and has been reported in many cancers, including
glioblastoma [14], intestinal tumors [15], melanoma [16], and also
in breast cancer, where CSCs arise through an epithelial-
mesenchymal transition (EMT)-like process facilitated by the
ZEB1 promoter [17]. Tumor microenvironmental factors have
been shown to play key roles in the dedifferentiation process,
including hypoxia [18], Ras-Myc signaling [19], nuclear β-catenin
localization and Wnt signaling [20], and TNF-α signaling [16].
These are also thought to play a role in stem cell niche
maintenance, where stem cells may also emerge due to
dedifferentiation [18, 21]. Specific to breast cancer, dedifferentia-
tion is proposed to be due to ZEB1-based driving of EMT events,
which is also required for conversion of non-CSC to CSC and for
the maintenance of CSC-like activity [17, 22]. This is also driven by
hypoxia [18], oncogenic-induced Yamanaka factors (such as c-Myc
or Klf4) [23], or mutated KRAS signaling. This mounting evidence
challenges the traditional hierarchy of cellular differentiation, and
suggests the need for additional understanding of the role
dedifferentiation plasticity plays in cancer [24]. In fact, several
groups have made notable strides in quantifying the dynamics of
CSC emergence through dedifferentiation events, with a special
focus on understanding the prevalence of these events and the
conditions under which they may occur [17, 24].
Mathematical modeling has yielded significant insights into

DCIS development, and into the roles of cellular hierarchies and
dedifferentiation in cancer progression; a detailed review is
provided in SI. In the work presented herein, we build on our
previous modeling studies of the mammary gland and DCIS

[25–28] to better understand how cellular dedifferentiation and
a combination of other tissue, cellular, and molecular scale
factors come together to influence the emergence of the early
stages of DCIS (see Table 1), as outlined in (Fig. 2).

METHODS
Model overview
The basic multiscale agent-based modeling (ABM) framework was
published in [27]; interested readers may refer to the SI and other
previous publications [25, 28] for descriptions of model design, methods of
implementation, and technical details. Briefly, in our model, cells are
represented as discrete spherical entities (agents), each with unique
phenotypes, positions within the cellular hierarchy, and spatial locations
(Fig. 1c, Table 1, Supplementary Table S1), and are free to move lattice-free
within the simulated domain (a section of mammary gland duct, Fig. 1c)
based on physical interactions with their neighbors and the duct wall. At
the molecular scale, continuum molecular profiles (oxygen, estrogen,
AREG, and FGF) are described via Fick’s law and solved at each time step
using finite element methods. These molecular profiles are then
mathematically linked to agents at the discrete scale for explicit feedback
between scales, thereby implementing key epithelial and stromal signaling
pathways involved in cellular proliferation. Cell agents simulate multiple,
sequential proliferation cycles, and may undergo phenotypic transitions
according to the cell hierarchy shown in Fig. 1c and determined by the
reference criteria and probabilities in Table 1, Supplementary Table S1, and
may proliferate, grow, terminally differentiate, enter quiescence, become
hypoxic or necrotic, or undergo apoptosis, as determined by the
conditions at their physical location (approximated as the agent’s center
of mass) and their phenotype. We have made the simplifying assumption
that these state transitions (except for growth, which occurs over multiple
steps within the time range specified in Table 1) are completed by the start
of the next discrete (ABM) time step. Upon mitosis, daughter phenotypes

Table 1. Model parameters perturbed in the global sensitivity analysis.

Parameter Symbol Units Baseline [range] Distribution Reference

Discrete (ABM) parameters

Cell cycle time*,§ τP hours 20 [16.5 – 23.5] Uniform [29, 30]

Symmetric proliferation probability

-progenitor (is daughter progenitor or
differentiated?)*,†,§§

ωP % 75% [50% – 100%] Uniform N/A

-stem (is daughter stem?)*,†,§ ωSC % 12% [12% ± 6%] Lognormal [46]

-stem (are non-stem daughters ER+ or ER–?)*,§§ ωSC,+/– % 50% [36 – 64%] Uniform N/A

