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As a critical member of the ubiquitin-specific proteolytic enzyme family, ubiquitin-specific peptidase 20 (USP20) regulates the
stability of proteins via multiple signaling pathways. In addition, USP20 upregulation is associated with various cellular biological
processes, such as cell cycle progression, proliferation, migration, and invasion. Emerging studies have revealed the pivotal role of
USP20 in the tumorigenesis of various cancer types, such as breast cancer, colon cancer, lung cancer, gastric cancer and adult T cell
leukemia. In our review, we highlight the different mechanisms of USP20 in various tumor types and demonstrate that USP20
regulates the stability of multiple proteins. Therefore, regulating the activity of USP20 is a novel tumor treatment. However, the
clinical significance of USP20 in cancer treatment merits more evidence. Finally, different prospects exist for the continued research
focus of USP20.
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FACTS

● USP20 is upregulated in multiple cancer types.
● USP20 mainly exhibits a promotive effect in breast cancer,

lung cancer, and colon cancer; however, it shows inhibitory
effects in gastric cancer.

● Regulating the expression of USP20 is a novel treatment for
tumors.

● Deletions of USP20 exhibit an inhibitory effect on the
tumorigenesis of some cancer types.

OPEN QUESTIONS

● Does USP20 have a common mechanism in tumors?
● Can these emerging inhibitors of USP20 be successfully

applied soon in clinical practice?

INTRODUCTION
The ubiquitin–proteasome system (UPS) is the most important
post-transcriptional modification in eukaryotic cells [1, 2]. The
components of this system include ubiquitin (ub), E1 ubiquitin-
activating enzyme, E2 ubiquitin-conjugating enzyme, E3 ubiquitin
ligase and 26S proteasome [3]. Ubiquitylation is a reversible

posttranslational modification that plays a role in various biological
processes, including protein degradation [4], DNA damage and
repair [5], cell cycle progression [6], and immune response [7].
Ubiquitin, comprising 76 amino acids, is highly conserved among
eukaryotes and contains seven lysine residues, K6, K11, K27, K29,
K33, K48, and K63 [8]. Of these residues, K48 regulates the
degradation of target proteins by linking polyubiquitin, K63
increases cell signal transduction and protein kinase activation
by linking linear polyubiquitin chains, and the others are linked by
mono- or polyubiquitin chains [9]. The UPS includes two steps.
First, in ubiquitylation, one or more ubiquitin proteins are added to
tag the substrate proteins. Second, the marked proteins will be
identified by the 26S proteasome for cleavage, degradation, and
recycling [10]. Deubiquitylation is the opposite process of
ubiquitylation. Ubiquitination and deubiquitylation are always in
a state of dynamic equilibrium [10]. Deubiquitinating enzymes
(DUBs) are involved in deubiquitylation, which can rescue the
marked substrate proteins by remodeling and removing con-
jugated ubiquitin chains [11] (Fig. 1A). The balance between
ubiquitin enzymes and DUBs ultimately determines the ubiquitina-
tion status of a given target protein, making protein ubiquitination
a multifunctional and dynamic posttranslational modification.
Ubiquitination plays a key role in multiple cellular processes,
including gene expression [12], cell cycle progression [13], DNA
damage and repair [14], cell growth [15], and apoptosis [16]. These
ubiquitination-regulated processes are critical to maintain cellular
homeostasis, and abnormal regulation of these processes con-
tributes to tumor development [17, 18]. The importance of
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ubiquitination in cancer-related cell function and successful use of
the proteasome inhibitor bortezomib in multiple myeloma have
attracted increased attention concerning the potential of ubiqui-
tination/deubiquitination proteins in tumor therapy [19, 20].
Recently, an increasing number of studies have demonstrated

