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Retinoblastoma (RB) is the most common primary intraocular malignancy of childhood. It is known that the tumor
microenvironment (TME) regulates tumorigenesis and metastasis. However, how the malignant progression in RB is determined by
the heterogeneity of tumor cells and TME remains uncharacterized. Here, we conducted integrative single-cell transcriptome and
whole-exome sequencing analysis of RB patients with detailed pathological and clinical measurements. By single-cell transcriptomic
sequencing, we profiled around 70,000 cells from tumor samples of seven RB patients. We identified that the major cell types in RB
were cone precursor-like (CP-like) and MKI67+ cone precursor (MKI67+ CP) cells. By integrating copy number variation (CNV)
analysis, we found that RB samples had large clonal heterogeneity, where the malignant MKI67+ CP cells had significantly larger
copy number changes. Enrichment analysis revealed that the conversion of CP-like to MKI67+ CP resulted in the loss of
photoreceptor function and increased cell proliferation ability. The TME in RB was composed of tumor-associated macrophages
(TAMs), astrocyte-like, and cancer-associated fibroblasts (CAFs). Particularly, during the invasion process, TAMs created an
immunosuppressive environment, in which the proportion of TAMs decreased, M1-type macrophage was lost, and the TAMs-
related immune functions were depressed. Finally, we identified that TAMs regulated tumor cells through GRN and MIF signaling
pathways, while TAMs self-regulated through inhibition of CCL and GALECTIN signaling pathways during the invasion process.
Altogether, our study creates a detailed transcriptomic map of RB with single-cell characterization of malignant phenotypes and
provides novel molecular insights into the occurrence and progression of RB.
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INTRODUCTION
Retinoblastoma (RB) is the most common primary intraocular
malignancy of childhood [1, 2], where eye containing RB tumor
that display threatening clinical features may be surgically
removed [3, 4]. RB is generally caused by mutations in the tumor
suppressor gene (RB1) encoded protein, pRB [5]. Tumor cells in RB
are highly heterogeneous and understanding intratumoral hetero-
geneity will facilitate a better understanding of therapy responses
and treatment resistance in cancers [6, 7]. McEvoy et al. [8]
reported that human and mouse RBs had molecular, cellular, and
neurochemical features of multiple cell classes, including amacrine
or horizontal interneurons, retinal progenitor cells (RPC) and
photoreceptors. Moreover, recent studies suggested that the
tumor microenvironment (TME) could regulate tumorigenesis and
metastasis in a variety of tumors [9, 10]. Previous studies revealed
the presence of stromal cell types in TME of RB using
immunohistochemistry [11]. It also has been reported that retinal
astrocytes enhanced the proliferation of cone-like RB cells by
deploying IGFBP-5 [12], while macrophages facilitated tumor
development by expression of growth factors [13]. However, how
tumor and immune cells determine malignant progression in RB
remains uncharacterized.

Recent advances in single-cell RNA sequencing (scRNA-seq)
effectively have revealed intratumoral heterogeneity, rare sub-
population, and cell of origin in human cancers, including primary
glioblastoma [14], head and neck cancer [15], renal tumors [16],
breast cancer [17] and pancreatic ductal adenocarcinoma [18, 19].
Besides, scRNA-seq also has provided many critical insights into
TME. For example, Zheng et al. [20] revealed landscape of
infiltrating T cells in liver cancer and Azizi et al. [21] built an
immune map of breast cancer, revealing continuous T cell
activation and differentiation states. More recently, attempts also
have been made to understand cellular heterogeneity and origins
of RB using scRNA-seq. Collin et al. [22] revealed G2/M cone
precursors as the cell of origin in RB. Yang et al. [23] revealed that
the RB cells originated from the cell cycle-assoicated cone
precursors. However, due to the limited number of cells (8086/
14,739) and samples (two samples) in these two studies, how the
malignant progression in RB is determined by the heterogeneity
of tumor cells and TME remains uncharacterized.
Here, we applied scRNA-seq technology to seven RB primary

tumors with pathological and clinical measurements. The tran-
scriptomic profiles contained a total of 69,820 cells, mainly
including cone precursor (CP)-like subtypes, MKI67+ CP subtypes,
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and glial cells (astrocyte-like and TAMs). Copy number variation
(CNV) analysis revealed the malignant MKI67 + CP cells had
significantly larger copy number changes. We further showed that
the conversion of CP-like to MKI67+ CP caused the loss of
photoreceptor function and increased cell proliferation ability in
RB. Moreover, we found that during the invasion process, TAMs
created an immunosuppressive environment, where the propor-
tion of TAMs decreased, M1-type macrophage was lost. Finally, we
demonstrated that TAMs directly regulated tumor cells through
GRN and MIF signaling pathways, while regulated themselves
through inhibition of CCL and GALECTIN signaling pathways
during the invasion process. Our study presents a comprehensive
and rich single-cell transcriptome landscape of human RB and
provides molecular insights into RB progression.

