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USP15 negatively regulates lung cancer progression through
the TRAF6-BECN1 signaling axis for autophagy induction
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TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of
BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we
provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung
cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n= 41) revealed that the
expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and
USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and
invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15
interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction.
Notably, in primary NSCLC patients (n= 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4,
MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor
suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated,
providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that
USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer
progression.
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INTRODUCTION
Autophagy is a functional response to a variety of cellular
conditions, such as genomic damage, metabolic stress, infections,
and tumorigenesis [1–6]. It has been reported that toll-like
receptor (TLR)-mediated signaling plays a pivotal role in cancer
progression through autophagy induction and the production of
cytokines such as interleukin-6 (IL-6), chemokine (C-C motif) ligand
2 (CCL2/MCP-1), chemokine (C-C motif) ligand 20 (CCL20/MIP-3α),
vascular endothelial growth factor A (VEGFA), and matrix
metallopeptidase 2 (MMP2) [7]. In terms of molecular mechanisms,
these cellular events are critically dependent on TNF receptor-
associated factor 6 (TRAF6) signaling [7]. TRAF6, an E3 ubiquitin-
protein ligase and adaptor protein, can functionally regulate
downstream signaling cascades for the production of cytokines
through the activation of the nuclear factor of kappa light
polypeptide gene enhancer in B-cells (NF-κB) and the induction of
autophagy through ubiquitination of beclin 1 (BECN1) [7–12].
Recent studies have demonstrated that interruption of TRAF6-
BECN1 signaling induced by TLR4 can lead to inhibition of

autophagy induction, resulting in attenuated cancer migration
and invasion [10–12]. This suggests that the TRAF6-BECN1
signaling axis plays a pivotal role in cancer progression through
autophagy induction.
Deubiquitinating enzymes (DUBs) can counteract cellular E3

ubiquitin ligases by removing ubiquitin from substrates, thereby
regulating a variety of cellular signaling processes [13]. Ubiquitin-
specific peptidase 15 (USP15) is a member of the largest subfamily
of cysteine protease DUBs [14, 15]. We have previously reported
that charged multivesicular body protein 5 (CHMP5) can
cooperate with a PDB genetic risk factor valosin-containing
protein (VCP/p97) to stabilize the inhibitor of NF-κB, thus
downregulating ubiquitination of IκBα via the deubiquitinating
enzyme USP15 [16]. Furthermore, USP15 can antagonize parkin-
mediated mitochondrial ubiquitination and mitophagy [17].
Knockdown of USP15 can rescue the mitophagy defect in
fibroblasts of patients with Parkinson’s disease (PD) and increase
their parkin levels [17]. Although much research progress has
been made in exploring the roles of DUBs in various human
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diseases [13], we know little about the molecular and cellular
mechanisms by which USPs are implicated in cancer progression.
Thus, this study explores the molecular and cellular mechanism by
which USP15 is implicated in cancer progression through the
regulation of the TRAF6-BECN1 signaling axis for autophagy
induction.
TCGA data analysis revealed that five different cancer types

(LUAD, LUSC, OV, SKCM, and TGCT) showed significant down-
regulation of USP15, whereas no significant difference in
expression of USP15 was seen in the other 28 different cancer
types. Notably, the downregulation of USP15 was significant in
primary non-small cell lung cancer (NSCLC) patients, especially in
patients with lung adenocarcinoma. Based on these findings and
previous reports [16, 17], we investigated whether USP15 as a
deubiquitinating enzyme was implicated in lung cancer progres-
sion, especially through the regulation of TRAF6-BECN1 signaling
axis for autophagy induction. We found that USP15 interacted
with BECN1, but not with TRAF6, and induced deubiquitination of
BECN1. Importantly, USP15-knockout (USP15KO) A549 and
USP15KO H1299 lung cancer cells generated by CRISPR-Cas9 gene
editing showed increases of cancer migration and invasion
accompanied by enhanced autophagy induction in response to
TLR4 stimulation. These results strongly support that USP15 is
negatively implicated in lung cancer progression through the
regulation of autophagy induction. Regarding clinical aspects,
primary LUAD patients (n= 4) with low expression of
USP15 showed significant upregulation of genes (n= 10) involved
in the promotion of lung cancer proliferation, migration, invasion,
and metastasis, whereas tumor suppressor genes (n= 10) were
downregulated. These results strongly suggest that USP15 is
negatively implicated in lung cancer progression through the
TRAF6-BECN1 signaling axis by regulating autophagy induction.

MATERIALS AND METHODS
Patient-derived non-small cell lung cancer samples (NSCLC)
Tumor and matched normal tissues were obtained from 41 patients with
primary NSCLC in accordance with the ethical principles stated in the
Declaration of Helsinki. This study was approved by the Institutional
Review Board (IRB) of Samsung Medical Center (SMC) (IRB#: 2010-07-204),
following procedures previously described [18, 19]. We obtained written
informed consent from each patient before surgery for using their
pathological specimens for research use.

Cells
Human embryonic kidney (HEK) 293T cells (ATCC, CRL-11268) were
cultured and maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Thermo Fisher Scientific, 11965092) with 10% fetal bovine serum (FBS).
A549 cells (human lung cancer cell line; ATCC, CCL-185) and H1299 cells
(human non-small cell lung cancer cell line; ATCC, CRL-5803) were
maintained in RPMI 1640 medium (Sigma-Aldrich, 31800-022) supplemen-
ted with 10% FBS, penicillin (100 μg/mL), and streptomycin (100 μg/mL) in
a 5% CO2 humidified atmosphere at 37 °C.

