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Injury to the axons of retinal ganglion cells (RGCs) is a key pathological event in glaucomatous neurodegeneration. The
transcription factors JUN (the target of the c-Jun N-terminal kinases, JNKs) and DDIT3/CHOP (a mediator of the endoplasmic
reticulum stress response) have been shown to control the majority of proapoptotic signaling after mechanical axonal injury in
RGCs and in other models of neurodegeneration. The downstream transcriptional networks controlled by JUN and DDIT3, which are
critical for RGC death, however, are not well defined. To determine these networks, RNA was isolated from the retinas of wild-type
mice and mice deficient in Jun, Ddit3, and both Jun and Ddit3 three days after mechanical optic nerve crush injury (CONC). RNA-
sequencing data analysis was performed and immunohistochemistry was used to validate potential transcriptional signaling
changes after axonal injury. This study identified downstream transcriptional changes after injury including both neuronal survival
and proinflammatory signaling that were attenuated to differing degrees by loss of Ddit3, Jun, and Ddit3/Jun. These data suggest
proinflammatory signaling in the retina might be secondary to activation of pro-death pathways in RGCs after acute axonal injury.
These results determine the downstream transcriptional networks important for apoptotic signaling which may be important for
ordering and staging the pro-degenerative signals after mechanical axonal injury.
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INTRODUCTION
Axonal injury is a critical component of many neurodegenerative
diseases including glaucoma. Multiple studies show an early insult
occurs to retinal ganglion cell (RGC) axons at the optic nerve head
(ONH) in glaucoma that triggers signaling pathways that result in
axonal degeneration and somal death [1–8]. Specifically, JUN, the
canonical target of the JNKs, and CHOP/DDIT3, an important
mediator of the PERK arm of endoplasmic reticulum (ER) stress
signaling, are key mediators of somal apoptosis after axonal injury
in RGCs. Individually, JUN and DDIT3 play important roles in
apoptotic RGC death after axonal injuries including mechanical
optic nerve injury and ocular hypertensive injury [9–16]. Dual
deficiency of JUN and DDIT3 prevented the majority of RGC death
for extended time periods after optic nerve crush (CONC)—
120 days after CONC, Ddit3/Jun deficient retinas had ~74%
improved RGC survival compared to wild-type controls [17]. In this
study, Junf alleles were only recombined from ~80% of RGCs [17],
suggesting these two transcription factors control nearly all
proapoptotic signaling in RGCs after mechanical axonal injury.
Since JUN and DDIT3’s canonical roles are as transcription factors,
it is likely JUN and DDIT3 control the transcriptional nodes
required for somal apoptosis after axonal injury. To date, only
limited transcriptional targets of JUN and DDIT3 (i.e., ATF3, BIM)
have been identified that have also been shown to be important
for somal death after axonal injury. Importantly, none of these

targets have been shown to phenocopy the protection to RGCs
afforded by JUN and DDIT3 deficiency [10, 11, 18, 19].
Glaucomatous neurodegeneration is complex, with activation of

multiple signaling pathways that may have both pro-survival and
pro-degenerative roles after injury [7, 20–23]. Due to this
complexity, the specific molecular cascade from inciting injury
to axonal degeneration and somal apoptosis remains largely
undefined. As JUN and DDIT3 are transcription factors that control
the majority of proapoptotic signaling, determining the transcrip-
tional targets of these molecules will likely identify the activation
of key pro-death molecules.
Given the profound protection to RGCs after mechanical