RESULTS
Single-cell atlas in RB
Using 10× Genomics, we isolated and sequenced RB cells from
whole tumor suspensions of seven RB samples after eyeball
removal surgery (Fig. 1A, Table S1), where 69,820 cells were taken
forward for further analysis after preprocessing, quality control
and batch effect removal (Table S2 and Methods). Correlation
analysis showed high consistency among the mean gene
expression profile of the technically repeated sequencing samples
(p < 1e−16, r > 0.99, Pearson correlation) (Fig. S1A–C), and high
correlation for the single-cell expression profile between different
samples (p < 1e−16, average r of 0.96, Pearson correlation) (Fig.
S1D). Additionally, we found that the expression levels of genes
including many known RB-related oncogenes or suppressor
genes, such as RB1, MDM4, MKI67 and TFF1, were consistent
between our single-cell and bulk-seq expression profiles
(GSE111168), with a high correlation (p < 1e−16, r= 0.72, Pearson
correlation) (Fig. S1E), indicating that our single-cell datasets were
highly reproduceable and reliable.
Graph-based clustering using the first 30 principal components

showed that the cells were distributed into 17 distinct clusters (C0-
C16) (Fig. S2A), ranging in size from 1,385 to 2,972 genes on
average (Fig. S2B) and from 157 to 11,222 cells (Fig. S2C) for each
cluster. Notably, each cluster was composed of cells from multiple
samples (Fig. 1B, F), demonstrating a better data integration. To
identify the cell types in RB, we manually curated a set of known
retinal cell-type specific markers to characterize each cluster (Table
S3). We used three sets of marker genes. (1) Marker genes of
immature precursors including CRX, which is specific to cone, rod,
and bipolar cells (BCs); RXRG, which is associated with cone and
retinal ganglion cells (RGCs); THRB, which is specific to early cone
photoreceptors. (2) Marker genes of mature photoreceptors
including RHO and PDE6A, which are expressed by rods; ARR3
and GNGT2, which are specific to cones. (3) Marker genes of retinal
neurons-related cells including POU4F2, NEFL, SNCG, ATOH7,
EBF3, THY1 and NRN1, which are highly expressed in RGC;
ONECUT1, ONECUT2, ONECUT3, LHX1 and TFAP2B, which are
associated with horizontal cells (HC); VSX2, VSX1 and TRPM1,
which are expressed by BC; GAD1, CALB1, NRXN2, TFAP2A and
PROX, which are specific to amacrine cells (AC) [24–29].
We found that most of the clusters were characterized by high

expression of the markers of CP (CRX, RXRG, THRB) (Figs. 1D, S2C).
Notably, five clusters, including C3, C7, C8, C9, and C10, not only
expressed the markers of cone precursors, but also highly expressed
the proliferation-related genes (MKI67, TOP2A and KIF14), therefore
were recognized as MK167+ CP. In contrast, five clusters, including
C0, C1, C2, C5, and C6, expressed the markers of cone precursors but
expressed low level of MKI67, suggesting that these cells were less
proliferative, therefore were recognized as CP-like (Figs. 1D, S2D).
C16 was interpreted as mature cone-like cells with strong expression
of PDC, ARR3 and GNGT2, while C13 was rod-like cells with strong
expression of PDC, RHO, and PDE6A (Figs. 1D, S2D).

Except for photoreceptor-related markers, we also detected other
marker genes. We found that C15 specially and highly expressed
CD68, HLA-DPA1, HLA-DPB1 and CLU [11], indicating that C15 had
immune properties and thus recognized as glial cells (Figs. 1D, S2D).
C12, highly expressed ACTA2, VIM, and FGF9 [11, 30], was
recognized as cancer-associated fibroblasts (CAFs) (Figs. 1D, S2D).
Notably, we found that the RB1 gene was only expressed in glial
cells and CAFs (Fig. S2E), indicating that glial cells and CAFs, as
components of TME, were distinctly different from other cells. C11
did not express cell-specific markers, but the enrichment analysis of
differentially expressed genes (DEGs) showed that this cluster mainly
performed neural-related functions (Fig. S2D). Therefore, we named
C11 as neural cells. Besides, C4 and C14 expressed markers from
multiple ribosomal genes and therefore were excluded from further
analysis. The details of the identified markers and cell numbers of
individual cell types were listed in Table S4.
Principal component analysis (PCA) showed that CP-like and

MKI67+ CP cells were clustered closer but separated from the
microenvironment related glial cells and CAFs. As expected,
subtypes of the same cell-type clustered together (Fig. 1C). By
comparing the cell composition in RB, we found that most of the
cells were CP-like (~68%), followed by MKI67+ CP cells (~28%)
(Fig. 1E). The cell types in RB were clearly different from those in
normal human retina, where rod photoreceptors and BCs formed
most cells [25, 31, 32]. Notably, the other retinal cell types (such as
RPE, PEC, RGC, AC, BC and HC) related markers (such as SOX2,
MITF, POU4F2, PROX1, VSX2, and PAX) were not expressed in all
the clusters (Fig. S2D). In contrast, 96% of the cells contained
characteristics of CP-like cells, suggesting that RB may originate
from CP rather than the other cell types in retina, consistent with
previous findings [22, 29]. In summary, we presented a detailed
characterization map of cell types and comprehensive transcrip-
tome landscape of human RB in a single-cell resolution.