Antibodies and reagents
Anti-MYC (2276), anti-GAPDH (2118), and anti-LC3A/B (4108) were purchased
from Cell Signaling Technology. Anti-FLAG (SAB4200071) was purchased from
Sigma-Aldrich. Anti-HA (ab18181) and anti-USP15 (ab97533) were purchased
from Abcam. Lipopolysaccharide (LPS; serotype 0128: B12), chloroquine (CQ;
C6628), dimethyl sulfoxide (DMSO; 472301), puromycin (P8833), paraformal-
dehyde (P6148), Triton X-100 (T8787), 3-methyladenine (3-MA; M9281),
gentamicin (G1272), deoxycholate (D6750), and Dulbecco’s phosphate-
buffered saline (DPBS; D8537) were purchased from Sigma-Aldrich. Lipofecta-
mine 2000 (11668019) was purchased from Thermo Fisher Scientific.

Plasmid constructs
FLAG-TRAF6 (21624), FLAG-HA-USP15 (22570), and FLAG-BECN1 (24388)
plasmids were purchased from Addgene. HA-tagged Ub plasmids were
obtained from Dr. J. H. Shim (University of Massachusetts Medical School,

USA). Using the FLAG-HA-USP15 plasmid, full-length FLAG-USP15 and
MYC-USP15 constructs were cloned into a pCMV-3Tag-7 (Agilent
technologies, 240202) or a pCMV-3Tag 6 vector (Agilent technologies,
240200). Using FLAG-BECN1, the full-length MYC-BECN1 construct was
cloned into a pCMV-3Tag-7 vector (Agilent Technologies, 240202).
Truncated mutants of MYC-BECN1 were generated as previously described
[10, 20–23]. MYC-USP15 C269A and MYC-USP15 H862A mutants were
generated by site-directed mutagenesis as previously described [24].

Generation of USP15-knockout cancer cell lines by CRISPR/
Cas9
Guide RNA sequences for CRISPR/Cas9 were designed as 5’-CACCG
CAGTTGGGACAAATACCAGATGG-3’ and 3’-CGTCAACCCTGTTTATGGTCTACC
CAAA-5’ for human USP15. USP15KO A549 and USP15KO H1299 cancer
cells were generated as previously described [11, 12, 25]. Complementary
oligonucleotides to guide RNAs (gRNAs) were annealed and cloned into a
lentivirus CRISPR v2 vector (Addgene plasmid, 52961). Lenti CRISPR v2/
gRNA was transfected into A549 or H1299 cells using Lipofectamine 2000
according to the manufacturer’s instructions. USP15KO A549 and USP15KO
H1299 cell colonies were selected as previously described [11, 12, 25] and
confirmed by western blots.

Western blotting (WB) and immunoprecipitation (IP) assays
WB and IP assays were performed as previously described [10, 20–23].
Briefly, HEK 293T cells were seeded into six-well plates, transfected, and
treated as described in the text and Figures. These cells were then
incubated for 38–48 h. After collecting cells, cell lysates were prepared and
immunoprecipitated with anti-MYC and anti-FLAG antibodies. IP com-
plexes were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE, 6–10%) and immune-probed with different
antibodies as indicated in the text. For ubiquitination assay, mock vector,
FLAG-tagged BECN1, MYC-tagged USP15 wild-type (WT), MYC-tagged
USP15 C269A mutant, and MYC-tagged USP15 H862A mutant were
transfected separately into HEK 293T cells along with HA-tagged Ub as
described in the text and Figures. Cell lysates were immunoprecipitated
with anti-MYC, anti-HA, or anti-FLAG antibodies and probed with different
antibodies as indicated in the text. Control (Ctrl) A549 and USP15KO A549
cells were treated with or without the vehicle or CQ (10 μM) or 3-MA
(5mM) in the presence or absence of LPS (10 μg/mL) for 6 h. Cell lysates
were immunoblotted with an anti-LC3A/B antibody and anti-GAPDH (as a
loading control). For a semi-endogenous IP assay, A549 and H1299 lung
cancer cells were transiently transfected with FLAG-USP15. At 48 h post-
transfection, cells were treated with or without LPS (10 μg/mL) for 60min.
After collecting cells, cell lysates were prepared and immunoprecipitated
with anti-Ig or anti-FLAG antibodies. IP complexes were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE,
6–10%) and immune-probed with anti-FLAG and anti-BECN1 antibodies.

Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) analysis
Control (Ctrl) A549, USP15KO A549, Ctrl H1299, and USP15KO H1299 cells
were treated with or without 10 μg/mL LPS for 6 h. RT-qPCR analysis was
performed as previously described [11]. Briefly, after extracting total RNA
using an RNA isolation kit (A&A Biotechnology, Gdynia, Poland) according
to the manufacturer’s protocol, cDNA was prepared by RT using AmfiRivert
II cDNA Synthesis Master Mix (genDEPOT, R550) according to the
manufacturer’s protocol. Primers hIL-6 (PPH 00560C), hMMP2 (PPH
00151B), hCCL20 (PPH 00564C-200), and hCCL2 (PPH 00192F) were
purchased from Qiagen, Inc. (Chatsworth, CA, USA). Fluorescence detection
was performed using an ABI PRISM 7700 Sequence Detector (PerkinElmer;
Applied Biosystems; Thermo Fisher Scientific, Inc.). The mRNA expression
level was calculated and normalized to the level of GAPDH.