that DUBs regulate various biological or pathological processes by
stabilizing tumor or antitumor proteins [21–24]. As recently
described, human DUBs are subdivided into seven families,
ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydro-
lases (UCHs), ovarian tumor proteases (OTUs), JAMMs (also known
as MPN+ and hereafter referred to as JAMM/MPN+), MJDs (also
known as Josephins), the MINDY family and the ZUP1 family
(these two new families of DUBs were discovered recently) [25]
(Fig. 1B). Among them, USPs are the largest subfamily of DUBs that
participate in the progression of multiple tumors [26–29]. There-
fore, studies on DUBs as a therapeutic target warrant further
exploration. Table 1 shows detailed information about different

types of DUBs and their roles in different cancers. Presently, many
related inhibitors of DUBs have been used in tumor therapeutic
models, further illustrating the potential of DUBs as therapeutic
targets. Previous studies have described that ubiquitin-specific
peptidase 20 (USP20) plays a critical role in tumorigenesis [30]. In
this article, we first briefly discuss the function of USP20, focusing
on its increasingly recognized potential as a target in cancer
treatment. Finally, we summarize the alterations of USP20 in
multiple human cancers and discuss novel findings regarding the
potential of this enzyme as a tumor therapeutic.

STRUCTURE AND FUNCTION OF USP20
The ubiquitin-specific proteolytic enzyme family is the largest
subtype of DUBs identified thus far. USP20, a specific member of
this family, is also called pVHL-interacting deubiquitinating enzyme
2 (VDU2) [31, 32], and was first identified as a von Hippel–Lindau

Fig. 1 The ubiquitin–proteasome system cascade and the classification of deubiquitylase family. A Diagrammatic of key events in
ubiquitylation and deubiquitylation. The E1 enzyme activates and combines with ubiquitin moiety in an ATP-dependent manner. Then the
ubiquitin moiety is transferred to an E2 conjugating enzyme, Finally, ubiquitin is transferred directly from E2 enzyme to substrate protein by
E3 ligase, on the one hand, the labeled protein is degraded by the 26s proteasome. Or the DUBs stabilize the targeted protein by removing
the ubiquitin moiety, the ubiquitin becomes free ubiquitin to reuse. B The reported subclass of DUBs including ubiquitin-specific proteases
(USPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), JAMMs (also known as MPN+), MJDs (also known as
Josephins), and the two new families: MINDY family and the ZUP1 family.
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(VHL) syndrome-related deubiquitinase [33, 34]. Human USP20
comprises 914 amino acids with a predicted molecular weight of
102 kDa [34]. The primary structure of human USP20 includes an
N-terminal zinc finger ubiquitin-specific protease (ZnF-UBP)
domain, a USP catalytic domain and two tandem domain present
in ubiquitin-specific proteases (DUSP) domains [35] (Fig. 2). The
ZnF-UBP domain is also found in some other USPs and is the
ubiquitin-binding motif [36]. However, the definite function of this
domain of USP20 has not been demonstrated very clearly until
now. Yang et al. demonstrated that the ZnF-UBP domain of USP20
presented weak binding capacity to monoubiquitin [34], however,
this domain characteristically binds with K48-linked di-ubiquitin
[37]. The USP catalytic domain, the structure of which is similar to
other members of the USP family, is the most important functional
area of USPs and exhibits strong homology in two regions that
surround the catalytic Cys box and His box [38]. USP20 comprises
three domains that form a shape that looks like the right hand
extended. These three domains are similar to the “palm”, “finger”
and “thumb” domains. This right-hand-like structure can form a
ubiquitin-binding surface that is convenient for ubiquitin binding.
The catalytic center is located between the “palm” and “thumb”,
and the “hand” holds the ubiquitin molecule of the target proteins.
Next, the ubiquitin molecules are removed from the labeled

proteins so that the ubiquitin molecules and proteins are recycled
and reused [39, 40]. The DUSP domain is a tripod structure similar
to AB3 formed by three alpha-helices forming a bundle structure to
support three strands of antiparallel beta folds [35]. Studies have
reported that the DUSP domain in DUBs may play a crucial role in
protein–protein interactions or direct substrate recognition [35].
Kommaddi et al. demonstrated that the phosphorylation status at
serine 333 of USP20 is critical for deubiquitinase activity.
Subsequently, they found that protein kinase A phosphorylates
USP20 on serine 333, inhibits the trafficking of the substrate β2AR
(β2 adrenergic receptors) and decreases degradation via autopha-
gosomes [41]. Berthouze et al. also demonstrated that
USP20 served as a novel regulator for β2AR recycling and
resensitization [42]. Lu et al. demonstrated that mechanistic target
of rapamycin complex 1 phosphorylated USP20 at serine 132 and
serine 134 and then increased the stability of HMG-CoA reductase
(HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic
pathway [43].