Malignant cells defined by copy number variations in RB
RB patients with surgery were in the late stage and the tumor
samples lacked normal or precancerous cells. We used a single-cell
profile of a normal human retina as normal control for further
analysis (downloaded from EBI: E-MTAB-7316) [25]. After proces-
sing and filtering, 4657 single cells were used to define 16 cell
clusters, including 9 major retinal cell types, which was consistent
with the original report (Figs. 2A, S3A–C, Methods). By integrating
the single-cell expression profiles of normal retina and RB, we
found that the similar cell types in RB and retina could be well
integrated together (Fig. 2B). For example, the cone-like cells
presented in RB could aggregate with cone cells of the normal
retina, and RB glial cells and retinal microglia cells also clustered
together (Fig. 2B). Our analysis indicated that small percentage of
cells in RB retained the characteristics of normal retinal photo-
receptor cells, while most cells were unique to tumor and more
likely to be tumor malignant cells.
To define the malignant status of cells, we inferred CNVs for

each cell by averaging relative expression levels across intervals of
the genome (Methods) [14, 33]. Based on inferred CNV profiling
from the retina and RB scRNA-seq datasets, we found different
types of CNVs in the RB tumor samples (Fig. 2C), including gain of
chromosome (Chr) 6p (Samples: RB05 and RB06), gain of Chr1q
and loss of Chr16q (RB02, RB03, RB04, and RB07), and gain of Chr7
and losses of Chr3, 8, 10 (RB01). The most frequent of amplified
regions such as Chr1q and Chr6p, and the most frequent of
deleted regions such as Chr16q were consistent with previous
findings [34]. To confirm the accuracy of our inferred CNVs, we
also sequenced five RB samples with match blood samples by
whole-exome sequencing (WES), which showed similar CNV
patterns in RB (Fig. 2C; Methods). For example, comparative
analysis of CNV profiles of RB02 by scRNA-seq and WES showed
the same changes, with common amplification in Chr1, 2 and
deletion in Chr8, 11, 12, and 16.
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Based on the inferred CNVs, we found that the CP-like and
MKI67+ CP cells were malignant cells, which were characterized
by either the amplified copies in Chr1q or Chr6p or deleted
copies in Chr16q (Fig. S4A). On the other hand, glial, cone-like
and rod-like cells tended to be normal cells, which had no copy
number changes in these specific regions (Fig. S4A). In addition
to the use of normal retina as a reference, we also used immune
cells (here glial) as an alternative reference to infer malignant
cells and found the similar changing pattern in copy number
(Fig. S4B).
Comparative analysis of CNV levels further revealed different

degrees of malignancy among cell types or even subtypes. For
example, the highest gain and loss in Chr1q and Chr16q regions
found in MKI67+ CP, followed by CP-like and cone-like (two-
sided p values < 0.01 for all the pairwise comparison, paired t
test, Fig. 2D). Among the subtypes of MKI67+ CP, C7 and C10
exhibited remarkably higher CNV gains on Chr1q and CNV losses
on Chr16p than other subtypes (Fig. 2E). Interestingly, previous
studies reported that some oncogenes, such as KIF14 and MDM4
in Chr1q region, had copy number gains during the transition
from retinoma into RB [2, 35]. We also found that these genes
were amplified in MKI67+ CP, particularly in the C7 and
C10 subtypes (Fig. 2F). Altogether, our results suggested that
MKI67+ CP cells, particularly the C7 and C10 subtypes, were
more malignant in RB.

Functional diversity and transition among RB malignant cell
types
To further understand the functional relevance of cell types in RB,
we compared their functional differences. To do this, we identified
833, 327, and 330 DEGs in cone-like, CP-like and MKI67+ CP cells,
respectively. The enrichment analysis showed that the upregu-
lated genes in cone-like cells were significantly enriched for
several visual-related functions, such as phototransduction, visual
perception, detection of light stimulus, suggesting that cone-like
cells maintain the functions of normal cone cells (Figs. 3A, S5A, D).
The upregulated genes in MKI67+ CP included some oncogenes,
such as MKI67, KIF14, UBE2C, PTTG1, and CDC20, and were mainly
enriched in cell cycle-related functions, such as nuclear division
and cell cycle G2/M phase transition, suggesting a high cell
proliferation capability (Figs. 3A, S5C, F). Among the subtypes of
MKI67+ CP, they also existed some functional differences, such as
nuclear division and chromosome segregation exclusively found
in C7 and C10, indicating their stronger proliferation (Fig. S5G).
Notably, we found that CP-like cells retained some characteristics
of cone-like cells, such as response to light stimulus, while being
enriched in some metabolic-related processes, such as hexose
metabolic process and glucose metabolic process (Figs. 3A, S5B, E).
These results showed that the CP-like cells with the highest
proportion in RB might act as the intermediate cells in the
malignant stage, therefore transforming to MKI67+ CP. During
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transformation of this process, the photoreceptor function
decreased, and the cell proliferation function were strengthened.
Notably, although proliferation signature of G2M phase was