Wound-healing migration assay
A wound-healing migration assay was performed following previous
protocols [10–12]. Briefly, Control (Ctrl) A549, USP15KO A549, Ctrl H1299,
and USP15KO H1299 cells were seeded into 12-well plates and cultured to
reach confluence. Cell monolayers were gently scratched and washed with
culture medium. After floating cells and debris were removed, cells attached
to culture plates were treated with vehicle (DMSO), 3-MA (5mM), or CQ
(10 μM) in the presence or absence of LPS (10 μg/mL). Cell images were
captured after culturing for different periods as indicated in each experiment.
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Transwell invasion assay
Transwell invasion assay was performed following previous protocols
[10–12]. Briefly, Control (Ctrl) A549, USP15KO A549, Ctrl H1299, and
USP15KO H1299 cells were suspended in culture medium (200 μL) without
FBS. Cells were then added to the upper compartment of a 24-well
Transwell® chamber containing a polycarbonate filter with 8-mm pores and
coated with 60mL of Matrigel (Sigma-Aldrich, E1270; 1:9 dilution). Culture
medium with 10% FBS was added to the lower chamber. After incubating
for 24 h, cells in the upper compartment were removed, washed with PBS,
and fixed. Invaded cells were stained with 4,6-diamidino-2-phenylindole

(Sigma-Aldrich, D9542) and quantified by counting the number of
fluorescent cells.

Microarray analysis
Microarray analysis was performed as previously described [18, 19]. From
tumor and matched normal tissues of 41 patients with NSCLC, total RNAs
were extracted with Trizol (Thermo Fisher Scientific, 15596026) and
purified using RNeasy columns (Qiagen, 74106) according to each
manufacturer’s protocol. Microarray analysis was performed and analyzed
as previously described [18, 25–27].

Fig. 1 Expression of USP15 is significantly downregulated in lung cancer. A The expression of USP15 was analyzed in 33 different cancer
types provided by GEPIA (http://gepia.cancer-pku.cn/detail.php?gene=USP15). The expression of USP15 was downregulated in five tumor
types (LUAD, LUSC, OV, SKCM, and TGCT) indicated as green. B mRNA expression levels of USP15 are significantly downregulated in LUAD
tumor (T), LUSC tumor (T), OV tumor (T), SKCM tumor (T), and TGCT tumor (T) tissues than in normal (N) tissues. *P < 0.01 was considered
statistically significant. C Interactive Bodymap provided by GEPIA shows significant downregulation of USP15 in lung cancer. D Microarray
analysis was performed for 41 patients with primary NSCLC and matched normal tissues as described in “Materials and methods”. The relative
expression of UPS15 is shown. Blue bars, lung adenocarcinoma (LUAD) patients; Red bars, lung squamous cell carcinoma (LUSC) patients;
Green bars, other lung cancer patients.
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TCGA data analysis
The expression of USP15 in human lung cancers (lung adenocarcinoma,
LUAD) and (lung squamous cell carcinoma, LUSC) was analyzed using TCGA
data (GAPIA, gene expression profiling interactive analysis; http://gepia.
cancer-pku.cn/ and http://gepia.cancer-pku.cn/detail.php?gene=USP15).

Statistical analysis
All in vitro data are expressed as mean ± SEM of triplicate samples.
Statistical significance was analyzed with ANOVA or Student’s t-test using
GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA).

RESULTS
USP15 is significantly downregulated in patients with lung
adenocarcinoma and negatively implicated in lung cancer
invasion
To address the functional role of USP15 in human cancers, we first
evaluated the expression of USP15 in human pan-cancer using
the Cancer Genome Atlas (TCGA) data provided by GEPIA (Gene
Expression Profiling Interactive analysis, http://gepia.cancer-pku.
cn/detail.php?gene=USP15). Among 33 different human cancer
types based on molecular similarity (Fig. 1A), five different cancer
types, lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), ovarian serous cystadenocarcinoma (OV), skin
cutaneous melanoma (SKCM), and testicular germ cell tumors
(TGCT), showed significantly downregulated expression of USP15
(Fig. 1B, tumor (T) vs. normal (N)), whereas no significant change
in expression of USP15 was observed in 28 other cancer types
(Fig. 1A, black letters). The expression of USP15 was markedly
lower in those with lung cancer than in normal controls (Fig. 1C,
27.29 in lung cancer vs. 64.76 in normal controls). In addition, the
survival rate from combined patients with LUAD and LUSC
decreased in patients with low expression levels of USP15
(Supplementary Fig. S1, blue line with low USP15 vs. red line
with high USP15), indicating that USP15 expression may have an
essential role in lung cancer patient’s survival. To verify the TCGA
cancer data in those with primary lung cancer, we assessed the
expression of USP15 in 41 patients with primary non-small cell
lung cancer (NSCLC) [18, 19], including 25 patients with lung
adenocarcinoma (LUAD, blue bars in Fig. 1D), 8 patients with lung
squamous cell carcinoma (LUSC, red bars in Fig. 1D), and 8
patients with other lung cancers (green bars in Fig. 1D). LUAD
patients showed significant downregulation of USP15 (Fig. 1D,
blue bars). These findings suggest that USP15 might be
functionally associated with lung adenocarcinoma. Therefore,
we explored whether the expression of USP15 was implicated in
the progression of human lung adenocarcinoma. To explore the
functional role of USP15 in human lung adenocarcinoma, we
generated USP15-knockout (USP15KO) human lung adenocarci-
noma A549 and USP15KO human non-small cell lung cancer
H1299 cells using CRISPR/Cas9 gene-editing method (Fig. 2A,
USP15KO A549; Fig. 2B, USP15KO H1299) as described in
“Materials and methods”. With USP15KO A549 and USP15KO
H1299 lung cancer cells, we preliminary assessed whether USP15
deficiency affected lung cancer invasion using a transwell
invasion assay. The invasion of USP15KO A549 cells was
significantly increased than that of control (Ctrl) A549 cells (Fig.
2C, D, USP15KO A549 vs. Ctrl A549 cells). Similarly, the invasion
ability of USP15KO H1299 cells was also significantly higher than
that of Ctrl H1299 cells (Fig. 2E, F, USP15KO H1299 vs. Ctrl H1299
cells), suggesting that USP15 might be functionally implicated in
lung cancer invasion.