Apoptosis probability*,§ ωApop % Δt−1 0.705% [0.10% – 1.31%] Uniform [47]

Proliferation cycles before differentiation*,†,§§ Pmax Cell cycles 18 [11 – 25] Uniform

Cell density threshold for quiescence*,†,§§ θQ Cells volume−1 70% [50 – 90%] Uniform N/A

Dedifferentiation probability†,§ ΩDD % cell−1 cycle−1 0.4% [0.1 – 0.7%] Uniform [24]

Hybrid (ABM↔ continuum) parameters

Cancer cell oxygen metabolism multiplier (cancer
cell oxygen metabolism = λC×λE)*,†, §

λC Mol cell-1 s−1 4.5× healthy cell
metabolism [3.0 – 6.0×]

Uniform [48]

Estrogen metabolism*,§§ λE Normalized
(% baseline)

1.0 [0.9 – 1.1] Uniform N/A

FGF uptake/metabolism*,§§ λFGF Normalized
(% baseline)

0.72 [0.648 – 0.792] Uniform N/A

AREG production*,§§ λAREG Normalized
(% baseline)

0.086 [0.0774 – 0.096] Uniform N/A

Estrogen proliferation threshold*,†,§§ θE Normalized
(% baseline)

0.85 [0.85 ± 0.2] Lognormal N/A

FGF proliferation threshold*,†,§§ θFGF Normalized
(% baseline)

0.7 [0.7 ± 0.15] Lognormal N/A

Parameters were tested with either a uniform range [min-max] or a lognormally distributed range [mean ± error factor], with each run under a unique
parameter setting determined by LHS. *Parameters perturbed in the full global sensitivity analysis without dedifferentiation. †Parameters perturbed in the
dedifferentiation sensitivity analysis. §Parameters quantified from in vivo or in vitro experimental measurements. §§Parameters estimated mathematically or
obtained from other modeling work.
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are determined stochastically with probabilities described in Table 1.
All simulations presented herein were conducted within a simulated
section of mature mammary duct represented as a cylinder 1 mm in length
with 200 μm inner luminal duct cavity diameter.

New model components
Stochasticity in cell cycle time. In our previous work, we made the
simplifying assumption that all cells would experience equal cell cycle
time; that is, the minimum time to complete all cell cycle phases before
reaching maturity and being able to undergo another mitosis cycle was
held constant. While this allowed for focused study of the effects of

variations in cell cycle time on disease progression without the
confounding effects of randomness in cell cycle times, it also resulted in
an artificial cell cycle synchronicity. In the new version of the model, each
daughter cell is assigned a cell cycle time randomized from a bounded
lognormal distribution with a mean selected from the range shown in
Table 2; means were held constant for each simulation run, but were varied
between runs. Baseline mean cell cycle times for mammary epithelial cells
were based on cell cycle time of 20 h reported by Shehata et al. [29].
We note that, because we do not explicitly model all phases of the cell
cycle for each cell, we imposed a biologically relevant minimum cell cycle
time of 16 h based on literature reported values [29, 30] in order to ensure
all phases of the cell cycle are complete before another mitosis cycle

Fig. 2 Study flowchart. A graphical description of the study is shown. Briefly, after identifying key biological and physical processes and
phenotypic and signaling hierarchies to be included in the model, the model was extensively tested to phenomenologically quantify model
parameters that were unavailable in the literature, based on successful reproduction of literature-reported measurements. The full parameter
space was examined using Latin hypercube sampling (LHS) parameter perturbation, and paramters with significant effects on model
outcomes were identified. Perturbation studies were repeated with and without dedifferentiation, and local and global sensitivity analysis was
performed.

Table 2. Global sensitivity analysis using linear regression without dedifferentiation.

