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Evolution of gene expression signature in mammary gland
stem cells from neonatal to old mice
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During the lifetime of females, mammary epithelial cells undergo cyclical expansion and proliferation depending on the cyclical
activation of mammary gland stem/progenitor cells (MaSCs) in response to the change of hormone level. The structural shrink of
mammary duct tree and the functional loss of mammary gland occur along with inactivation of MaSCs in old females, even leading
to breast cancer occasionally. However, the gene expression signature in MaSCs across the lifespan remains unclear. Herein, we
tested the tissue regeneration ability of CD24+CD49fhigh MaSCs over six time points from neonatal (4-day-old) to aged mice (360-
day-old). Further RNA-seq analyses identified four clusters of gene signatures based on the gene expression patterns. A subset of
stemness-related genes was identified, showing the highest level at day 4 of the neonatal age, and the lowest level at the old age.
We also identified an aging-related gene signature showing significant change in the old mice, in which an association between
aging process and stemness loss was indicated. The aging-related gene signature showed regulation of cancer signaling pathways,
as well as aging-related diseases including Huntington disease, Parkinson disease, and Alzheimer disease. Moreover, 425, 1056, 418,
and 1107 gene variants were identified at D20, D40, D90, and D180, respectively, which were mostly reported to associated with
tumorigenesis and metastasis in cancer. In summary, the current study is the first to demonstrate the gene expression shift in
MaSCs from neonatal to aging, which leads to stemness loss, aging, aging-related diseases, and even breast cancer in old mice.
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INTRODUCTION
In mice, mammary gland development occurs between E10.5 and
E18.5 in the embryo [1]. After birth, the mammary gland
epithelium remains quiescent until puberty when the mammary
epithelial cells proliferate and expand into the fat pad under the
stimulation of hormones and other growth factors [2]. In adult
virgin mice, branching morphogenesis in the mammary gland is
fully processed, where the ductal epithelium contains an outer
layer of basal epithelial cells and an inner layer of luminal
epithelial cells. They keep a balance between proliferation and
apoptosis to maintain the epithelial branching structure, and get
prepared for pregnancy and lactation. Along with growing old, the
proliferation capacity of the epithelial cells is lower than apoptosis,
leading to the structural shrink of the mammary duct tree and
functional loss of the mammary gland [3].
During the lifetime of a female, the mammary gland

epithelium undergoes many rounds of growth cycle, including
changes of cell proliferation and cell differentiation in response
to changes of hormonal levels. The cyclical expansion and
proliferation of the epithelial cells indicates the maintenance of
stem/progenitor cells in the mammary gland. It has been
demonstrated that the basal myoepithelial cells in the

mammary gland harbors stem/progenitor cell population [4].
Mammary stem cells (MaSCs) in mice have been isolated from
lineage- mammary cells by multiple research groups based on
the expression of several cell-surface markers, such as
moderate-to-high levels of CD24, high levels of CD29, and/or
high levels CD49f [5–7]. These cells show multipotent and self-
renewing, and carry ability to reconstitute complete mammary
gland in vivo after transplantation [5–7]. Nonetheless, a recent
publication found that the basal myoepithelial cells expressing
α-smooth muscle actin were the only cell type functioning as
stem cells in adult mice [8], which were characterized with the
high level of epithelial cell adhesion molecule (EpCAM) and
alpha 6 integrin (CD49f). So the cells with lineage- CD24+

CD49fhigh features were considered as MaSCs in the
current study.
DNA changes happen over the period of a lifetime, which often

determine the changes of relevant phenotypes. There are two
types of DNA changes, one is inherited from parents, the other
comes from natural aging or exposure to toxic chemicals/rays in
the environment. Gene mutations in BRAC1, BRCA2, ErbB2, PTEN,
TP53, et al., have been well demonstrated to cause breast cancer
in women [9–12]. Along with growing old, there is consequently
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accumulation of such gene mutations in somatic cells, leading to
human cancer occurrence [13].
Breast cancer is the most common cause of cancer death