USP15KO A549 lung cancer cells exhibit increased lung cancer
progression induced by TLR4 stimulation through enhanced
autophagy
Previous reports have demonstrated that TLR3/4 activation can
increase the production of IL-6, CCL2, MMP2, and CCL20 cytokines

by promoting TRAF6 ubiquitination and autophagy induction,
thereby facilitating the migration and invasion of lung cancer cells
[7, 10, 11]. Having found that USP15KO A549 and USP15KO H1299
lung cancer cells exhibited increased cancer invasion, we further
examined whether USP15 affected lung cancer migration and
invasion through autophagy induction by TLR4 stimulation. The
level of LC3-II specifically associated with autophagosomes and
autolysosomes [28] was markedly enhanced in USP15KO A549 cells
treated with LPS than in Ctrl A549 cells treated with LPS (Fig. 3A,
USP15KO A549 with LPS vs. Ctrl A549 with LPS). In addition, the
basal level of LC3-II/-I increased in USP15KO A549 cells without LPS
(Supplementary Fig. S2, USP15KO A549 vs, Ctrl A549), indicating
that the expression of USP15 affects the generation of LC3-II at the
basal statue under the absence of LPS stimulation. As expected,
autophagy inhibitors 3-MA (an inhibitor of phosphatidylinositol
3-kinases (PI3K) that can induce a decrease of LC3-II in cells) [29]
and CQ (known to block the binding of autophagosomes to
lysosomes and induce accumulation of LC3-II in cells) [30] induced
a decrease and an increase of LC3-II in both cells treated with LPS,

Fig. 2 USP15-knockout (USP15KO) A549 and USP15KO H1299
lung cancers show increases in cancer invasion. A, B USP15KO
A549 (A) and USP15KO H1299 (B) lung cancer cells were generated
using CRISPR/Cas9 gene-editing method as described in “Materials
and methods”. USP15KO A549 or USP15KO H1299 colonies were
selected and confirmed by western blots with anti-USP15 or anti-
GAPDH antibodies. C, D Control (Ctrl) A549 and USP15KO A549 cells
were suspended in culture medium. Cells were added to the upper
compartment of a 24-well Transwell® chamber containing poly-
carbonate filters with 8-mm pores and coated with 60 mL of
Matrigel. Culture medium with 10% FBS was added to the lower
chamber. After incubating for 24 h. Cells in the upper compartment
were removed, washed with PBS, and fixed. Invaded cells were
stained with 4,6-diamidino-2-phenylindole (C) and quantified by
counting the number of cells (D). Results are presented as mean ±
SEM of three independent experiments. **P < 0.01. E, F Ctrl H1299
and USP15KO H1299 cells were suspended in culture medium. Cells
were added to the upper compartment of a 24-well Transwell®
chamber. An invasion assay was then performed. Cells were fixed
and stained (E). The number of migrated cells was counted (F).
Results are presented as mean ± SEM of three independent
experiments. *P < 0.05.
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respectively (Fig. 3A, lane 2 vs. lane 3 or lane 4 in Ctrl A549 cells;
lane 6 vs. lane 7 or lane 8 in USP15KO A549). Importantly, cancer
invasion induced by TLR4 stimulation was markedly enhanced in
USP15KO A549 cells treated with LPS, whereas it was inhibited by
co-treatment of LPS with 3-MA or CQ (Fig. 3B, C, LPS vs. vehicle, or
LPS+ 3-MA and LPS+ CQ vs. LPS in Ctrl A549 and USP15KO A549).
Similar results were found for cancer migration (Fig. 3D, E, USP15KO
A549 vs. Ctrl A549). Autophagy induced by TLR4 or TLR3 activation
can enhance the production of cytokines such as IL-6, CCL2, MMP2,
and CCL20 by promoting TRAF6 ubiquitination, thus facilitating the
migration and invasion of lung cancer cells [7, 10, 11]. Therefore,
we assessed whether USP15 was associated with the production of
these cytokines induced by TLR4 stimulation. Interestingly,
expression levels of MMP2, IL-6, CCL2, and CCL20 induced by
TLR4 stimulation were significantly elevated in USP15KO A549 cells
than in Ctrl A459 cells (Fig. 4A, MMP2; Fig. 4B, IL-6; Fig. 4C, CCL2;
Fig. 4D, CCL20). These results suggest that USP15 is negatively
implicated in the migration and invasion of lung cancer through
the regulation of autophagy in response to TLR4 stimulation.