Model output R2 Significant model parameters (p-value)

Axial advance rate (μm/day) 0.6389 ωP (<0.001); θQ (<0.001); θE (<0.001); θFGF (0.001); ωSC (0.003); τP (0.005); Pmax (0.015)

Proliferation events per day 0.6599 θQ (<0.001); ωP (<0.001); Pmax (0.001); ωSC (0.002); θFGF (0.015); θE (<0.024); τP (0.030)

Axial calcification extent (μm) 0.7715 θQ (<0.001); λC (<0.001); Pmax (<0.001); ωP (<0.001); ωSC (0.036)

Total cells calcified 0.7639 θQ (<0.001); λC (<0.001); ωP (<0.001); Pmax (<0.001)

Time to leading edge quiescence (days) 0.2377 θE (0.005); θFGF (0.006); ωP (0.012)

Total cell count at arrest 0.7118 θQ (<0.001); Pmax (<0.001); ωP (<0.001); λC (0.046);

Total ER+ cells at arrest 0.6099 θE (<0.001); Pmax (<0.001); ωP (0.001); θQ (0.008); θFGF (0.009); ωSC (0.019)

Total ER− cells at arrest 0.6680 θQ (<0.001); θE (<0.001); λC (0.016); Pmax (0.020)

Goodness-of-fit (R2) of the full multivariate model and parameters found to have significant effects on each model output are shown. All parameters in Table 1
marked with an asterisk (*) were perturbed in a Latin hypercube sampling (LHS) study; parameters not listed here were found to have insignificant effects on
model outputs (p ≥ 0.05). Progenitor symmetric proliferation probability: ωP; cell density threshold for quiescence: θQ; estrogen proliferation threshold: θE; FGF
proliferation threshold: θFGF; probability of a stem cell having a stem daughter: ωSC; cell cycle time: τP; proliferation cycles before differentiation: Pmax; cancer
cell oxygen multiplier λC.
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begins (thereby imposing a lower bound in case a random cell cycle time is
selected below this biological threshold).

Dedifferentiation. In the work presented here, we have allowed for
stochastic dedifferentiation of proliferative phenotype back into the cancer
stem cell phenotype. We have also made the simplifying assumptions that
quiescent cells do not dedifferentiate, and that terminally differentiated
cells do not dedifferentiate back into the proliferative phenotype (we
address the implications of this assumption in light of Yamanaka’s
discoveries that terminally differentiated cells may revert back to
pluripotent stem cells [23] in SI). In addition, cells in our model may not
dedifferentiate at the same time they undergo mitosis to avoid introducing
artificial variations in the probability distributions for daughter phenotypes
(Table 1). Lastly, because we only model a single stem phenotype in our
model, agents that have a stem phenotype are unable to dedifferentiate.
Agents that meet the above criteria are given the opportunity to
stochastically dedifferentiate at each time step such that the dedifferentia-
tion rate per cell cycle is as reported in Table 1, and in each simulation run
all agents have the same per-cell-cycle differentiation probability (note that
this probability may be set to zero). The dedifferentiation pathway may be
manually turned on (ΩDD > 0) or off (ΩDD= 0) in our simulations, enabling
controlled in silico experimentation on the effects of the presence, absence,
or stochastic likelihood (ΩDD) of dedifferentiation events.

Model analysis
We have previously reported extensive local sensitivity analysis of key
model parameters without dedifferentiation [27]. Here, we present an
expanded analysis covering a greater number of model parameters in a
global analysis [31–39], wherein all model parameters of interest were
perturbed simultaneously. For each simulation run, model parameter
values were determined via Latin hypercube sampling (LHS), based on
values and distributions shown in Table 1. All model simulations were run
in serial for 96 wall-clock hours, and model states (including all cell
locations, phenotypes, cell volumes, and continuum solutions at all nodes)
and outputs of interest were recorded or calculated after every 30minutes
of simulated time. In our first global analysis, many model parameters were
perturbed simultaneously without dedifferentiation (that is, dedifferentia-
tion probability ΩDD= 0), and multiple regression analysis was conducted
to determine parameters that had significant (p < 0.05) effects on model
outputs of interest. In a second analysis, the dedifferentiation pathway was
activated, but parameters tested in the first global analysis that were
deemed to be insignificant to all or most of the model outputs of interest

were removed from the perturbation analysis (and held constant at their
baseline), allowing us to focus on the key parameters deemed to have the
greatest influence on DCIS progression. Finally, a third study was
conducted wherein only the dedifferentiation probability was perturbed;
these studies are outlined in Fig. 2.