observed in RB [8], the cell cycle states for specific cell types were
unclear. Here, we conducted cell cycle analysis (Methods) and
found that almost all the cone-like cells were associated with G1
phases, illustrating that they were stagnant in division without
proliferation and differentiation potential. Compared with cone-
like cells, CP-like cells contained 50% in the G1 phase, 45% in the S
phase and 5% in the G2M phase, indicating their proliferation
potential. Moreover, 75% of the MKI67+ CP cells were found in
the G2M phase, particularly C7 and C10 are almost 100%,
indicating their strong proliferation potential (Fig. 3B). Consistent
with the results of functional enrichment analysis, such an analysis
further confirmed that the CP-like cells might be intermediate
cells, and the transformed MKI67+ CP cells were in high
proliferation state and were highly malignancy. Next, we explored
the transition among cone, cone-like, CP-like and MKI67+ CP cells
by performing trajectory analysis (Methods). We recapitulated the
tumor differentiation and growth process and observed that the
CP-like cells are mainly enriched in the intermediate cell state,
while the other cell types are mainly enriched in the end of
trajectory branches (Figs. 3C, S6A, B). Of note, the normal or
tending to normal cells (cone and cone-like) and the malignant
cells (MKI67+ CP) were distributed towards the opposite
directions, suggesting CP-like cells may differentiate into MKI67
+ CP cells, or into a small number of cone-like cells. Notably,
among the subtypes of MKI67+ CP, C7, and C10 were at the end
of multiple branches (Fig. S6C). In summary, MKI67+ CP-C7 and
-C10 had the strongest proliferation capability, which might be the
potential targets for future therapies.

Tumor immune microenvironment in RB
Given the immune-related marker gene and functional relevance
of the C15 cluster (glial cells) (Fig. S7A, B), we conducted
unsupervised dimensionality reduction and clustering to identify
immune cell subtypes, including C15_C0 and C15_C1 (Fig. S7C).
The C15_C0 cluster mainly expressed the macrophage cells
marker gene (CD68, CD74) and C15_C1 mainly expressed the
astrocyte cells marker genes (CLU, PAX2) (Fig. S7D), illustrating
that the immune microenvironment in RB tumors mainly
consisted of tumor-associated macrophages (TAMs) and
astrocyte-like cells (Fig. 4A), consistent with previous findings
[11]. After identifying highly expressed genes in TAMs and
astrocyte-like (Fig. 4B), enrichment analysis further showed that
TAMs were mainly responsible for regulation of cell adhesion,
lymphocyte activation, and antigen processing and presentation,
while astrocyte-like were mainly responsible for metabolic
process, endopeptidase activity, and response to hypoxia and
oxygen (Fig. S8A, B).
Interestingly, the proportion of TAMs had significantly negative

correlation with the KI-67 index of the patients (r=−0.82, p=
0.02, Pearson correlation), given that the KI-67 index, a clinical
indicator of tumor proliferation, is often used to reflect the
malignant degree of tumor, with high index representing high
malignant capability (Fig. 4C). Furthermore, based on patients’
clinical pathological information (Table S1), we found that the
proportion of TAMs in the non-invasive group was 11.83-fold
higher than that in the invasive group (p= 0.05, Wilcoxon-test)
(Fig. 4D). The decreased number of TAMs in the invasive RB group
suggested a potential immune depletion. In addition, considering
published signature gene lists for M1-type (classically activated
macrophage) and M2-type (alternatively activated macrophage)
(Table S5), we found that M1-type related genes were the lowest
expression in the invasion group, especially CD86, one typical M1
marker gene, was not expressed in the invasive group (Fig. 4E),
where the presence of M1-type macrophages may help to secret
pro-inflammatory cytokines and chemokines, present antigens

and participate in the positive immune response [36]. In contrast,
a marker of M2-type (alternatively activated macrophage), CD163,
was expressed in both groups but no difference (Fig. 4E, p= 0.9,
Wilcox test). These findings were also confirmed by our
immunohistochemistry (Fig. 4F). Altogether, these results sug-
gested that during the invasion process, M1-type macrophages
may be regressed or transformed into M2-type macrophages.
Differentially expressed gene analysis for TAMs identified 720
upregulated and 154 downregulated genes in the invasive group
compared to the non-invasive group (Fig. 4G). Functional
enrichment analysis further revealed that downregulated genes
were involved in immune-related functions, such as lymphocyte
proliferation, leukocyte cell–cell adhesion, and neutrophil
mediated immunity, indicating immune function loss during the
invasion process (Fig. 4H).
We also observed that the number of astrocyte-likes cells had

negative correlation with KI-67 index with marginal significance (p
= 0.06, r=−0.72, Pearson correlation) and the average proportion
of astrocyte-like cells in the invasive group were only 48% of that
in the non-invasive group (Fig. S9A, B), showing that the number
of astrocyte-like cells also decreased during the invasion process.
By comparing with the expression profiles of the non-invasive, we
identified 418 upregulated genes and 133 downregulated genes
in the invasive group (Fig. S9C). We found that downregulated
genes were mainly enriched in response to reactive oxygen
species, response to hydrogen peroxide, negative regulation of
hydrogen peroxide-induced cell death and response to calcium
ion (Fig. S9D). These functions were found to play important roles
in cancer [37–41], for instance, hydrogen peroxide could inhibit
the growth of cancer cells, that were used as potential therapy
targets for several type of cancer [42, 43]. In summary, our analysis
suggested that TAMs and astrocyte-like cells created an immuno-
suppressive environment during the invasion process in RB.