USP15KO H1299 lung cancer cells exhibit increases in cancer
migration and invasion induced by TLR4 stimulation
Given the above results of USP15KO A549 cells, we verified the role
of USP15 in USP15KO H1299 human non-small cell lung cancer
cells. The migration of USP15KO H1299 cells was significantly
enhanced in the presence or absence of LPS than that of Ctrl
H1299 cells (Fig. 5A, B, USP15KO H1299 cells treated with vehicle or

LPS vs. Ctrl H1299 cells treated with vehicle or LPS). Furthermore,
cancer invasion was significantly higher in USP15KO H1299 cells
treated with LPS than in Ctrl H1299 cells treated with LPS (Fig. 5C,
D, USP15KO H1299 with LPS vs. Ctrl H1299 with LPS). Consistent
with these results in USP15KO A549 cells (Fig. 3B–E), co-treatment
of cells with LPS and 3-MA or CQ resulted in marked decreases of
cancer migration and invasion induced by LPS (Fig. 5A, B, LPS vs.
LPS+ 3-MA or LPS+ CQ; Fig. 5C, D, LPS vs. LPS+ 3-MA or LPS+
CQ). Moreover, expression levels of MMP2, CCL2, CCL20, and IL-6
induced by LPS stimulation were significantly elevated in USP15KO
H1299 cells than in Ctrl H1299 cells (Fig. 5E, MMP2; Fig. 5F, CCL2;
Fig. 5G, CCL20; Fig. 5H, IL-6 in USP15KO H1299 cells treated with
LPS vs. Ctrl H1299 cells treated with LPS). These results strongly
suggest that the deficiency of USP15 in lung cancer enhances
cancer migration and invasion induced by TLR4 stimulation by
increasing autophagy induction as depicted in Fig. 5I.

USP15 interacts with BECN1 and induces deubiquitination of
BECN1
Having shown that USP15 negatively regulated lung cancer
migration and invasion induced by TLR4 stimulation through
inhibition of autophagy induction, we next explored the molecular
mechanism in which USP15 was implicated in autophagy
induction by TLR4 stimulation. Ubiquitination of BECN1 by TRAF6
plays a pivotal role in autophagy induction in response
to TLR4 stimulation [7, 10, 11]. In addition, we have recently
reported that USP15 can dampen NF-κB activation through

Fig. 3 USP15KO A549 cells show increases in autophagy induction, migration, and invasion induced by TLR4 stimulation. A Control (Ctrl)
and USP15KO A549 cells were treated with LPS, CQ, and 3-MA as indicated. Cell lysates were immunoblotted with antibodies specific for LC3-
I/-II or GAPDH. LC3-II levels were analyzed with the Image J quantification tool. B, C Ctrl and USP15KO A549 cells were suspended in RPMI
medium including vehicle, LPS (10 μg/mL), CQ (10 μM) or 3-MA (5 mM) plus LPS (10 μg/mL) and placed on top chambers of 24-transwell plates.
After overnight incubation, cells were fixed and stained with crystal violet (B). The number of migrating cells was counted. Results are
presented as mean ± SEM of three independent experiments (C). *P < 0.05; **P < 0.01. D, E Ctrl and USP15KO A549 cells were seeded into 12-
well cell culture plates. Confluent monolayers were scraped with a sterile yellow Gilson-pipette tip. The wound was then treated with vehicle
(DMSO, <0.2% in culture medium), LPS (10 μg/mL), CQ (10 μM) or 3-MA (5 mM) plus LPS (10 μg/mL) for different time periods as indicated. A
representative experiment was shown (D). The residual gap between migrating cells from the opposing wound edge was expressed as a
percentage of the initial scraped area (±SEM, n= 3) (E). *P < 0.05; **P < 0.01; and ***P < 0.001.
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deubiquitination of IκBα [16]. Therefore, the regulatory mechan-
ism of USP15 in autophagy induction might be functionally
associated with the ubiquitination of BECN1. Interestingly, USP15
interacted with BECN1 (Fig. 6A, lane 4), whereas no significant
interaction was observed between USP15 and TRAF6 (Fig. 6B, lane
4). To elucidate the molecular association between USP15 and
BECN1, BECN1 truncated mutants were generated (Fig. 6C), and
immunoprecipitation (IP) assay was performed with USP15. FLAG-
USP15 interacted with MYC-BECN1 wild-type (WT) and MYC-
BECN1 1-269 mutant (Fig. 6D, lanes 6 and 7), whereas it showed a
weak interaction with MYC-BECN1 1-127 (Fig. 6D, lane 8). To
confirm the interaction between USP15 and BECN1 1-127 mutant,
IP assay was further performed. As shown in Fig. 6E, FLAG-USP15
interacted with MYC-BECN1 WT and MYC-BECN1 1-127 mutant
(Fig. 6E, lanes 4 and 5), indicating that USP15 could interact with
the N-terminal domain of BECN1 (Fig. 6F).
To further verify the molecular interaction between USP15 and