RESULTS
DCIS progression is ultimately arrested without stem cell
replenishment from dedifferentiation: a global sensitivity
analysis
In a first step, a global sensitivity analysis was performed varying
all 13 model parameters marked with an asterisk (*) in Table 1, but
without dedifferentiation (that is, dedifferentiation probability
ΩDD= 0). It was observed that stem cells experienced exponential
dilution over time in the absence of dedifferentiation events (an
example is shown in Supplementary Fig. S5), often leading to a
lack of stem cells in the leading edge. When combined with the
finite limit on mitosis cycles imposed on the progenitor
phenotype before terminal differentiation, it was observed that
the leading edge would ultimately become terminally differen-
tiated in these cases, at which time DCIS progression was arrested
(Figs. 3a and 4a). Times to leading edge arrest ranged between
9.1-90.5 days, with an average of 25.9 days. In this study, we
truncated model outputs at the time of growth arrest, and results
herein represent the state of the model at that time.
Model outputs examined in this study were (1) DCIS axial

advance rate per day, (2) average proliferation events per day, (3)
axial extent of calcification and time of growth arrest, (4) total cells
calcified at time of growth arrest, (5) time before the DCIS leading
edge became quiescent, (6) total cell count at time of growth
arrest, and (7) total numbers of ER+ /− cells at time of growth
arrest. A multivariate linear model was constructed for each
output of interest, R2 assessment of goodness-of-fit was
performed, and model parameters that showed significant effects
(p < 0.05 was considered significant) on model outputs of interest
were identified. We note that because DCIS advances in both
directions along the duct axis (away from the location of tumor
initiation), total advance per day and axial extent measures

Fig. 3 Representative model simulations. a Representative model states rendered from a simulation without dedifferentiation are shown as
full simulated duct (left) and cross-sectional view (right; cross-section taken along y = 0 plane). DCIS is initiated at the top-center of the duct
by 5 TIC cells (white) at t = 0 days (d); daughters are placed adjacently into the luminal cavity, and DCIS grows away from site of initiation
along the leading edge (examples are indicated by red dashed curves). In the example shown, the leading edge has become terminally
differentiated at time t = 20 days (d), and growth arrest is observed as only minimal further expansion of the DCIS mass occurs after this time.
Calcification due to hypoxia is observed (green agents) in the cross-sectional view (right column). b Representative model images from a
simulation with the dedifferentiation pathway activated. At time t = 20 days (d), dedifferentiated cells (lighter purples) are again observed in
the leading edge, but in this case new stem cells (red arrows) have emerged in the leading edge; this behavior is again observed in times t =
25 days and t = 35 days.
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represent the summed change in axial distance in both directions
(see Fig. 3).
Multivariate linear regression analysis revealed that only 8

model parameters showed a significant effect on model outputs;
these are detailed in Table 2. Of these, progenitor symmetric
proliferation probability (ωP), cell density threshold for quiescence
(θQ), and proliferation cycles before terminal differentiation in the
progenitor phenotype (Pmax) were most often significant (in 7/8
model outputs examined), followed by estrogen proliferation
threshold (θE) (5/8 model outputs), and then by FGF proliferation
threshold (θFGF), stem cell symmetric proliferation threshold (ωSC)
(stem vs. progenitor daughters), and cancer cell oxygen con-
sumption multiplier (λC) (4/8 model outputs). Interestingly, cell
cycle time (τP) was found to be significant in only 2/8 model
outputs examined. The absolute values of the standardized
(unitless) effects of each parameter on each examined output
are shown in Supplementary Fig. S1.