among women all over the world [14]. One in eight women in the
USA develops breast cancer in her lifetime [15]. The median age of
diagnosis with breast cancer in women is 62. Only ~4% of women
diagnosed as breast cancer are <40 years old. Aging is the most
significant risk for breast cancer. Notably, gene mutations in tissue
stem cells have been considered as the main reason leading to
formation of cancer stem cells, and tumorigenesis [16–18].
Since many dysregulated pathways regulating breast cancer

progression are also observed during tissue development and
cyclical remodeling in the mammary gland [3], identification of the
gene signature upon development in the mammary gland will
shed light on our understanding of the mechanisms regulating
the initiation and progression of breast cancer. However, the gene
expression shift in MaSCs from neonatal to adult remains unclear.
In order to determine the gene expression signature in different

developmental stages of MaSCs, we herein performed genome-
wide gene expression analysis based on RNA-Seq data over five
time points from young to old mice, and identified multiple
clusters of genes that have coherent expression patterns across
the time points. Pathway analyses indicated changes of those
aging-related and cancer-related genes over the lifetime in mice.
Additional comparisons between the gene signatures we identi-
fied and public datasets further confirmed the evolution of gene
expression in MaSCs, regulating organism growth, stemness, and
aging in mammary epithelial cells (MECs), and breast tumorigen-
esis as well.

RESULTS
Isolation of CD24+CD49fhigh MaSCs from neonatal to old mice
In order to understand the evolution of gene expression in the
mammary gland stem cells upon the tissue development and

aging in mice, cell transplantation and RNA-seq analysis were
performed with MaSCs following the procedure shown in Fig. 1A,
which covered different developmental-stages of mammary gland
from neonatal to aged mice. Primary MECs were isolated from the
mammary glands of female mice at ages of 4, 20, 40, 90, 180, and
360 days after birth (Fig. 1B), representing developmental stages
of infant, teenager, young adult, adult, early old, and old,
respectively. The lineage- cells at each age were sorted by flow
cytometry to collect MaSCs using the CD24+CD49fhigh feature and
basal progenitor cells using the CD24low CD49fhigh feature
(Supplemental Fig. S1 and Fig. 1C).

Comparison of the mammary gland regenerative ability of
CD24+CD49fhigh MaSCs from neonatal to old mice
In order to determine the regenerative ability of the MaSCs at
different developmental stages, in vitro mammosphere formation
assays were performed with MaSCs from the neonatal to old mice
(4-, 20-, 40-, 90-, 180- and 360-days old, respectively). MaSCs at D4
to D90 grew normally into spheres with the highest efficiency at
D40, while those from D180 and D360 showed weaker sphere-
formation ability, and formed smaller size of spheres (Supple-
mental Fig. S2A, B). Meanwhile, same assays were applied in
parallel to the progenitor cells from the six age points, which did
not form any spheres under the same condition. Only cell debris
was observed after 8 days of culturing, suggesting the progenitor
cell proliferation was not able to form mammospheres in vitro
(Supplemental Fig. S2C).
Moreover, in vivo tissue regeneration assays were performed by

transplanting MaSCs from neonatal to old mice (500 cells per
injection) into the 3-week-old female mice with fat pad cleared
between the nipple and the proximal lymph node. Injection of
same volume of PBS served as negative controls (Fig. 2A). All the
mice were checked in 10 weeks after transplantation. As shown in
Fig. 2B, branching tree structures in the mammary glands were
regenerated from the transplanted MaSCs. Quantitative analysis of
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Fig. 1 Isolation of mammary gland stem cells from mice. A Schematic representation of the workflow to identify the evolution of gene
expression signature in the mammary gland stem cells during development from neonatal to old mice. B Representative primary mammary
epithelial cells isolated from the mammary gland of female mice. C The CD24+CD49f high mammary stem cells were purified by cell sorting
using flow cytometry.
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the primary branches (ducts extending from the lymph node and
terminating in an end bud) and side-branches (the branches
extending from the primary branches) indicated the strong
regenerative ability of MaSCs from neonatal and young mice of
D4, D20, D40, and D90, while decreased at the early old age of
D180, and declined to PBS control level at the old age of D360
(Fig. 2C, D).