BECN1, we performed a semi-endogenous IP assay because the
anti-USP15 antibody used in this study was not suitable for IP
assay. FLAG-USP15 was transiently expressed in A549 and H1299
lung cancer cells, and then the interaction with endogenous
BECN1 was evaluated (Fig. 7A, A549; Fig. 7B, H1299). FLAG-USP15
interacted with endogenous BECN1 in the absence of LPS
stimulation, and the interaction was significantly enhanced in
the presence of LPS stimulation (Fig. 7A, B, lane 4 vs. lane 3),
indicating that USP15 interacts with endogenous BECN1. Based on
the molecular association between USP15 and BECN1, we asked
whether USP15 could induce deubiquitination of BECN1. FLAG-
BECN1 and HA-Ub were transfected in the presence or absence of
MYC-USP15. The ubiquitination of BECN1 appeared in the absence
of MYC-USP15 (Fig. 7C, lane 2 vs. lane 1), whereas it was markedly

attenuated in the presence of MYC-USP15 (Fig. 7C, lane 3 vs. lane
2). To verify whether the deubiquitination of BECN1 was
dependent on the catalytic activity of USP15, we generated two
catalytic mutants of USP15, USP15 C269A, and USP15 H862A [25].
A ubiquitination assay was then performed. Consistently, the wild-
type USP15 induced deubiquitination of BECN1 (Fig. 7D, lane 3 vs.
2), whereas the two catalytic mutants of USP15 failed to induce
deubiquitination of BECN1 (Fig. 7D, lanes 4 and 5 vs. 3), indicating
that the deubiquitination of BECN1 was dependent on the
catalytic activity of USP15. As depicted in Fig. 7E, these results
suggest that the molecular association of TRAF6-BECN1 can lead
to ubiquitination of BECN1 and induce autophagy induction,
whereas the interaction of USP15 with BECN1 can induce the
deubiquitination of BECN1 and inhibit autophagy induction.

Downregulation of USP15 is associated with genes related to
lung cancer progression in patients with primary non-small
cell lung cancer (NSCLC)
Given the results that USP15 negatively regulated lung cancer
migration and invasion through inhibition of autophagy induction
by deubiquitination of BECN1, we tried to find the clinical
relevance of USP15 in the regulation of lung cancer progression.
To do that, four patients with primary adenocarcinoma who
showed significantly downregulated USP15 (<−1.5 values in the
relative expression of USP15 in tumor and matched normal tissues)
were selected (Fig. 8A, LTT26, LTT10, LTT12, and LTT35) among 41
patients with primary non-small cell lung cancer (NSCLC) (Fig. 1D).
H&E staining presented significant pathological differences
between matched normal and lung tumor tissues in terms of
the structure of lung tissue and the number of cancer cells (Fig. 8B,
normal vs. tumor). Given these results, microarray analysis was
performed for matched normal and lung tumor tissues using
Human HT-12 expression BeadChips. To select upregulated and/or
downregulated genes in four LTTs, LTT26 tumor patient with the
lowest expression of USP15 was used as a standard sample (Fig.
8C and Supplementary Table S1, upregulated genes; Fig. 8D and
Supplementary Table S2, downregulated genes). Among 17
commonly upregulated genes in four LTT patients (Fig. 8E and
Supplementary Table S3), 15 genes were functionally associated
with lung cancer growth, proliferation, migration, invasion, or
metastasis: 10 genes (CCNE1 [31], MMP9 [32], SFN [33], UBE2C [34],
CCR2 [35], FAM83A [36], ETV4 [37], MYO7A [38], MMP11 [39], and
GSDMB [40]) can promote lung cancer progression, two genes
(DEPDC1B [41] and GALNT6 [42]) can promote lung cancer
migration and invasion, and three genes (KIF18A [43], ADAM8
[44], and PHLDA2 [45]) can promote lung cancer proliferation,
metastasis, or oncogenesis. Among 13 commonly downregulated
genes in four patients (Fig. 8F and Supplementary Table S4), 10
genes (FMO2 [45], ZBTB16 [46], FCN3 [47], TCF21 [48], SFTPA1B [49],
HPGD [50], SOSTDC1 [51], TMEM100 [52], GDF10 [53], and WIF1
[54]) have been reported as tumor suppressors in lung cancer.
These results suggest that downregulation of USP15 in lung
cancer might be associated with gene expression capable of
affecting lung cancer progression and formation.

DISCUSSION
This study demonstrates that USP15 is negatively implicated in
lung cancer progression through the regulation of TRAF6-BECN1
signaling for autophagy induction for the first time. Importantly,
TCGA data analysis revealed that USP15 was significantly down-
regulated in lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC). Consistently, the expression of USP15 was
significantly downregulated in patients with primary lung
adenocarcinoma. Notably, the profound impact of USP15 expres-
sion was shown in USP15KO A549 and USP15KO H1299 lung
cancer cells. USP15KO lung cancer cells exhibited increased cancer
migration and invasion induced by TLR4 stimulation through the

Fig. 4 MMP2, IL-6, CCL2, and CCL20 mRNA levels are increased in
USP15KO A549 cells in response to TLR4 stimulation. A–D Ctrl and
USP15KO A549 cells were treated without or with 10 μg/mL LPS as
indicated. Total RNA was extracted, cDNA was synthesized, and RT
−qPCR analysis was performed with specific primers for MMP2 (A),
IL-6 (B), CCL2 (C), and CCL20 (D). Results are presented as mean ±
SEM of three independent experiments. *P < 0.05; **P < 0.01; and
***P < 0.001.
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regulation of autophagy. Biochemical studies have revealed that
USP15 can induce the deubiquitination of BECN1, a key regulator
of the induction of autophagy [7, 10–12]. More importantly,
microarray analysis in four patients with primary lung adenocarci-
noma who had low expression of USP15, revealed that 10
different genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4,
MYO7A, MMP11, and GSDMB) that are associated with promoting
lung cancer progression were significantly upregulated, whereas
10 different genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD,
SOSTDC1, TMEM100, GDF10, and WIF1) known to suppress lung
cancer were markedly downregulated.
TRAF6 signals are known to play critical roles in differential