Inference of intercellular interactions in RB
Understanding interactions between the non-neoplastic and
neoplastic cells in cancer is important to comprehend the
mechanism of cancer progression. We next inferred intercellular
communications between different cell types using CellChat [44]
(Methods). A total of 16 significant signaling pathways were
predicted among the 16 cell types (Fig. 5A), where TAMs received
the strongest incoming signals and astrocyte-like cells generated
the strongest outgoing signals (Fig. 5A). Notably, many of the
high-scoring interactions such as MIF-CD74, SPP1-CD44 were
observed between TAMs and astrocyte-like (Fig. 5B).
Previous studies showed the importance of macrophage-

derived Granulin (GRN) in driving resistance to immune check-
point inhibition in metastatic cancer [45]. We found that TAMs
cooperated with astrocyte-like cells to regulate MKI67+ CP-C3, C7,
and C10 cells through the GRN-SORT1 pair, in which the ligand
GRN was mainly expressed in TAMs, and the receptor SORT1 was
expressed in MKI67+ CP-C3, C7, and C10 (Fig. 5C, D). Previous
finding showed that MIF was overexpressed in these malignancies
in humans, and contributes to the deregulation of angiogenesis,
and metastasis [46], we found that almost all malignant cells
regulated TAM cells through the ligand MIF and the receptors
CD74 (Fig. 5C, D). Another example was the SPP1 and PSAP
signals. The former has been showed to promote the progress of
cancer through modulation of vascular endothelial growth factor
expression [47–49] and the latter has been showed to be essential
for migration of astrocytes [50]. We found that the SPP1 signal was
mainly involved in the interaction between TAMs and astrocyte-
like cells through SPP1-CD44, -ITGAV, and -ITGB1 pairs, and PSAP
signal involved that TAMs regulated astrocyte-like cells through
PSAP-GPR37 pair (Fig. 5C, D).
Besides intercellular communications, TAMs, serving as the

sender and receiver of CCL signal and GALECTIN signal, also
exhibited intra-cellular communications through CCL3-CCL3L1
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and -CCR1 pairs as well as LGALS9-CD45, -HAVCR2, and -CD44
pairs, respectively (Fig. 5C, E). Notably, an important chemokine
implicated in both immune surveillance and tolerance [51], CCL3
(p= 0.009, logFC=−0.70) and CCL3L1 (p= 0.0004, logFC=
−1.87) were downregulated in the TAM of the invasion group

(Fig. 5F), indicating that the CCL signal was weakened during the
invasion process. LGALS9, CD45, HAVCR2, and CD44 also tended
to be downregulated in the invasive group (Fig. 5F) and
meanwhile our immunohistochemistry confirmed their reduced
expression (Fig. 5G), suggesting that this signal was inactivated
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during the invasion, consistent with previous findings of an anti-
proliferative (metastatic) effect of LGALS9 (-HAVCR2) on cancer
cells [52]. To sum, these results highlighted the important
pathways mediated by TAMs in RB, particularly for the CCL and
GALECTIN signals, which were related to the self-regulation of
TAMs and cancer invasion.

DISCUSSION
The current treatments of RB are gradually shifting towards more
advanced tailored therapies that could preserve useful vision and
reduce treatment-related risks [53, 54]. Therefore, it is important to
understand how the intratumoral heterogeneity and microenvir-
onment are related to the occurrence and malignant degrees of
RB, which will facilitate development of new treatment strategy of
RB. Recently, two RB single-cell studies [22, 23] discussed the
heterogeneity of RB tumors. Because these two studies included
only two samples, with a relatively small number of cells (8086/
14,739), they did not identify many rare cell types, such as CAF,
TAM, and astrocyte-like, which had been confirmed to exist in RB
[11]. In addition, we still lack understanding how microenviron-
ment alteration are related to the invasion RB.
Here, we showed that there was strong clonal heterogeneity of

malignant cells among seven RB samples. In addition to common
Chr1p and Chr6q regions copy number amplification and Chr16p
copy number deletion, we found some novel CNVs such as copy
number amplification in chr2p and Chr7q, and deletion in Chr8 and
Chr10 regions. Although CP-like and MKI67+ CP accounting for
major malignant cells, there were still large CNV differences between
cell subtypes. Two subtypes (C7 and C10) of MKI67+ CP cells had
significantly larger copy number changes, indicating higher degree
of malignancy. Notably, the heterogeneity of RB not only reflected in
the difference of CNV, but also in difference of cellular functions.
MKI67+ CP cells were mainly associated with cell proliferation
function, of which the C7 and C10 subtype cells had stronger
proliferation ability. In addition, these two subtypes were at the end
of differentiation by trajectory analysis. Our finding may give an
inspiration for the treatment of RB by inhibiting the proliferation of
MKI67+ CP cells, particularly the C7 and C10 subtypes.
A better understanding of TME in RB and the potential for