USP20 AS A POTENTIAL CANCER TARGET
As a member of the largest subfamily of DUBs, USP20 plays key
roles in various tumors by stabilizing tumorigenic or antitumor

Table 1. Other DUBs and cancer.

DUB Cancer type Tumorigenesis Reference

USP1 Osteosarcoma Promotes the invasion of osteosarcoma cells [84]

Glioma USP1 stabilizes EZH2 to activate β-catenin to drive glioma tumorigenesis [85]

Breast cancer Regulates metastasis [86]

USP2 Breast cancer Promotes cell migration and invasion [87]

USP4 Breast cancer Promotes invasion [88]

Melanoma May be an oncogene [89]

Glioblastoma Promotes glioblastoma multiforme [90]

Facilitates chemoresistance [91]

USP5 Pancreatic cancer Promotes tumorigenesis and progression [92]

Non-small cell lung cancer Upregulation of USP5 contributes to tumorigenesis [93]

Colorectal cancer Promotes cell growth and resistance to chemotherapeutics [94]

USP7 Medulloblastoma Promotes medulloblastoma cell survival and metastasis [95]

Breast cancer Promotes breast carcinogenesis via stabilizing PHF8 [96]

Osteosarcoma Promotes metastasis by inducing EMT [97]

Lung cancer Modulates the antitumor immune response [98]

USP8 Cervical cancer Associated with a poor prognosis in cervical squamous cell carcinoma patients [99]

Suppresses apoptosis by stabilizing FLIPL [100]

USP10 Colon cancer Promotes tumor proliferation [101]

Lung cancer Inhibits cell proliferation, invasion and cell growth [102, 103]

The USP10-HDAC6 confers cisplatin resistance [104]

Liver cancer Promotes cell proliferation by stabilizing YAP/TAZ [105]

Promotes metastasis by stabilizing Smad4 [106]

Inhibits p53 Signaling and constricts poor outcome [107]

Acute myeloid leukemia Stabilizes oncogenic FLT3 [108]

USP11 Colorectal cancer Promotes growth and metastasis [109]

Ovarian cancer Promotes EMT by stabilizing Snail [110]

USP13 Non-small cell lung cancer Promotes tumor progression [111]

USP14 Breast cancer Regulates cell cycle progression and cell proliferation and metastasis [112–114]

Enhances sensitivity to enzalutamide [115]

USP30 Liver cancer Stabilizes DRP1 to promote hepatocarcinogenesis [116]

UCHL1 Gastric cancer Promotes metastasis [117]