Gene expression profiling in the CD24+CD49fhigh MaSCs from
neonatal to old mice
Total RNAs from MaSCs were end linked with adapters for
amplification. RNA-seq analyses were applied using Illumina
sequencing platform. The abundance of each gene was quantified
as TPM (Transcripts per million) value. 15,232 genes whose TPM
values dynamically changing over the time points with standard
deviation >0.5 were performed further analysis. Hierarchical
clustering algorithm was used to group samples on the basis of
the expression pattern. As expected, the repeats at each time
point were clustered together (Fig. 3A). D4-based comparisons

with other time points identified 4,088 differentially expressed
genes (DEGs) in total (Fig. 3B).
In order to identify DEGs between adjacent time points,

comparisons were made between D20 vs. D4, D40 vs. D20, D90
vs. D40, and D180 vs. D90. The DEGs were defined using adjusted
P-value < 0.05 and fold change over 2.0 (Supplemental Fig. S3).
Among them, 3128 genes were differentially expressed between
D180 and D90, and 1723 between D20 and D4, but much smaller
number of DEGs between D20, D40, and D90 (Supplemental Fig.
S3), indicating the occurrence of the major changes in gene
expression at the early stage of development (from neonatal to
puberty) and aging stage (from adult to old).
According to the dynamic change of gene expression over the

time points, we identified four distinct patterns that summarized
the expression change trends of all DEGs from neonatal to old
ages by soft clustering (Fig. 4A). The genes in Cluster 1 showed the
highest level at the neonatal age, and thereafter gradually
downregulated. In contrast, the genes in Cluster 2 had the lowest
level at D4 of the neonatal age while high level at the young adult

Fig. 2 Mammary gland regeneration in vivo after mammary stem cell transplantation. A, B Whole-mount staining of the mammary
branching tree structures regenerated from the mammary stem cells isolated from mice at days 4, 20, 40, 60, 180, and 360 after birth,
respectively. Same volume of PBS was used for injection as a negative control (A). Total amount of 500 MaSCs at each time point was
transplanted into the epithelium-free mammary fat pad between the inguinal lymph node and the midline of 3-week-old female mice (B).
C Quantitative analysis of the primary branches extending from the lymph node to end buds. D Quantitative analysis of the side-branches
extending from the primary branches to end buds. Data are presented as the mean ± SEM (n= 3). *p < 0.05, **p < 0.01.
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and adult ages. Another two clusters of genes with aberrant
expression at early old age of D180 were also identified, including
Cluster 3 genes with the highest level at D180, and Cluster 4 genes
with the lowest levels at D180.
Gene expression changes across the different time points

should be the explicit representation of regulatory mechanism
within cells. To assess the function of those DEGs with distinct
patterns during development of the mammary gland, Gene
Ontology (GO) (Fig. 4B) and KEGG (Fig. 4C) enrichment analyses
were performed. As shown in Supplemental Fig. S4A, 11,144 genes
had stable expression levels over the five time points, which are
generally required in maintaining the tissue homeostasis and
keeping balance between cell proliferation and apoptosis
(Supplemental Fig. S4B, C).
Interestingly, genes in Cluster 1 with a highest level at D4 were

mainly enriched in regulating cell differentiation, tissue develop-
ment, signal transduction, organism growth, adipose tissue
development, axongenesis, and signaling pathways regulating
pluripotency of stem cells. Cluster 2 includes genes with high
levels from D20 to D90, which were mainly enriched in processes
of angiogenesis, somatic stem cell population maintenance,
estrogen signaling pathway, and immune signaling pathway.
Genes in Cluster 3 showed the highest level at the early age of
D180, mainly enriched in signaling pathways regulating DNA
repair, cellular apoptosis and aging-related diseases, such as
Huntington disease, Parkinson disease and Alzheimer disease. In
contrast to Cluster 3, genes in Cluster 4 showed the lowest level
at D180, mainly enriched in hormone response signaling

including estrogen, ErbB and PD-1, and pathways regulating
cancer (Fig. 4C).