Inclusion of dedifferentiation overcomes growth arrest: global
sensitivity analysis with active dedifferentiation pathway. A second
global analysis study was performed wherein the dedifferentia-
tion pathway was activated (thus dedifferentiation probability
ΩDD > 0) and a reduced parameter set consisting of only those
identified to be significant in the previous study plus the
dedifferentiation probability were perturbed; these are labeled
with a dagger (†) in Table 1. Multivariate regression was repeated
as described above, and model goodness-of-fit and parameter
significance on model outputs of interest were evaluated. We
note that cell cycle time was excluded from this study, as it was

only significant in 2/8 outputs in our first study. Growth arrest of
the DCIS cell mass due to terminal differentiation in the leading
edge was not observed in this analysis study (see Figs. 3b, 4b); in
all simulations, axial growth and cell population increase were
observed until the end of the 96 wall-clock hour simulation runs.
Stochastic dedifferentiation events were able to overcome the
leading edge growth arrest behavior that was observed in the
first analysis study (see the previous section), and growth arrest
was not observed in any simulation run with dedifferentiation in
effect (these are further examined later). Accordingly, time to
leading edge growth arrest was not included as a model output
examined in this second study.
It was observed that quiescence density threshold (θQ) and

progenitor symmetric proliferation probability (ωP) were most
influential (that is, they exhibit significant influence on the
largest number of model outputs examined) on the examined
model outputs, with significant effects on 6/7 outputs of
interest. Cancer cell oxygen multiplier (λC) showed a significant
effect on 5/7 model outputs, followed by estrogen proliferation
threshold (θE), showing significant effects on 3/7 model outputs,
and then by dedifferentiation probability (ΩDD), maximum
proliferation cycles before differentiation (Pmax), and FGF
proliferation threshold (θFGF), each showing significant effects
on 2/7 model outputs examined; details are provided in Table 3.
Note that the probability of a stem cell having a stem daughter
(ωSC) was included in this analysis, but was found to be
insignificant in all cases. Pareto charts depicting the absolute
values of the standardized (unitless) effects of each parameter
on each examined output are shown in Supplementary Fig. S2.

Table 3. Linear regression analysis of global sensitivity analysis with the dedifferentiation pathway enabled.

Model output R2 Significant model parameters (p-value)

Axial advance rate (μm/day) 0.6940 θQ (<0.001); ωP (<0.001)

Proliferation events per day 0.7017 θQ (<0.001); ωP (0.001); λC (0.002)

Axial calcification extent (μm) 0.7356 λC (<0.001); ωP (<0.001); ΩDD (0.018)

Total cells calcified 0.9026 λC (<0.001); θQ (<0.001); ωP (0.003); Pmax (0.020)

Total cell count at end of simulation 0.9012 λC (<0.001); θQ (<0.001); ωP (<0.001); θFGF (0.001); ΩDD (0.004); θE (0.005)

Total ER+ cells at end of simulation 0.8142 θE (<0.001); θQ (0.011); Pmax (0.028)

Total ER− cells at end of simulation 0.8805 θE (<0.001); λC (<0.001); θQ (<0.001); ωP (<0.001); θFGF (0.001)

Goodness-of-fit (R2) of the full multivariate model and parameters found to have significant effects on each model output are shown. All parameters in Table 1
marked with a dagger (†) were perturbed in a Latin hypercube sampling study; parameters not listed here were found to not have a significant effect on model
outputs (p ≥ 0.05). Dedifferentiation probability (per cell cycle): ΩDD; progenitor symmetric proliferation probability: ωP; cell density threshold for quiescence:
θQ; estrogen proliferation threshold: θE; FGF proliferation threshold: θFGF; proliferation cycles before differentiation: Pmax; cancer cell oxygen multiplier λC.

Fig. 4 Axial invasion over time from selected simulations. Each simulation run was input with a unique set of parameter values determined
by LHS (see Table 1, Supplementary Table S1). a Without dedifferentiation, axial invasion is observed to arrest when the stem cell population
in the leading edge becomes depleted; as can be seen by curves flattening at higher times. b Growth arrest is not seen when the
dedifferentiation pathway is active. Only a subset (n = 10) of simulations are shown in each panel for ease of visibility; matching colors do not
indicate a relationship between curves in each panel.
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Dedifferentiation overcomes stem cell dilution and terminal differ-
entiation: effects on stem cell population. We then sought to gain
insights into the dynamics of stem cell populations across all
global sensitivity analysis simulations, with and without activation
of the dedifferentiation pathway. At the time of leading edge
arrest in simulations without dedifferentiation, the DCIS stem cell
population was found to average 0.55% (range: 0.037–5.5%)
without dedifferentiation, well below literature reported values of
4-6% [17, 24]. Conversely, in simulations with the dedifferentiation
pathway active, stem cell population was found to have a mean of
3.6% (range: 0.50-9.1%) across all simulations, which is in good
agreement with the lower end of the literature-reported range.
The percentage of stem cells resulting from dedifferentiation