OTUB2 Non-small cell lung cancer Promotes tumorigenesis [118]
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proteins. USP20 was first identified as a substrate of the VHL tumor
suppressor protein [32]. The pVHL protein is encoded by the VHL
gene, which plays a key role in cellular oxygen sensing by
ubiquitinating hypoxia-inducing factors and is then degraded by
the proteasome [44]. The dysregulation of the pVHL protein is
related to VHL (Hippel–Lindau syndrome) disease. This disease is a
rare autosomal dominant hereditary tumor syndrome involving
multiple systems, manifested as multiple familial benign and
malignant tumors and cysts of the central nervous system and
internal organs [45–47]. Considering that USP20 is a substrate of
the pVHL protein, we speculate that pVHL protein inactivation
induces decreased degradation of USP20, promoting the progres-
sion of VHL disease. An additional characterized substrate of the
pVHL E3 ligase complex is the α-subunit of hypoxia-inducible
factor 1 (HIF1α) [48]. Early studies have reported that HIF1α is
overexpressed in various cancer types and regulates the expres-
sion of most genes involved in many essential biological and
pathological processes [49–52]. Li et al. found that USP20
recognizes and binds to HIF1α, removes its ubiquitin chain, and
maintains high expression levels of HIF1α, increasing the
transcription of hypoxia-inducible element genes [48]. Consider-
ing that HIF1α activates the transcription of genes that are
involved in crucial aspects of cancer biology, including angiogen-
esis [53], cell survival [54], glucose metabolism [55], and invasion
[56], by triggering multiple signaling pathways, USP20 can
regulate multiple biological processes by stabilizing tumorigenic
or antitumor proteins. In addition, studies have demonstrated that
USP20 triggers the activation of multiple pathways, including Wnt,
MAPK, HIF1, NF-κB, cell cycle checkpoint and many other signaling
pathways [33, 57–60], promoting the processes of multiple cancer
types (Fig. 3). As a results, these findings prompt USP20 may be a
potential cancer target.

ROLE OF USP20 IN SEVERAL TYPES OF CANCER
Colon cancer
Colon cancer is a leading cause of cancer-related death worldwide
[61]. Wu et al. first identified β-catenin as a substrate of USP20,
and their study also suggested that USP20 stabilizes β-catenin by
decreasing the ubiquitination of β-catenin in vivo and in vitro [57].
To further investigate the role of the USP20-β-catenin axis in
cancers, they detected the protein and mRNA levels of USP20 and
β-catenin in colon cancer and other cancer cell lines, including
osteosarcoma, cervical, breast, ovarian, and colorectal cancer cell
lines [57]. They demonstrated that USP20 and β-catenin were
upregulated and correlated in most of these cancer cell lines. And

they also observed that USP20 overexpression markedly increased
cell proliferation, migration and invasion in these cancer cell lines.
They demonstrated that USP20 expression was positively corre-
lated with the β-catenin levels in clinical colon cancer samples
[57]. Previous publications have identified β-catenin as an
oncogene [62], prompting us to speculate that USP20 promotes
tumorigenesis by regulating β-catenin stability. Thus, the USP20-
β-catenin axis may be an emerging therapeutic target in colon
cancer.

Breast cancer
Breast cancer is the leading cause of cancer-related death among
women [61]. Sowa et al. first identified USP20 as a candidate
interacting with the extracellular signal-regulated kinase 3 (ERK3)
protein via global proteomics analysis [63]. Mathien et al. found
that USP20 was regulated in breast cancer and that the discovered
USP20 played a crucial role in the migration of breast cancer lines
[58]. Among the mechanisms by which USP20 affects the
migration of breast cancer cell lines, they demonstrated that
USP20 was correlated with ERK3, and the stability of ERK3 protein
was increased by USP20 [58]. And they investigated the possible
effect of USP20 on the contribution of ERK3. They demonstrated
that USP20 overexpression could enhance HeLa cell migration,
and they further examined the impact of the USP20-ERK3 axis in

Fig. 2 The structure of USP20 and the function of each domain of USP20. USP20 contains three different domains, including ZNF-UBP, USP,
and DUSP domain. Those different domains of USP20 play crucial roles in different biological processes.

Fig. 3 The mechanism of deubiquitinating enzyme USP20 in
cancer. USP20 regulates cell proliferation, migration, invasion,
metastasis, and tumor growth by participating in multiple signaling
pathways in various cancer types.
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regulating the migration of breast cancer cell lines [58]. First, their
studies showed that both USP20 and ERK3 are overexpressed in
multiple breast cancer cell lines, including MCF7, T47D, and SKBR3.
They observed a strong significant correlation between the USP20
and ERK3 protein levels. Second, they depleted USP20 in MCF7
cell lines, resulting in markedly decreased ERK3 protein levels and
reduced migration of MCF7 cells [58]. These results indicate that
the USP20-ERK3 axis can promote the migration of breast cancer
cell lines, suggesting that USP20 may play an important role in the
tumorigenesis of breast cancer.
Another important regulating mechanism in breast cancer is the