Identification of the gene expression signature regulating cell
stemness and/or aging
Cluster 1 includes a subset of stemness-related genes showing the
highest levels at the neonatal age, and the lowest levels at the old
age (Fig. 5A). In order to further confirm the gene expression
signatures in MaSCs regulating stemness and/or aging, we
performed comparisons between the DEGs from our dataset with
the gene expression signatures in the public database. Stemness-
and aging-related gene signatures were derived from Gene
Expression Omnibus (GEO), including GSE116385 (an RNA-Seq
dataset on normal mammary stem cell and normal adult basal cell
populations [19]) and GSE130472 (an RNA-Seq dataset on aged
and young mammary tumors [20]). GSEA analysis revealed that
DEGs in D20 vs. D4 and D180 vs. D90 were significantly enriched
with stemness genes, suggesting that the stemness change was
mainly occurred at the early stage (from neonatal to puberty) and
late stage (from adult to old) during mammary development (Fig.
5B). In addition, a comparison between GSE116385 (Basal MECs vs.
fMaSC) and Cluster 2 (high level at the young adult and adult
ages) suggested the function of this cluster of genes in regulating
MEC differentiation at the age of adult in mice (Fig. 5C).
Cluster 3/4 include a subset of aging-related genes with the

most significant change at the old age, representing the loss of
stemness when getting old. The decreased expression of anti-
aging genes including FNTA, VDAC1, NRF1, SPSB2, NARF, VPS37B,

Fig. 3 Gene expression analysis in MaSCs by RNA-seq. A Heatmap of 15,232 genes whose TPM values dynamically changing over the time
points with standard deviation > 0.5. Hierarchical clustering algorithm was used to group samples on the basis of the expression pattern. B Pie
chart illustrates numerical proportion of genes with or without significantly differential expression between D4 and other time points. Genes
with adjusted P-value < 0.05 and fold change (FC) ≥ 2 were defined as statistically differential expression. Four thousand eighty-eight
differentially expressed genes were represented in the heatmap.

X. Huang et al.

4

Cell Death and Disease          (2022) 13:335 



and VPS37C, and the increased expression of aging-promoting
genes S100A11 and ENY2 at D180 were shown in Fig. 6A, B. A
significant overlap between DEGs in old vs. neonatal ages and
aging-related gene signature in GSE130472 further demonstrated
an association between aging process and stemness loss in the
old mice (Fig. 6C). GSEA analysis demonstrated consistency
between genes in Cluster 3 and GSE130472 showing the high
expression level at the old age (Fig. 6D).

Identification of the gene expression signature relating
tumorigenesis in old mice
In order to understand the relationship between aging and
tumorigenesis in mammary gland, the DEGs in the Cluster 3 and
Cluster 4 were further analyzed. Figure 7 showed the increased
expression of oncogenes at the early old age, such as DAD1,
CKS2, MCTS1 and SNHG1 (Fig. 7A), and decreased expression of
tumor suppressor genes, such as RASSF1, SMARCB1, RAF1 and
MOAP1 (Fig. 7B). In addition, a significant overlap between the
gene expression signature in GSE130472 (your and old mammary
gland tumors) and DEGs in Cluster 4 further supported the
involvement of aging-related genes in mammary gland tumor-
igenesis (Fig. 7C).
In view of the gene mutation accumulation which usually

causes tumorigenesis, we called the gene variants using the RNA-
seq data via GATK and Varscan2 [21]. Setting gene sequence at D4
as a reference, there were 425, 1056, 418, and 1107 variants
identified at D20, D40, D90, and D180, respectively, in which 152,
114, 131, and 92 variants were observed in more than two
comparisons. Sankey diagram indicated a subset of somatic
variants with persistent identification at D20, D40, D90, and D180.
The majority of these mutant genes have been reported to

associate with tumorigenesis and metastasis of cancer cells (Fig.
7D), such as TXNIP in TNBCs and NSD1 in renal cell carcinoma.
In addition, using a cell type signature derived from the single-

cell RNA-Seq dataset GSE130472 [22], we tracked changes of the
cell type-based signature from neonatal to old via a machine
learning tool CIBERSORTx. As a result, basal cell signature showed
the highest level at D4, while both luminal progenitor signature
and mature luminal cell signature showed the lowest level at D4
and maintained at a high level from D20 to D180 (Fig. 7E), which is
consistent with the stemness characteristics of mammary
basal cells.