events was found by multivariate linear regression analysis to be
largely dependent on the total cell proliferation rate (p < 0.001),
with greater proliferation rates (and thus faster DCIS ductal
advance rates, p < 0.001; and total cell count, p < 0.001) signifi-
cantly associated with lower stem cell density in the final DCIS
population. All model outputs examined are plotted against final
stem cell count in Supplementary Fig. S3. The relation between
stem cell density and progenitor cell phenotypes are also shown
in Supplementary Fig. S4a, b; however, because dedifferentiation

occurs stochastically, these panels merely restate the trend
observed in the total progenitor cell population. Stem cell density
was also observed to be reduced when greater numbers of
hypoxia-induced necrosis and subsequent cell calcification were
observed (p < 0.001; not shown).

Isolating the effects of dedifferentiation using local sensitivity
analysis: a deeper look. In order to gain further insights into the
effects of dedifferentiation in DCIS progression, we performed an
additional study where only the dedifferentiation probability (ΩDD)
was perturbed while all other parameter values were held at
baseline (Table 1, Supplementary Table S1). As an experiment, we
expanded the range of dedifferentiation probabilities to
0.01–1.0% in the increments shown in Fig. 5, beyond the more
biologically-relevant range listed in Table 1. This range was
intentionally imbued with a finer discretization towards the lower
end, so that the threshold where dedifferentiation is able to
overcome growth arrest or slowing could be identified with higher
precision. In this analysis, simulations were not truncated at the
time of growth arrest, but instead were truncated at the same
time simulated for all tests (t= 35 days, later than growth arrest
was observed without dedifferentiation (Fig. 4a)). Additionally, our

Fig. 5 Local sensitivity analysis of dedifferentiation effects on axial advance rate and stem cell population. a DCIS axial distance per day
shows reduced axial advance at lower dedifferentiation probabilities examined after progenitor mitosis cycle limits are first encountered (t=
15 days), while higher dedifferentiation probabilities support consistent advance rates. b Average axial advance rate after start of
dedifferentiation (t ≥ 15 days) was determined via linear regression analysis of data shown in a; values are listed in Supplementary Table S2.
Michaelis-Menten best fit to data in b was found to be axial advance rate = (13.74 ×ΩDD)/(0.0262+ΩDD) µm/day and is shown (blue, dashed;
R2 = 0.998, p < 0.001). c Density of stem cells in the total DCIS population; note that at early times, stochastic proliferation results in large
percentage variations before steady state is achieved at later times. d Linear regression analysis to data shown in C of stem cell density after
differentiation events begin (t ≥ 15 days; see Supplementary Table S2) reveals a linear relation between dedifferentiation probability and the
average daily percent change (Δ) in stem cell density; linear regression revealed average daily change in stem cell percent density = 0.189 ×
ΩDD (blue, dashed; R2 = 0.988, p < 0.001). All simulations were performed in triplicate; data shown as mean ± standard deviation (error bars).
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analysis of axial advance rates and rate of change of stem cell
density (see Fig. 5) was applied only to data collected after our
baseline time for dedifferentiation to occur (that is, t > 15 days;
Table 2) to focus on steady-state DCIS progression rates. Tests
were performed in triplicate for each probability, and model
outputs of DCIS axial invasion rate and stem cell percentages were
assessed.
DCIS axial advance rate was notably reduced at low dediffer-

entiation probabilities, but remained consistent at larger dediffer-
entiation probabilities (Fig. 5a, b). Interestingly, we found that axial
advance rate vs. dedifferentiation probability (Fig. 5b) demon-
strates a Michaelis-Menten relationship, determined by regression
analysis as axial advance rate= (13.74 × ΩDD)/(0.0262+ ΩDD) µm/
day (with VMax = 13.74 and KM = 0.0262). Low dedifferentiation
rates resulted in lower stem cell density within the DCIS mass (Fig.
5c), and the rate of stem cell population increase was observed to
correlate linearly with dedifferentiation probability (Fig. 5d),
quantified by best-fitting linear regression as average daily change
in stem cell percent density = 0.1839 × ΩDD. A sensitivity score for
the results shown in Fig. 5b, d was also determined as we have
done previously [27]; this is further discussed in SI and shown in
Supplementary Fig. S4.