biological contexts including innate and adaptive immunity and
tumor development [8]. A distinct TRAF6-mediated signaling

pathway has been revealed through its seemingly innumerable
interaction partners and its E3 ubiquitin ligase activity [8]. Recent
studies have shown that the TRAF6-BECN1 signaling axis plays a
key role in the induction of autophagy, thereby promoting lung
cancer migration and invasion in response to TLR4 stimulation
[7, 10–12]. Importantly, autophagy functionally facilitates TLR4-
induced lung cancer progression by enhancing TRAF6-mediated
ubiquitination of BECN1 and the production of IL-6, CCL2/MCP-1,
CCL20/MIP-3α, VEGFA, and MMP2 [7, 10–12], strongly suggesting a
pivotal role of the TRAF6-BECN1 signaling axis in lung cancer
progression. In the current work, we found that USP15 interacted
with BECN1, but not with TRAF6. The interaction between USP15
and BECN1 led to the deubiquitination of BECN1, resulting in the
attenuation of autophagy induction. Similarly, we have previously

Fig. 5 USP15KO H1299 cells exhibit increases in cell migration and invasion induced by TLR4 stimulation. A, B Control (Ctrl) and USP15KO
H1299 cells were seeded into 12-well cell culture plates. Confluent monolayers were scraped with a sterile yellow Gilson-pipette tip. The
wound was then treated with vehicle (DMSO, <0.2% in culture medium), LPS (10 μg/mL), CQ (10 μM) or 3-MA (5 mM) plus LPS (10 μg/mL) for
different time periods as indicated. A representative experiment was shown (A). The residual gap between migrating cells from the opposing
wound edge was expressed as a percentage of the initial scraped area (±SEM, n= 3) (B). *P < 0.05; ***P < 0.001. C, D Ctrl and USP15KO H1299
cells were suspended in RPMI medium including vehicle, LPS (10 μg/mL), CQ (10 μM) or 3-MA (5 mM) plus LPS (10 μg/mL) and placed on top
chambers of 24-transwell plates. After overnight incubation, cells were fixed and stained with crystal violet (C). The number of migrating cells
was counted. Results are presented as mean ± SEM of three independent experiments (D). *P < 0.05; **P < 0.01. E–H Ctrl and USP15KO H1299
cells were treated without or with 10 μg/mL LPS as indicated. Total RNA was extracted, cDNA was synthesized, and RT−qPCR analysis was
performed with specific primers for MMP2 (E), CCL2 (F), CCL20 (G), and IL-6 (H). Results are presented as mean ± SEM of three independent
experiments. *P < 0.05; **P < 0.01; ***P < 0.001. I A schematic model of the induction of autophagy induced by TLR4, thereby enhancing
migration and invasion of USP15KO lung cancer cells.
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reported that USP15 can inhibit NF-κB activation induced by RANK
signaling through deubiquitination of IκB-α [16], supporting that
USP15 is a deubiquitinating enzyme that is functionally implicated
in various cellular contexts.
Regarding the cellular function of USP15 in lung cancer

progression, notably, USP15KO A549 and USP15KO H1299 lung
cancer cells exhibited increases in cancer invasion that were
markedly enhanced in response to TLR4 stimulation after
treatment with LPS. In contrast, co-treatment of these cells with
LPS and autophagy inhibitors such as 3-MA and CQ attenuated
cancer migration and invasion induced by TLR4 stimulation. Based
on the molecular mechanism by which USP15 is negatively
implicated in the autophagy induction through deubiquitination
of BECN1, our study suggests that the negative regulation of
USP15 in lung cancer progression might be functionally impli-
cated in the regulation of autophagy induction. In terms of clinical
aspects, we found that the expression of USP15 was significantly

downregulated in those with LUAD and LUSC. Consistently, USP15
was significantly downregulated in patients with primary lung
adenocarcinoma, strongly suggesting that USP15 might be
functionally associated with lung cancer. Importantly, patients
with low expression levels of USP15 showed increased expression
of 17 different genes related to cancer progression and formation
and decreased expression of 13 different genes known to
suppress tumors. Among these 17 different genes, 10 genes
(CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11,
and GSDMB) are known to promote lung cancer progression and
formation. Among the 13 different genes known to suppress
tumors, 10 genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD,
SOSTDC1, TMEM100, GDF10, and WIF1) are known to suppress lung
cancer. These results suggest that USP15 is negatively implicated
in the progression and formation of lung cancer.
Autophagy plays a dual role in cancer development by