DISCUSSION
In consideration of the growth cycle including the cyclical
expansion and proliferation of the epithelial cells, the mammary
gland provides a unique mode for studying developmental
process, tissue regenerative property, and tissue stem cell
evolution. It is the MaSCs that drive the development of mammary
gland and maintain the regenerative capability of epithelium. So
identification of the gene expression signatures in MaSCs will lead
to our better understanding of the mechanisms in regulation of
the cyclical architecture, as well as the epithelium shrink and
tumorigenesis in the mammary gland of old mice.
Considering the key role of estrogens in influencing the

morphological changes of the mammary gland throughout the
estrous cycle and fertility in homeostasis, as well as the role of
estrogens in tumorigenesis, cytology in vaginal smears has been
applied to determine the stages of the estrous cycle in the female
mice at different developmental stages. All the female mice in the
current study were separated from males after birth, the estrous

Fig. 4 Dynamic time-series expression patterns and pathway analysis. A Heatmap of four clusters of differentially expressed genes
identified by soft clustering representing different gene expression patterns across the five time points as indicated. B, C Gene Ontology (GO)
(B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (C) enrichment analyses for the genes in the four clusters.
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cycle in these mice were determined by the level of hormones,
such as estrogen. Since the mice we used at the different ages
were selected in random, vaginal cytology examination did not
show a definite stage for the specific ages of the mice we used.
In the current study, through evaluation of the gland

regeneration after cell transplantation in vivo, we confirmed that
the regenerative potential of CD24+CD49fhigh MaSCs is strong in
the young mice, while decline in the mice when getting old. This
observation is consistent with the developmental-stage associated
function of mammary gland. Moreover, functional analyses on the
gene expression signatures in MaSCs we identified from neonatal
to old mice are in supportive of the status, structure, and function
of the mammary epitheliums corresponding to the developmental
stages.
Genes in Cluster 1 are mainly involved in cell differentiation,

tissue development, and signal pathways regulating organism
growth, adipose tissue development, and fat cell differentiation.
They had the highest expression level at D4, and decreased at D20
and thereafter, such as NGFR and ARTN (Fig. 5A), which have been
reported to regulate stem cells and/or progenitor cells [23–25].
Moreover, we found the highest cell proportion of MaScs at D20
and D40 (Supplemental Fig. S1), although MaScs at D4 had the
strongest tissue regenerative ability (Fig. 2). Since gene p53 and its
homolog p63 have been implicated to regulate mammary stem

cell self-renewal, we analyzed the expression of p53 and p63 in
MaScs across the time points from neonatal to old mice. In
consistence the result in Fig. S1, p53 and p63 showed higher levels
at D20 and D40 (Supplemental Fig. S5A, B), supporting the
developmental regulation of mammary epithelium and increased
self-renewing of MaScs during puberty and young adult stages
in mice.
The decrease of anti-aging genes and increase of aging-promoting

genes at the old age (Fig. 6A, B) confirmed the hypothesis that the
gene expression changes determine the cell/tissue aging, even
aging-related diseases. For example, anti-aging genes NRF1 and
SPSB2 showed expressional loss, while aging-promoting genes
S100A11 and ENY2 showed significant increase at the early old
age. These genes have been demonstrated to involve in the
regulation of aging or aging-related diseases [26–29].
Accumulation of genetic mutations and epigenetic alterations

in tissue stem/progenitor cells, or even in the differentiated cells
are supposed to be the source to induce the formation of cancer
stem cells (also known as tumor-initiating cells) [30]. The current
study well supported the hypothesis that the alterations of tissue
stem/progenitor cells may be the origin of cancer stem cell
formation. In addition to gene mutation, aging is considered as
the most significant risk for cancer, especially for breast cancer
and prostate cancer. Herein, we found the gene expression

Fig. 5 Stem cell-related gene expression signature. A Expression pattern of the representative stemness-related genes including TGFBI,
NGFR, CDK2, ARTN, and DHH indicating the highest levels at D4 of the neonatal age and the lowest levels at the D180 of old age. B GSEA
analysis revealed that DEGs in D20 vs. D4 and D180 vs. D90 are significantly enriched in a stemness gene signature derived from GSE116385.
C GSEA analysis showed upregulation of DEGs in Cluster 2 in basal MECs vs. fMaSCs.
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signature in the old mice is enriched in the signaling pathways
regulating aging-related diseases including Huntington disease,
Parkinson disease, and Alzheimer disease. Based on these findings,
the gene signature we identified in the old mice takes
responsibility to a certain extent for those aging-related diseases
including cancer.