DISCUSSION
Our results revealed that, without the dedifferentiation pathway,
DCIS behaviors studied in this work (including axial advance
rate, proliferation events per day, and axial calcification extent)
were most affected by proliferation cycles before differentiation,
symmetric probabilities of progenitor cells (progenitor or
differentiated daughter), and quiescence thresholds (Table 2,
Supplementary Fig. S1). The progenitor population is reduced by
proliferation events that give rise to differentiated daughters,
terminal differentiation due to hitting the proliferation cycle
threshold, and quiescence, which removes proliferative (i.e.,
progenitor) cells from the population contributing to DCIS
growth. Downstream processes that then determine if this
population is able to proliferate or not, such as estrogen and
FGF thresholds, and cell cycle time before proliferation, showed
significant effects on fewer model outputs (a detailed analysis
on these effects in our model is presented in [27]). Increased
oxygen consumption rates in the DCIS population primarily
affected the extent of calcification and total cells lost to hypoxia-
induced necrosis, but had minimal effects on DCIS progression
rates. This further supports that progression is driven by the
leading edge, while hypoxic regions are located at the center of
the DCIS mass (this may be observed based on the location of
the calcification seen in Fig. 3), and is in good agreement with
our previous work [27]. We note that, although our model allows
for similar analysis on other potential outputs (e.g., average
mitosis cycle length, or detailed analysis of the effects of
molecular signaling, which we have previously reported in [27]),
we elected to focus on only those that allow for comparison of
model output with literature-reported measurements, those
pertinent to clinical practice (e.g., mammographic measurement
of calcification), or those that are the focus of this study (e.g.,
growth arrest without dedifferentiation).
Our results reveal that dedifferentiation plasticity is vital for

DCIS progression, and that exponential dilution of the bipotent
stem-like population ultimately leads to growth arrest as the
leading edge of the DCIS mass exhausts its proliferative potential
and becomes terminally differentiated (Fig. 4a). We note that the
stochasticity of our model allows for stem cell dilution and growth
arrest to occur at different times between the two leading edges
(e.g., Fig. 3), and axial advance may occur only in one direction for
a time after arrest occurs in the opposite leading edge, thereby
reducing the total average ductal advance rate and proliferation
rate in this case.

Similar to the case without dedifferentiation, progenitor
symmetric proliferation probability (ωP) and quiescence density
threshold (θQ) were most influential of the examined model
outputs when the differentiation pathway was activated (Table 3).
Cancer cell oxygen consumption multiplier (λC) showed a
significant effect on a larger number of examined model outputs
when dedifferentiation was active than in the study without
dedifferentiation. This is because at longer simulated times,
dedifferentiation overcomes growth arrest in the leading edge,
allowing for larger DCIS mass and greater total cell counts, and a
larger total DCIS volume results in a similarly larger hypoxic (and
thus calcified) volume. Interestingly, the dedifferentiation prob-
ability (ΩDD) only showed significant effects on 2/7 total examined
model outputs; this is fewer than most parameters examined
(Table 3). However, it prevented growth arrest in the leading edge
in all simulations performed, thereby demonstrating a necessary
role in disease progression. Because lack of dedifferentiation was
observed to eventually halt disease progression in all cases
examined, this study provides notable evidence that it plays a
critical role in the most important clinical aspect: allowing DCIS to
overcome growth arrest and facilitating continued disease
progression.
The observed trend of lower stem cell density with greater