suppressing the growth of tumors or cancer progression

Fig. 6 USP15 interacts with BECN1. A Immunoprecipitation (IP) assay was performed with anti-MYC antibody using HEK 293T cells
transfected with mock, FLAG-USP15, and MYC-BECN1 as indicated. Immunoblotting (IB) assay was performed with anti-FLAG or anti-MYC
antibody. B IP assay was performed with anti-FLAG antibody using HEK 293 T cells transfected with mock, MYC-USP15, and FLAG-TRAF6 as
indicated. IB assay was performed with anti-FLAG or anti-MYC antibody. C Truncated mutants of BECN1, BECN1 1-269, and BECN1 1-127
mutants were generated as described in “Materials and methods”. D IP assay was performed with anti-MYC antibody using HEK 293T cells
transfected with mock, MYC-BECN1 wild-type (WT), MYC-BECN1 1-269, MYC-BECN1 1-127, and FLAG-USP15 as indicated. IB assay was
performed with anti-FLAG or anti-MYC antibodies. E IP assay was performed with anti-MYC antibody using HEK 293T cells transfected with
mock, MYC-BECN1 wild-type WT, MYC-BECN1 1-127, and FLAG-USP15, as indicated. IB assay was performed with anti-FLAG or anti-MYC
antibody. F A schematic model for the interaction between BECN1 and USP15.
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Fig. 7 USP15 induces deubiquitination of BECN1. A, B A549 (A) and H1299 (B) lung cancer cells were transiently transfected with FLAG-
USP15. Immunoprecipitation (IP) assay was performed with anti-Ig or anti-FLAG antibodies, and then immune-probed with anti-FALG and anti-
BECN1 antibodies, as indicated. C Immunoprecipitation (IP) assay was performed with anti-FLAG antibody using HEK 293T cells transfected
with mock, FLAG-BECN1, HA-UB, and MYC-USP15 as indicated. Immunoblotting (IB) assay was performed with anti-FLAG or anti-HA antibody.
D IP assay was performed with anti-FLAG antibody using HEK 293T cells transfected with mock, FLAG-BECN1, HA-Ub, MYC-USP15 wild-type
(WT), MYC-USP15 C269A, and MYC-USP15 H862A as indicated. IB assay was performed with anti-FLAG or anti-HA antibody. E A schematic
model of how USP15 induces deubiquitination of BECN1. In the presence of USP15, UPS15 interacts with BECN1 and induces deubiquitination
of BECN1, leading to the inhibition of autophagy (indicated as a red arrow). In the absence of USP15, in contrast, TRAF6 interacts with BECN1
and induces ubiquitination of BECN1, leading to the induction of autophagy (indicated as a black arrow).
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[55, 56]. The upregulation of autophagy leads to the resistance of
cancer cells to various anticancer drugs [56, 57]. Upon cellular
stimuli including TLRs, IL-17R, and TNFR, TRAF6 regulates tumor
cell proliferation, survival, apoptosis, and invasion through

different signaling pathways [8, 58]. As depicted in Fig. 9, TRAF6
has oncogenic characteristics involved in cancer progression.
Importantly, recent studies have reported that autophagy facil-
itates TLR-induced migration and invasion of lung cancer cells
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Fig. 8 NSCLC patients with low expression levels of USP15 exhibit upregulated expression levels of genes related to lung cancer
progression. A Among 41 patients with primary NSCLC, four patients with NSCLC (LTT26, LTT10, LTT12, and LTT35) with low expression of
USP15 were selected and their relative expression levels of USP15 were presented. B In primary lung tumor and matched normal tissues, H&E
(hematoxylin and eosin) staining was performed as described in “Materials and methods”. C, D From tumor and matched normal tissues of
LTT10, LTT12, LTT26, and LTT35 patients with NSCLC, microarray analysis was performed as described in “Materials and methods”. Based on the
results of LTT26 patient with the lowest expression of USP15 among 41 primary NSCLC patients, upregulated genes (C) and downregulated
genes (D) were sorted out and presented. E Among upregulated genes presented in (C), 17 different cancer-associated genes commonly
upregulated in four primary NSCLC patients were sorted out and presented. F Among downregulated genes presented in (D), 13 different
tumor suppressor genes commonly upregulated in four primary NSCLC patients were sorted out and presented.
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through the TRAF6-induced ubiquitination of BECN1 [7, 10–12],
suggesting that TLR-induced autophagy is functionally associated
with lung cancer progression. On the other hand, accumulated
evidence has proven that TLRs play a critical role in inducing anti-
tumor effects by eliciting inflammatory cytokine expressions and
innate immune response through the activation of NF-κB [59].
Although TLRs are essential for the immune response against
tumor cells, recent studies have demonstrated that TLRs are
expressed on tumor cells and crucially functioned in tumorigen-
esis and tumor progression through their downstream signaling
pathways [7, 10–12, 59]. Indeed, TLRs act as critical sensors that
regulate lung cancer progression including cell growth and
invasion and migration and metastasis through the activation of
NF-κB and autophagy [7, 10–12]. Although the precise roles and
fundamental mechanisms by which TLR-induced autophagy is
implicated in lung cancer progression need to be further
elucidated, the pathway of TLR-induced autophagy can be
potentially considered as a therapeutic target for alleviating lung
cancer progression.
In summary, we proposed a possible mechanism by which

USP15 regulates TRAF6-BECN1 signaling in autophagy induction
and lung cancer progression. As depicted in Fig. 9, regarding the
TRAF6-BECN1 signaling axis for cancer progression in response to
TLR4 stimulation (depicted in the left), TRAF6 can interact with
BECN1 and induce ubiquitination of BECN1, leading to the
induction of autophagy (indicated as a black arrow). USP15 can
interact with BECN1 and induce deubiquitination of BCEN1,

thereby inhibiting the induction of autophagy (indicated as red
dashed arrow). Eventually, USP15 can negatively regulate lung
cancer progression by inhibiting the TRAF6-BECN1 signaling axis
through autophagy induction. Although significant progress has
been achieved in exploring the roles of USPs in cancers, very little
is known about the molecular and cellular mechanism by which
USPs are implicated in lung cancer progression and formation. Our
current results provide insight into pathological lung cancer
processes and the future development of therapeutic agents for
treating lung cancer.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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