MATERIALS AND METHODS
Animals
Animal studies were approved by the Institutional Animal Care and Use
Committee of the Tongji University School of Medicine. FVB mice were
purchased from the Silaike Animal Company (Shanghai, China). Isolation of
the mammary gland epithelial cells from mice was performed in the
Research Center for Translational Center, Tongji University School of
Medicine. All experiments were performed in accordance with the relevant
guidelines and regulations for animal use.

Isolation of mammary gland epithelial cells
Mammary glands were dissected from different ages of female mice to
isolate epithelial cells following the protocol from literature [4, 5] with a
small modification. Briefly, after mechanical dissociation, the tissue pieces
were placed in culture medium (DMEM with 1mM glutamine, 5 mg/ml
insulin, 500 ng/ml hydrocortisone, 10 ng/ml epidermal growth factor, and
20 ng/ml cholera toxin, 5% bovine calf serum) containing 300 U/ml
collagenase and 100 U/ml hyaluronidase for 1 h at 37 °C. The resultant
organoid suspension was sequentially resuspended in 0.25% trypsin-EDTA
containing 5mg/ml Dispase for 5 min before filtration through a 40-mm
mesh. The cells were cultured for 12–24 h to attach to the culturing dishes.
The fibroblasts were removed through differential adhesion method. The
enriched mammary epithelial cells at this step were in passage 0 to
passage 1, still maintaining the primary cell property and function.
Immediately after enrichment, MECs were applied for Lineage negative

(Lin-) selection following a widely used strategy for purifying mammary
epithelial cells (CD31−CD45−Ter119−).

Isolation of mammary gland stem cells
Lin- mammary gland epithelial cells were suspended in the medium
containing antibodies against CD24 (conjugated to PE, 1: 100, Cat#
60099PE.1, Stemcell Technologies, Canada) and CD49f (conjugated to APC,
1: 20, #130100147, Miltenyi Biotec, USA), and incubated in the dark cold
room at 4 °C for 20min. After washing twice with 1× PBS, the cells were
centrifugated at 200 × g for 5 min. Discarding the supernatant, and
resuspending the cell pellet in 300 µl 1× PBS. The labeled mammary gland
stem cells were sorted using a FACStarPLUS (BD Biosciences, USA) flow
cytometer. Data were analyzed with CytExpert software. Following the
approach, mammary gland stem cells were obtained from female mice at
the ages of day 4 (D4), day 20 (D20), day 40 (D40), day 90 (D90), day 180
(D180), and day 360 (D360), respectively.

Mammosphere formation assay
Mammary gland stem cells were planted into 96-well ultra-low adherent
cell culture plate (Corning, USA) with the density of 500 cells/well, and
incubated at 37 °C and 5% CO2 for 1 week in DMEM/F12 medium
containing 20 ng/mL bFGF, 20 ng/mL EGF, 10 μg/mL heparin, 10 μg/mL
insulin, 1% Penicillin-Streptomycin solution, and B27 supplement (Invitro-
gen). Sphere photos were captured at day 1, day 4, and day 7 with Axio
Vert A1 FL microscope (Zeiss).