USP20-SNAI2 axis. SNAI2 (also known as SLUG) is reported as a
metastasis-related transcription factor [64]. Previous studies have
shown that estrogen receptor α (ERα) repressed the expression of
SNAI2 [65], and the protein level of ERα correlated inversely with
SNAI2 in breast cancer cell lines and tissues [66]. Li et al. first
identified SNAI2 as one substrate of USP20, they found that USP20
can increase the stability of SNAI2, and subsequently increase the
migration and invasion of ER– breast cancer cell lines [67]. In an
in vitro study, they found that knockdown of USP20 can suppress
the lung colonization of breast cancer cell lines. Meanwhile, they
detected USP20 and SNAI2 in ER– clinical breast cancer samples,
and demonstrated that USP20 positively correlated with SNAI2.
Higher protein level of USP20 and SNAI2 was also demonstrated
to predict worse prognosis in ER– breast cancer patients [67]. Thus,
their study suggested that USP20-SNAI2 axis may serve as a novel
therapeutic target axis in breast cancer.

Cervical cancer
Cervical cancer has been a cause of cancer-related death in recent
years among women [61]. Ha et al. first demonstrated that USP20
plays a critical role in regulating the stability of p62 in tumor
necrosis factor (TNFα)-mediated nuclear factor kappa light chain
enhancer of activated B cells (NF-κB) activation [59]. In their study,
they found that USP20 increased the stability of p62 by
deubiquitinating lysine 48 (K48)-linked polyubiquitination, promot-
ing cell survival. They further demonstrated the depletion of UPS20
in HeLa cervical cancer cell lines, resulting in a reduced NF-κB-
mediated pro-survival signal and increased receptor-interacting
serine/threonine protein kinase 1 (RIPK1)-independent apoptosis
[59]. Their data defined a novel mechanism by which USP20
regulates the protein level of p62. They found that a high level of
p62 protein promoted cell survival and decreased the cell death of
HeLa cell lines [59]. This report is the first to reveal the role of the
USP20-p62 axis in NF-κB-mediated cell survival. This finding
suggests that USP20 acts as an essential regulator in cancer
progression and will be a novel therapeutic target for cancer.
Autophagy is critical in tumorigenesis in multiple cancer types

[68–70]. Autophagy begins with the formation of autophagosomes, a
process that depends on the activity of the serine/threonine kinase
ULK1 (hATG1) [71]. A previous study reported that USP20 is localized
to the endoplasmic reticulum (ER) [72, 73], and USP20 may play an
important role in autophagy. Kim et al. demonstrated that USP20 acts
as a positive regulator of the autophagy process by increasing the
stability of unc51-like kinase 1 (ULK1) in the HeLa cell line [74]. They
found that this regulation also existed in the colon cancer cell lines
HCT116 and HT29, and the basal level of ULK1 was the critical factor
in inducing autophagy initiation [74]. In their study, they also
reported USP20 dissociated from ULK1 at a later time after autophagy
induction and promoted the next step in autophagy. The dissociated
ULK1 transited into lysosomes to degrade and maintain the basal
level. They also found that USP20 is critical for cell survival under
starvation [74]. Dynamic regulation of the USP20-ULK1 axis may act
as a promising target to inhibit autophagy in certain human diseases.

Gastric cancer
Wang et al. verified that both USP20 and Claspin proteins are
expressed at low levels in human gastric cancer tissues, and this

phenomenon was also observed in gastric cancer cell lines (MGC-
803, NCI-N87, MKN45, BGC-823, KATO III, SGC-7901, AGS, SNU-1,
SNU-16 and MKN74) [60]. They also found that low USP20
expression levels correlated with a poor prognosis in patients [60].
In their study, they demonstrated USP20 regulated the stability of
Claspin and thus modulating the activation of the cell cycle
checkpoint. Low expression of USP20 significantly promoted cell
proliferation and accelerated the transition from G1 to S phase of
the cell cycle [60]. This finding suggested that USP20 could inhibit
cell proliferation of gastric cancer cells by regulating Claspin. It
prompted us to speculate that USP20 is a promising new
molecular target to design new therapeutic modalities to control
the development and progression of gastric cancer.