immunotherapy may lead to novel therapeutic strategies. We
found that TME in RB was mainly composed of TAMs, astrocyte-like
and CAF cells. Our study showed a few lymphocytes, particularly
T cells, in RB. This was consistent with recent studies also showing
the absence of CD8+ cells, including T cells, B cells, in RB [55].
These results suggested that RB has relatively poor immunogeni-
city compared with most of tumors, which may contribute to the
poor efficacy of immunotherapy in RB. Besides, we found that
during the invasion process, the proportion of TAMs and astrocyte-
like decreased, M1-type macrophage was lost, and the immune
functions of TAMs and anti-cancer functions of astrocyte-like were
also depressed, which may reflect an immunosuppressive environ-
ment. The number of TAMs may indicate the invasion of RB
patients. By calculating the information interaction between cells,
we discovered that GALECTIN and CCL, two important pathways

that mediated immunosuppression, were inhibited during the
invasion process, indicating its anti-invasion effect and its potential
as an immunotherapy target. In addition, previous studies have
reported that TAMs were related to tumor vascularization [56, 57],
and expression of GRN by TAMs was able to increase their
angiogenic potential in breast cancer [58]. Interestingly, we also
found that GRN was expressed in TAMs in RB (Fig. S11A), and the
expression of GRN was positively correlated with the expression of
angiogenesis-related genes (p= 0.0002, r= 0.313, Pearson correla-
tion, Table S5, Fig. S11B), indicating the ability of TAM to promote
angiogenesis through GRN expression in RB.
In addition to TAMs and astrocyte-like cells, we found that CAFs

were characterized by highly expressed cell proliferation-related
genes, such as PLK2, ATF3, SNHG12, HJURP, E2F8, and EXO1 (Fig.
S10A), and significantly enriched by many cell proliferation and
cancer-related functions in CAFs, such as cell cycle, DNA
replication, DNA damage and p53 signaling pathway (Fig. S10B,
C). Further analysis, we found that CAFs interacted with astrocyte-
like and TAMs through FGF and GAS signals (Fig. S12A). Previous
studies showed that CAFs promoted tumor progression through
the activation of FGF signaling in a variety of cancers, including
colon cancer [59], skin squamous cell carcinomas [60], lung
adenocarcinoma [61] and ovarian cance [62]. Here, we found that
FDF9 from CAFs and neural cells was the primary ligand for FGF
signaling, which bound to the receptor PGFR1 secreted by
astrocyte-like cells (Fig. S12B). GAS signal contained GAS6-AXL
pair, which was mainly mediated by CAFs and TAMs (Fig. S12A, B).
In the TME, CAFs express Gas6 [63] and the Gas6/Axl signaling
pathway has been implicated in the promotion of tumor cell
proliferation, survival, migration, invasion, angiogenesis, and
immune evasion [64]. These results indicated that CAFs might
play a role in promoting tumor proliferation.
In summary, our data provided a valuable resource for

deciphering the comprehensive gene expression landscape of
heterogeneous tumor and immune cell types in RB, which will
facilitate the understanding of the mechanism of RB progression
and give clues to future treatment of RB.

MATERIALS AND METHODS
Human RB samples
Eyes of patients with clinical diagnosis of RB were enucleated through
surgery at the department of Sun Yat-sen University Eye Hospital. All
experiments involving patients had signed the consent forms and the
proposed studies were approved by Ethics Committee (2021KYPJ065).
Immunohistochemistry sections were obtained from primary tumor tissues
and examined by professional pathologists. Histological characteristics and
Ki-67 proliferation status were evaluated after surgery. The peripheral blood
of the patient was used for targeted exon sequencing of 126 common
ocular genetic pathogenic genes, and no pathogenic mutations in the RB1
gene were detected. Age, gender, RB1 germline mutation status, histological
pathology and Ki-67 index of patients involved were listed (Table S1).

Single-cell RNA sequencing
We collected fresh RB tumor tissues from the enucleated eyeballs. Single
cells of RB tumor tissues were isolated by using Neuronal Isolation Enzyme