proliferation rates in the global sensitivity analysis (Supplementary
Fig. S3) is likely due to exponential expansion in the non-stem
(progenitor) cell population, which may double every cell cycle,
while dedifferentiation events due to cell plasticity occur at a
slower rate. In this study, proliferation rates may be reduced due
to unfavorable conditions that are not related to dedifferentiation
(such as unsatisfied molecular signaling thresholds), and stem cell
density can increase due to continuing dedifferentiation (if ΩDD >
0) even in the absence of proliferative events, counterbalancing
this effect. However, in our follow-up study wherein only
dedifferentiation probabilities were perturbed while all other
variables were held at baseline (and thus confounding factors
were removed), dedifferentiation rates demonstrated clear rela-
tionships between ductal advance rates (Michaelis-Menten) and
total stem cell population (linear) (Fig. 5b, d). These revealed that
the maximum theoretical axial advance rate per day under the
examined model conditions was close to 14 µm/day and half-max
advance rates occur at a dedifferentiation probability = 0.0262 per
cell cycle (Fig. 5b), while the daily percent change in stem cell
density was affected by the dedifferentiation probability accord-
ing to the linear relation 0.1839 ×ΩDD (Fig. 5d). Reduced stem cell
density in the cases of greater cell calcification is likely due to the
fact that the center of the DCIS mass (where necrosis leads to
hypoxia and calcification) is composed of relatively older cells than
at the leading edge. Stochastic dedifferentiation has had more
opportunities to occur in these older cells (because they have
experienced more cell cycles), and thus stem cell density is likely
higher in those regions closer to the site of DCIS initiation. When
the region of highest stem cell density is removed from the cell
population, the average stem cell density in the remaining
population is reduced.
In this study, we implemented dedifferentiation as a purely

stochastic event, but it has been reported that dedifferentiation is
related to hypoxia in DCIS as well [18, 21]. In upcoming work, we
will modify our dedifferentiation mechanism to include a
mechanistic hypoxia-based component in order to gain further
insights on the mechanistic relationships underlying these
phenomena. We are also investigating innate molecular pathways
that play natural tumor-suppressing roles in the early stages of
DCIS, such as p63 and metalloproteinase-8 [40], which are derived
from the mature myoepithelial layer already included in our
model. Further, we are collecting in-house data from murine
models to identify and calibrate additional key molecular path-
ways to expand the biological accuracy of the model, and to gain
additional insights into molecular effects on the earliest stages of

J.D. Butner et al.

8

Cell Death and Disease          (2022) 13:485 



DCIS. Indeed, it has been reported that dedifferentiation is
associated with changes in genetic and molecular expression,
and also cell conformation, and it is likely that some of these may
be distinct from stemness derived directly from a stem-type
mother cell [41, 42]. We have now obtained some DCIS RNAseq
data, and spatial single cell sequencing is ongoing in our
laboratory. These were not included in the current model, and
our study is limited in its ability to shed light onto this interesting
problem, but it is our hope that this experimental work will reveal
specific pathways for inclusion that will allow us to focus future
studies on simulated measures of these quantities. We are
currently implementing our own mouse model of dedifferentia-
tion in DCIS (and the related but distinct EMT mechanism) based
on previously published mouse models [43–45], which we believe
will allow additional validation of the results presented and reveal
new molecular pathways to be included for study in future model
iterations. Ultimately, we hope that this work will help to reveal
new insights into potential clinical strategies to optimize
emerging cancer stem cell targeted therapeutics, and to predict
the risk of DCIS progression into invasive breast cancer. In
combination with our upcoming experimental work, we believe
that this may lead to identification of one of more pathways that
may be targeted to diminish dedifferentiation events in order to
halt disease progression in stage zero, and which could help guide
drug design in the future. Moreover, we believe that the
underlying software we are developing will lead to a tool that
enables the study of the effects and interplay of phenotypic
hierarchies and molecular signaling in other solid cancer types,
leading to new insights into their developmental biology and
strategies for therapy.

Reporting summary
Further information on experimental design is available in the
Nature Research Reporting Summary linked to this paper.

DATA AVAILABILITY
All data generated or analyzed during this study are included in this published article
and its Supplementary Information files.
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