Adult T cell leukemia
Adult T cell leukemia (ATL) is a fatal hematopoietic malignant
tumor caused by type 1 human T cell leukemia virus (HTLV-1)
infection [75–77]. Yasunaga et al. first identified USP20 as the first
DUB shown to deubiquitinate Tax, and their findings also
suggested that ubiquitinated Tax was necessary for activation of
the NF-κB signaling pathway [78]. Tax is expressed in many ATL
cell lines [77]. Interestingly, Yasunaga et al. found that USP20
expression was significantly low in these cell lines [78]. Because
NF-κB is a pro-survival and pro-proliferative factor in HTLV-1 cells,
they discovered that the upregulation of USP20 protein negatively
regulated NF-κB signal transduction and inhibited cell prolifera-
tion of the ATL2 cell line [78]. A previous study showed that
ubiquitinated TNF receptor associated factor 6 (TRAF6) is a key
regulator of the activation of the NF-κB signaling pathway [79].
Yasunaga et al. also found that Tax overexpression increases
TRAF6 ubiquitination, activating NF-κB. TRAF6 ubiquitination
induced by Tax was also sensitive to USP20 deubiquitination
[78]. In summary, their findings demonstrated that USP20 acted as
a DUB for Tax and TRAF6 and as a negative regulator of NF-κB
signal transduction. These results prompted us to speculate that
USP20 may be a potential new therapeutic target for ATL.

CHALLENGES AND PROSPECTS
In the past few years, researchers have overcome many difficulties
and have screened many small-molecule compounds, including
inhibitors and activators. Table 2 presents many preclinical
inhibitors of DUBs. However, only one small-molecule compound
exists for USP20. GSK2643943A, a small-molecule inhibitor
targeting USP20/Ub-Rho, was first identified by GlaxoSmithKline
(GSK) from a screen involving compounds. The structure of this
USP20 inhibitor is shown in Fig. 4, but this inhibitor is still in the
preclinical stage [80, 81]. Lu et al. demonstrated that mammalian
target of rapamycin complex 1 phosphorylates USP20 at S132 and
S134 and then stabilizes HMGCR, increasing cholesterol biosynth-
esis in the liver [43]. And their study also showed genetic deletion
or pharmacological inhibition of USP20 markedly decreased diet-
induced body weight gain and reduced lipid levels in the serum
and liver [43]. Although no DUB inhibitors are in ongoing clinical
trials, with the rapid development of inhibitors, DUBs are likely
increasingly attractive as drug targets. USP20, as a member of the
largest deubiquitinase family, was first identified as an oncogene
[30]. Although USP20 attracts our attention as a potential
therapeutic target, it is associated with challenges. The first
challenge is to develop DUB inhibitors or activators, including the
development of USP20 inhibitors or activators. On the one hand,
the mechanisms of function of DUB enzymes are usually
complicated and involve regulating enzyme activity through
allosteric and/or substrate-mediated catalysis. Many DUBs dyna-
mically change between active and inactive conformations
[81, 82]. On the other hand, because most DUBs perform ubiquitin
transfer via reactive thiol groups, most standard assays used to
identify inhibitors are nonselective redox or alkylation false-
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Table 2. Other representative inhibitors of DUBs.