axonal injury in mice deficient in Jun and Ddit3, it is clear that
these molecules are key transcriptional nodes governing axonal
injury-induced RGC death. Thus, understanding the transcrip-
tional response controlled by these genes after axonal injury will
provide a detailed understanding of the molecular events that
control RGC death after axonal injury. To define the transcrip-
tional network(s) controlling RGC death after axonal injury
(CONC), RNA sequencing of whole retinas was performed from
wild-type mice and mice deficient in Ddit3, Jun or both Jun and
Ddit3. Our results showed both neuronal and immune transcrip-
tional networks are activated after axonal injury and that
activation of these networks was differentially altered by loss
of Ddit3, Jun, or Ddit3/Jun.
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MATERIALS AND METHODS
Mice
All experiments were approved by the University of Rochester’s Committee
on Animal Resources and conducted in adherences with the Association
for Research in Vision and Ophthalmology statement on the use of animals
in ophthalmic and vision research. Animals received chow and water ad
libitum and were housed on a 12-h light-dark cycle. Three alleles were
used to generate four strains for these experiments as has been previously
described [17]. Briefly, these strains include 1) germline deficient Ddit3
mice (Jackson Laboratory, Bar Harbor, ME, Stock 005530) [referred to as
Ddit3−/−], 2) a floxed allele of Jun [24] recombined with the Six3cre, a
neural retina cre [25] [referred to as Six3cre+; Junf/f or Jun−/−], 3) mice
deficient in both Jun and Ddit3 [referred to as Six3cre+; Junf/f; Ddit3−/− or
Jun−/−Ddit3−/−] and 4) wild-type control mice, such as Six3cre+; Jun+/+,
Six3cre-; Junf/f, Six3cre−; Jun+/f, Six3cre−; Jun+/+, and Ddit3+/+ [collectively
referred to as WT]. B6.Gt(ROSA)26Sortm75.1(CAG-tdTomato*)Hze/J (TdTo-
mato+; Jackson Laboratory, Bar Harbor, ME, Stock 025106) mice were used
to assess AAV2.2-cmv-gfp-cre recombination efficiency. All mice were
backcrossed at least five generations to C57BL/6 J mice. The number of
animals of each genotype and treatment (determined by power analysis)
was stated in Additional file 11. Experimenters were masked to genotype
and condition. Mice of each genotype group were randomly selected for
experimental analysis.

Controlled optic nerve crush
Mice of 2–6 months of age were used for controlled optic nerve crush
(CONC) after anesthetized with 100mg/kg ketamine and 10mg/kg
xylazine. The optic nerve was surgically exposed and crushed just behind
the globe for five seconds with self-closing forceps (Roboz RS-5027,
Gaithersburg, MD) [8, 18]. Ophthalmic ointment containing neomycin,
polymyxin b sulfates, and dexamethasone was applied to both eyes
following the procedure (Sandoz, Princeton, NJ). Control eyes included
those that underwent sham surgery (optic nerve exposed but not crushed)
and those eyes that were not manipulated except receiving antibiotic
ointment (naïve eyes) as optic nerve crush is known to lead to microglial
alterations in the contralateral eye [26, 27]. Eyes were then harvested for
RNA extraction and immunohistochemistry.

NMDA Intravitreal injections
NMDA intravitreal injections were performed as previously described [28],
Briefly, animals were anesthetized with 100mg/kg ketamine and 10mg/kg
xylazine. The sclera was cleared with the bevel of a 33 G needle, which was
then used to poke a small hole just behind the limbus. A Hamilton needle
was used to deliver 2 μL of 100mM NMDA (Sigma-Aldrich, M3262) or PBS
(vehicle control). Injections were performed over the course of approxi-
mately 2 minutes to avoid sudden increases in intraocular pressure.

RGC-specific deletion of Junf alleles with adenoassociated viral
cre delivery
To generate retinas with RGC-specific deletion of Jun, Junf/fDdit3−/−

animals were bilaterally intravitreally injected with 1 μL of stock AAV2.2-
cmv-gfp-cre (UNC vector core). To generate WT controls, 1 μL of AAV2.2-
Cmv-cre-Gfp or AAV2.2-Cmv-Gfp (with no cre allele, UNC vector core) was
intravitreally injected into the eyes of Jun+/+Ddit3+/+ animals. CONC was
performed no earlier than 28 days after viral delivery to ensure sufficient
recombination and endogenous protein degradation. To test recombina-
tion robustness and specificity, AAV2.2-Cmv-cre-Gfp was intravitreally
injected into the eyes of Tdtomato+ animals, and Tdtomato expression
was quantified for specific cell types.

RNA sample preparation and sequencing
Dissections were completed in RNase-free conditions. Retinas were
quickly dissected in cold PBS and then submerged in RNA-later (Qiagen
76106, Germantown, MD). Retinas were kept at room temperature for
24 h and then stored in RNA-later at −80 °C. RNA extraction and
sequencing were performed by The Jackson Laboratory Genome
Technologies Core. Retina tissues were homogenized with TRIzol
(Invitrogen, Carlsbad, CA) as previously described [29]. RNA was isolated
and purified using the QIAGEN miRNeasy mini extraction kit in
accordance with manufacturer’s instructions. RNA quality was measured
via the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) and poly
(A) RNA-seq sequencing libraries were compiled by TruSeq RNA Sample
preparation kit v2 (Illumina, San Diego, CA). Quantification was

performed using qPCR (Kapa Biosystems, Wilmington, MA). RNA-seq
was performed on the Illumina HiSeq4000 sequencer for 75 bp pair-end
reads according to the manufacturer’s instructions.