Fig. 5 Intercellular and molecular interactions in RB tumors. A The heatmap shows the relative strength of the outgoing signaling pathway
(left) and the incoming signaling pathway (right) across 16 cell types. The color represents the relative signaling strength. The top colored bar
plot shows the total signaling strength of a cell-type by summarizing all signaling pathways displayed in the heatmap. The right gray bar plot
shows the total signaling strength of a signaling pathway by summarizing all cell types displayed in the heatmap. B This chord diagram shows
specific connections between TAMs ligands and other cell types receptors. The color represents different cell types, and the thickness of the
line represents the strength of the connection. C This chord diagram shows TAMs-mediated signaling pathway networks, including GRN, MIF,
SPP1, PSAP, CCL, and GALECTIN signaling networks. D Violin plot shows the expression of the GRN, MIF, SPP1 and PSAP signaling pathway
related ligands and receptors in 16 cell types. E Violin plot shows the expression of the CCL and GALECTIN signaling pathways related genes
across 16 cell types. F Violin plot shows the expression of the CCL and GALECTIN signaling pathways related genes in the invasive and non-
invasive groups. G Expression of the CD68 (TAM marker gene), GALECTIN signal related ligand LGALS9 and receptor PTPRC (CD45) in FFPE
sections of invasive and non-invasive RB samples (original magnification, ×50).
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(with papain) (Thermo Fisher, #88285).The libraries were constructed using
the Chromium platform and Chromium Single-Cell 3′v2 chemistry. Briefly,
cellular suspensions were loaded on a Chromium Single-Cell Instrument
(10x Genomics, Pleasanton, CA) for GEMs Generation and Barcoding.
Single-cell RNA-Seq libraries were prepared using the Chromium Single-
Cell Library Kit (10x Genomics, Pleasanton, CA). Single-cell libraries were
sequenced in 150 nt paired-end configuration using an Illumina HiSeqX10
and Novaseq.

Whole-exome sequencing
Genomic DNA was extracted from five RB samples (tissue and blood) using
Qiagen DNAeasy kits. Adaptor-ligated libraries were constructed using
Paired-End DNA kits. The exome capture was performed by using
SureSelect Human All Exon, followed by 150 nt paired-end whole-exome
sequencing on Illumina NovaSeq platform.

10X Genomics cell ranger pipeline
Illumina BCL files were converted to fastq files by using 10X Genomics Cell
Ranger pipeline mkfastq function (v 2.1.0; https://support.10xgenomics.
com/). Next, cell ranger count function was used to generate Gene-
Barcode matrices from the fastq files, which uses the STAR algorithm to
map high-quality reads to the human reference genome (GRCh38),
followed by UMI counting. The number of estimated cells, average reads
and median genes in each sample was listed (Table S2).

Single-cell data processing
Gene-Barcode matrix of each sample was imported into Seurat package
(v3.2.0; https://github.com/satijalab/seurat). We calculated the expressed
cell number in each gene, the number of expressed genes in each cell, and
the ratio of mitochondrial genes, red blood cell genes, ribosomal genes,
which was used as quality control to remove outlier genes and cells. Genes
expressed in a minimum of ten cells and cells with 1000–4000 detected
genes, expressing <5% mitochondrial genes, expressing <10% red blood
cell and expressing <40% ribosomal genes were retained. After filtering,
the number of cells and genes in each sample was listed in Table S2. Next,
data was normalized using NormalizeData() and 2000 high variable genes
were identified with the FindVariableGenes(). Data from multiple samples
were merged using the FindIntegrationAnchors() and IntegrateData()
function with the first 20 CC dimensions. The integrated dataset was scaled
and reduced into a lower dimensional space using principal components
analysis (PCA). The top 30 principal components were used as inputs for
graph-based cell clustering at a resolution value of 0.6. Clustering results
were visualized using Uniform Manifold Approximation and Projection
(UMAP) with Seurat functions RunUMAP.

Identification of RB cell types
Marker genes of each cluster were identified by using FindAllMarkers()
function in Seurat, which compared each cluster to all others combined
using the Wilcoxon method. Marker genes expressed in a minimum of 25%
of cells and at a minimum log fold change threshold of 0.25 were retained
(Supplementary File 1). Due to the lack of known marker genes for RB cell
types, we manually collected a set of well-established marker genes that
covering all known major cell types in the retina (Table S3). We assessed
the putative identity of each cell through the expression of the known
marker genes in each cluster.

Copy number variation (CNV) analysis based on scRNA-seq
CNV was estimated by using the R package inferCNV (https://github.com/
broadinstitute/inferCNV; v1.6.0), which sort the genes according to their
chromosomal location and apply a moving average to the relative
expression values. Here, to infer the CNVs of RB cells (69820 cells), we use 3
retinal samples (4657 cells) as a reference, the count matrix as input, and
calculate the copy number changes of all cells using the infercnv::run()
function with setting parameters cutoff= 0.1, denoise= TRUE, cluster_-
by_groups= TRUE and HMM= TRUE. For the grouping information of
cells, we use two types, one is by sample, the other is by cell type. Notably,
we also used glial cells as a reference to calculate the CNV of other cells in
RB with the same parameters as above.

Correlation analysis
The mean expression levels of all cells in each sample were calculated,
which is used to calculate the Pearson’s correlation coefficient between

samples. Similar strategy is used to evaluate the correlation between bulk
RNA-seq and single-cell RNA-seq expression profiles.

Go function enrichment and KEGG pathway analysis
Enrichment analysis for detected significant DEGs was performed using
clusterProfiler package [65], which can analyze and visualize functional
profiles (GO and KEGG).

Cell cycle prediction
Cell cycle was predicted using CellCycleScoring() of Seurat. In brief, the
normalized scores of S phase and G2/M phase of each cell was calculated
by using the average expression levels of 43 S phase marker genes and 54
G2/M phase marker genes (Seurat package provided), and then assigns
each cell to the phase with the highest score (if both scores are negative,
the cell is assigned to G1 phase).