DUB inhibitor Target Structure Stage of development IC50 Reference

SJB3-019A USP1 Preclinical 78.1 nM [119]

ML323 USP1 Preclinical 76 nM [120]

ML364 USP2 Preclinical 1.1 μM [121]

P5091 USP7 Preclinical 4.2 μM [122, 123]

FT671 USP7 Preclinical 52 nM [124]

GNE-6776 USP7 Preclinical N.A. [125]

DUBs-IN-1 USP8 Preclinical 0.24 μM [126]

Spautin1 USP13 and USP10 Preclinical 0.6–0.7 μM [127, 128]
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positives [83]. Second, to date, only one USP20 inhibitor has been
identified. Although Lu et al. found that this USP20 inhibitor,
GSK2643943A, inhibits the function of USP20 to improve
metabolic-related diseases [43], no data are available in tumor-
related studies. The lack of preclinical research data will be one of

the biggest challenges for the transfer of USP20 inhibitors to
clinical applications. Third, the mechanism by which USP20
promotes tumor progression in this review has been elucidated
in a few types of cancer cells, but the mechanism is unclear in
most cancer cell lines that highly express USP20. However, a

Table 2. continued

DUB inhibitor Target Structure Stage of development IC50 Reference

Mitoxantrone USP11 Preclinical 8.5 μM [129]

IU1 USP14 Preclinical 4–5 μM [130]

IU1-47 USP14 Preclinical 0.6 μM [131]

IU1-248 USP14 Preclinical 0.83 μM [132]

PR619 Broad range DUB
inhibitor

Preclinical [133, 134]

1,10-
Phenanthroline

JAMM type
Isopeptidase

Preclinical [135]

VLX1570 USP14 and UCHL5 Clinical trial phase (now
suspended)

10 μM [136]

GSK2643943A USP20/Ub-Rho Preclinical 160 nM [43]
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common mechanism in different types of tumors should also be a
challenge for transferring the inhibitor to clinical applications. We
require more evidence to support USP20 as a potential tumor
therapeutic target or combine USP20 inhibitors with other drugs
in cancer treatment. Fourth, presently, the impact of USP20 on
tumor development occurs only in cells or animal models, and
clinical samples must be further verified. Fifth, through searching
currently available literature, we have summarized the role of
USP20 in the regulation of cellular proliferation, migration, tumor
growth, and metastasis. Although USP20 serves as an oncogene in
varied cancer types, it also acts as a tumor suppressor in a few
cancer types, including ATL and gastric cancer. The different roles
of USP20 may attribute to the heterogeneity of different tumor
types. Specifically, different from the observation in cervical cancer
that USP20 regulates the stability of p62 in TNFα mediated NF-κB
activation, USP20 act as a DUB that negatively regulates NF-κB
signal transduction in ATL. Moreover, it regulates the cell cycle
checkpoint activation in gastric cancer. In this respect, more
studies are needed to further elucidate the function of USP20 and
the underlying mechanism in diverse malignancies. Screening
activators for USP20 as a therapeutic alternative is also promising
for malignancies with low USP20 levels. However, USP20 as a
tumor therapeutic target has its limitations. We believe that USP20
as a tumor therapy target is expected to become a reality in the
clinic with the in-depth exploration of the role of USP20 in tumor
progression.

CONCLUSION
In this summary, USP20, a DUB belonging to USPs, is responsible
for removing ubiquitin moieties from ubiquitin-labeled proteins.
An increasing number of researchers have focused on exploring
the function of USP20 in regulating tumorigenesis. Recently, many
breakthroughs have been made in clarifying the role of USP20 in
regulating cell proliferation, migration, tumor growth, and glucose
metabolism by regulating different signaling pathways. These
results also provide evidence for our speculation that USP20 is a
target for tumor therapy. More importantly, GSK screened one
inhibitor of USP20 and showed that this inhibitor affects the
expression of USP33, which shares approximately 59% identity
with USP20 and has strong homology at the amino and carboxy
termini. Therefore, novel USP20 inhibitors may provide potential
treatment options for USP20-overexpressing cancer types. Further
analysis of the molecular signaling pathway of USP20 can offer
new insights into its tumorigenesis or antitumor mechanisms. The
specific regulation of tumorigenesis by USP20 may be a hot
research topic in the future. The development of clinical drugs for
USP20 will also provide a new opportunity for tumor treatment.
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