Transplantation of mammary stem cells into the fat pad of
mice
Three-week-old female mice were used for cell transplantation following the
protocol described in literature [31]. Briefly, after anesthetization, cauterizing
the mammary artery running between the fourth/fifth mammary fat pads of
mice and the two blood vessels around the proximal lymph node. Then
cutting the bridge between fourth and fifth mammary glands to prevent the

Fig. 6 Aging-related gene expression signature. A Decreased expression of the representative anti-aging genes including FNTA, VDAC1,
NRF1, SPSB2, NARF, VPS37B, and VPS37C at D180, compared to D4. B Increased expression of the aging-promoting genes S100A11 and ENY2
at D180, compared to D4. C GSEA analysis revealed that DEGs in D180 vs. D4 are significantly enriched in an aging-related gene signature
derived from GSE130472. D GSEA analysis showed upregulation of Cluster 3 genes in aged vs. young mice. DEG differentially expressed gene.
Data are presented as the mean ± SEM (n= 3). *p < 0.05, **p < 0.01, ***p < 0.001.
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epithelium growing in the fourth mammary fat pads from the fifth, and
removing the region of the fourth mammary fat pad between the nipple and
the proximal lymph node. Five hundred of the sorted Lin− CD24+ CD49fhigh

mammary gland stem cells were injected into the remaining portion of the
epithelium-free mammary fat pad between the inguinal lymph node and the
midline. For the cell recipients, three randomly selected female mice were
applied for each time point of MaScs without blinding to investigators. An
online tool (www.random-online.com) was used for randomization. In
10weeks post transplantation, mammary outgrowths were collected and
applied for whole-mount staining.

Whole-mount staining of mouse mammary gland
The fourth mammary gland was taken from a mouse, and spread out on a
glazed microscope slide. Then immediately fixed in the fresh 4%
formaldehyde for 4 h. After washing in PBS twice for 5 min each, the
Carmine Alum solution was applied for staining overnight on a rocking bed
at room temperature. After washing with 50, 75, 85, 95, and 100% of EtOH
in order for 30min each, clear the mammary gland in xylene and mount
with permount under a coverslip. Stained mammary glands were imaged
by light microscopy.

RNA sequencing (RNA-seq) analysis
A pool of 500 sorted mouse mammary gland stem cells at an indicated
stage were treated with the lysis buffer to isolate total RNA, and applied to
reverse transcription synthesis of the first-strand cDNA and further

amplification of double-strand cDNA using the Discover-scTM WTA Kit
V2 (Vazyme, China) following the manufacturer’s instructions (a detailed
flow diagram in Supplemental Fig. S1). VAHTSTM DNA Clean Beads
(Vazyme) were used for size-selection and purification of the amplified
cDNA library. After quality validation using Agilent 2100 Bioanalyzer
(Applied Biosystems, USA), the library was sequenced (n= 3) by the HiSeq
System (Illumina, USA).

RNA-seq data processing
The quality of the reads was evaluated with FastQC (version 0.11.6) [32].
We applied trim_galore (version 0.4.4) [33] and cutadapt (version 1.16) [34]
to remove the adapters and overrepresented sequence. The samples
information of clean data was shown in Supplemental Table S1.
The paired-end clean RNA-seq reads were aligned to the mouse

reference Ensembl Version GRCm38.92 using the splice-aware aligner STAR
(v2.4.0j) [35]. The abundance of each gene was quantified as TPM
(Transcripts per million) value, which was evaluated by a statistical method
RSEM (RNA-Seq by Expectation Maximization) using a generative model of
RNA-seq reads and the EM algorithm, taking read mapping uncertainty
into account and achieving the most accurate abundance estimates [36].

Hierarchical clustering, heatmap visualization
We calculated the standard deviation (SD) of each gene over five time
points, and used cut-off with SD ≥ 0.5 genes to generate a hierarchical
clustering and heatmap with the “pheatmap” package in R.