Pseudo-time analysis
Monocle [66] (v2) was used to perform pseudo-time analysis to explore the
development trajectory which introduced the strategy of ordering single
cells in pseudo-time. After identifying the cell types by Seurat, we selected
cone-related cell types, including cone (101 cells), cone-like (157 cells), CP-
like (42692 cells) and MKI67+ CP (17731 cells) for trajectory analysis. Due
to the excessive number of CP-like and MKI67+ CP cells, we randomly
selected 10% of the CP-like cells and 5% of the MKI67+ CP cells for testing.
Here, the count matrix was used as input. We first screened the genes that
expressed in at least 500 cells, and identifed differentially expressed genes
(DEGs, qval <0.01) using the differentialGeneTest(). These DEGs were chose
to define a cell’s progress. Next, we reduced the space down to one with
two dimensions to easily visualize and interpret while Monocle is ordering
the cells using reduceDimension() function with the following parameters:
max_components= 2, method= “DDRTree”. Finally, the orderCells() was
used to sort the cells, and the plot_cell_trajectory() function was used for
visualization. Since some cells were randomly selected, we repeated this
process 5 times to check whether the trajectory has changed (Fig. S6A, B),
and found that the trajectory was basically similar.

Cell–cell interaction analysis
CellChat (V1.1.2) was used to infer the RB cell–cell communications and
significant pathways by integrating gene expression with prior knowledge
of the interactions between signaling ligands, receptors and their cofactors.
To identify potential cell–cell interactions that were perturbed or induced in
RB samples, we focused on differentially expressed ligands and receptors (P
< 0.05) in 16 cell types, including TAM, CP-like, MKI67-CP, CAF, etc. Briefly,
we followed the official workflow and loaded normalized data (19956 genes
and 62747 cells) into createCellChat() to create a CellChat objects. Next, we
loaded CellChatDB.human ligand–receptor database and used the
“Secreted Signaling” pathways for cell–cell communication analysis. Then,
identifyOverExpressedGenes() and identifyOverExpressedInteractions() with
default parameters were used to identify overexpressed signaling genes
and ligand–receptor interactions (pairs) associated with each cell type;
ComputeCommunProb() and computeCommunProbPathway() functions
with default parameters were used to identify putative interaction pairs
and pathways. Finally, netAnalysis_computeCentrality() function was
applied on the netP data to determine the senders and receivers, and
netVisual() function was used to visualize communication network
associated with both signaling pathway and individual L-R pairs.

Whole-exome sequencing analysis
Quality control was performed using Fastp software to filter low-quality
reads [67]. Read pairs were aligned to the reference human genome hg38
using the Burrows-Wheeler Aligner (BWA) [68]. Bam files were duplicate-
marked using Picard, and base quality recalibration was performed using
Genome Analysis Toolkit toolbox (GATK4.0.9) [69]. Next, copy number
variants were identified using CNVkit [70]. Finally, we summarized segment
calls to gene levels copy number by GISTIC2.0 [71], which identifies regions
of the genome that are significantly amplified or deleted across a set of
samples. The gene copy number matrix was listed in Supplementary File 2.

Immunohistochemistry (IHC)
For immunological experiment, the whole RB eyeballs were embedded in
paraffin, and serial 4-μm-thick sections were cut by transecting near the
optic nerve. The sections were stained with the following primary
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antibodies: CD68 (ab955; Abcam) to detect TAMs, CD86(14-0862; Invitro-
gen), CD163(ab182422; Abcam), PTPRC (CD45) (14-0451; Invitrogen) and
LGALS9 (ab69630; Abcam). Alexa Fluor secondary antibodies (Invitrogen)
were used for detection of primary antibodies. DAPI was used to label
nuclei. Imaging was performed with a Zeiss LSM 880 confocal microscope
at ×20 magnifications. Images were visualized with Zeiss Zen software
(blue edition; v.2.5).

Public datasets
We downloaded the fastq files of retinal single-cell RNA-seq at
ArrayExpress under the accession number E-MTAB-7316 (http://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-7316) [25]. Single cells from three
independent neural retina samples were captured in five batches using the
10X Chromium system. FASTQ files were mapped to the human genome
(GRCh38) and all libraries were aggregated to the same effective
sequencing depth with the Cell Ranger pipeline (cell ranger aggr function).
We initially obtained 14,829 cells. After adopting the same quality control
as RB, we obtained 4,657 high-quality cells. Next, PCA was carried out, and
the top 30 PCs were retained. Clustering was performed with the clustering
resolution set to 0.6, and 14 cell clusters were identified. 9 cell types were
determined by known marker genes’ expression. For the integration
analysis of retinal dataset and RB dataset, we also used FindIntegrationAn-
chors() function to integrate in Seurat. All parameters were the same as
those used in the above analysis of RB. Besides, we downloaded mRNA
profiles of RB samples [7] and para-tumor [3] from GSE125903 [72], which
were generated by RNA sequencing.
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