Fig. 7 Mammary gland tumor-related gene expression signature. A, B Increased expression of the representative oncogenes including
DAD1, CKS2, MCTS1, and SNHG1 (A), and decrease of tumor suppressor genes including RASSF1, SMARCB1, RAF1, and MOAP1 (B) at D180,
compared to any younger time points. C GSEA analysis revealed that genes in Cluster 4 are significantly enriched in a mammary gland tumor-
related gene signature derived from GSE130472. D Gene mutations at different time points compared to D4 were called by GATK and
Varscan2. Sankey diagram showed the number of variants at different time points, in which different colors represent different mutation
patterns. The frequency of mutations at each time point was indicated below the Sankey diagram. E Analysis using a cell type-based signature
derived from GSE130472 (left panel) indicated the highest proportion of basal cells at D4. While both luminal progenitor and mature luminal
cells showed the lowest proportion at D4, and maintained at a high level from D20 to D180 (right panel). DEG differentially expressed gene.
Data are presented as the mean ± SEM (n= 3). *p < 0.05, **p < 0.01, ***p < 0.001.
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Dynamic expression analysis
The analysis of differentially expressed genes (DEGs) was performed using
the DESeq2 [37] with raw counts of RNA-seq data. Adjusted p-values
corrected with the Benjamini–Hochberg method <0.05 and fold change
over 2.0 were set as the cutoff for controlling false positives. The dynamic
expression patterns were identified by soft clustering using Mfuzz with the
parameters: numbers of clusters (c)= 4, fuzzification (m)= 2.0 [38]. Genes
in four clusters were further mapped onto the Gene Ontology (GO) as well
as Kyoto Encyclopedia of Genes and Genomes (KEGG). Adjusted P-values
were calculated using the hypergeometric distribution.

The public datasets in GEO Database and DEGs analysis
Three gene expression datasets in Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database were used, including GSE116385 (a
RNA-Seq dataset on normal mammary stem cell populations and fetal
mammary stem cell populations [19]), GSE130472 (an RNA-Seq dataset on
aged and young mammary tumors [20]) and GSE103275 (a single-cell RNA-
Seq dataset on mouse mammary epithelial cells [22]).
For the bulk RNA-Seq data GSE116385 and GSE130472, the raw counts

were downloaded from GEO database, and DEGs with adjusted P-value <
0.05 and fold change ≥ 2 were detected by DESeq2. For GSE116385, 1567
genes were significantly upregulated and 1303 genes downregulated in
the comparison of fMaSC vs. Basal MECs. For GSE130472, 405 genes were
significantly upregulated and 910 downregulated in the comparison of old
vs. young mammary tumors.

Gene Set Enrichment Analysis (GSEA)
GSEA [39] was used to further analyze if the gene expression changes in
the mammary stem cells over time points were associated with the gene
signatures of stemness, aging, and/or cancer, which were derived from the
public datasets as mentioned above. The DEGs of four comparisons, D20
vs. D4, D40 vs. D20, D90 vs. D40, D180 vs. D90, were respectively compared
with the mammary development, aging, and/or cancer gene signatures,
and the family-wise error rate was used for significance correction to
reduce false positive. In addition, the signatures derived from the dynamic
expression patterns were validated in the public databases using GSEA.

Mutation calling for RNA-Seq
STAR two-pass method was used to perform alignments to the mouse
reference Ensembl Version GRCm38.92. Duplicates were marked using
Picard’s Mark Duplicates tool (Version 2.0.1). Reads were split and trimmed
using the Genome Analysis Toolkit (GATK, version 4.0) SplitNTrim tool, after
which indel realignment and base recalibration were performed. The
sorted alignment files were then merged by samtools [40]. A pileup file
was created using the final recalibrated bam file and samtools mpileup.
Finally, variants were called using Varscan2 (v2.4.4) [21] in the comparisons
of D20 vs. D4, D40 vs. D4, D90 vs. D4, and D180 vs. D4. Somatic variants
were further selected to increase the confidence by Varscan2 processSo-
matic. Functional annotation was performed using SNPeff [41]. Known RNA
editing sites collected by REDIportal were excluded for further analysis [42].
Finally, we created a Sankey diagram to visualize the variant distribution
between different time points.

Estimation of cell fractions
For the assessment of cellular abundance and cell type-specific gene
expression patterns from bulk tissue transcriptome profiles, CIBERSORTx
was used to evaluate the relative percentages of stem cells at different
time points, and determine the changes of cell abundance by leveraging
cell type expression signatures derived from single-cell RNA-Seq data [43].

Statistical analysis
Data are presented as mean ± SEM unless stated otherwise. The standard
two-tailed student’s t-test was used for statistical analysis, in which p < 0.05
was considered significant.

DATA AVAILABILITY
Original data presented in this study are included in the article/supplementary
information. Further inquiries are available upon request to the corresponding
authors.
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