RNA-sequencing data analysis
RNA-sequencing data analysis were performed as previously described
[29]. Briefly, fastq files of all samples were subjected to the removal of
adapters and trimming low-quality bases (Phred < 30) using NGSQCToolkit
v2.3 [30]. RSEM v1.2.12 was used to quantify gene expression using the
trimmed reads as input [31]. RSEM internally utilizes Bowtie2 v2.2.0 as its
aligner [32] with supplied annotations at default parameters against the
C57BL/6 J mouse genome (mm10). Genes that had less than 1 count per
million (cpm) in at least two samples were removed before normalization.
Differentially expressed (DE) gene analysis was performed using Quasi-
Likelihood methods in edgeR 3.20.9 package [33]. DE genes were
determined comparing CONC with naïve eye group within each genotype
(treatment effect) and between genotypes (interaction of treatment and
genotype effect). DE genes were uploaded onto Ingenuity Pathway
Analysis (IPA) software for canonical pathway, upstream regulator, disease
and function, and regulatory effect analysis. Please see statistical analysis
section for criteria of DE genes and downstream analyses in IPA.

Immunohistochemistry
All eyes for immunohistochemistry were fixed in 4% paraformaldehyde (PFA)
for 2 hours and then stored in 1M phosphate-buffered saline (PBS) as has
been previously described [9, 17]. For flat-mount staining, the anterior
segment was removed and then the retina was carefully dissected from the
optic cup. After PBS washes, retinas were blocked with 10% horse serum in
0.4% TritonX in PBS at 4 degrees and then incubated in primary antibodies
(Additional file 12) for three overnights at 4 °C before one overnight in
secondary antibodies (Alexafluor-conjugated, Invitrogen) also at 4 °C. Retinas
were then washed and mounted (RGC side up) in Flurogel (Electron
Microscopy Sciences, Hatfield, PA). For cryosections, the anterior segment
was removed and the posterior segment was processed. After PBS washes,
14 µm cryosections were blocked with 10% horse serum in 0.1% TritonX in
PBS at room temperature for several hours and then incubated in primary
antibodies (Additional file 12) overnight at 4 °C. The next day cryosections
were incubated with secondary antibodies (Alexafluor-conjugated, Invitrogen
& JacksonImmuno, West Grove, PA) for several hours at room temperature
and then counterstained with 4′,6-diamidino-2-phenylindole (DAPI, Thermo-
Fisher, Waltham, MA) before mounting with Flurogel.

Statistical analysis
A minimum of four retinas (both sexes mixed) were used for each
experimental cohort and condition (Additional file 11). Significant DE
genes resulting from treatment or treatment by genotype effect were
defined with a false discovery rate (FDR) less than 0.05 [i.e. −log10(FDR) >
1.3] and an absolute fold change (FC) larger than 1.0. Significantly enriched
canonical pathways were determined by a Benjamini-Hochberg (B-H) p
value less than 0.05 [i.e. -log10(B-H p-value)>1.3]. Significantly enriched
upstream regulators were defined by a Fisher exact p value less than 0.05
[i.e. −log10(p value) > 1.3]. Activation of a pathway or upstream regulator
was determined by z-score equal or more than 2 and vice versa.

RESULTS
Jun, Ddit3, and dual Jun/Ddit3 deficiency differentially alters
retinal transcriptional profiles in response to axonal injury
To characterize transcriptional changes that occur after axonal
injury, whole WT, Jun−/−, Ddit3−/−, and Jun/Ddit3−/− retinas were
dissected for RNA sequencing three days after controlled optic
nerve crush (CONC), a time point at which RGC death has just
begun [18]. Principle component analysis (PCA) demonstrated the
overall changes in the transcriptome between CONC and naïve
conditions (DNT, did not touch) and across individual genotypes
(Additional file 1a). The experimental samples were primarily
separated by treatment effect (CONC vs. naïve, 9.54% variance
explained) and then further modestly separated by genotype
effect (WT, Ddit3−/−, Jun−/− and Jun−/−Ddit3−/−, 8% variance
explained). Differentially expressed (DE) genes were determined
by comparing CONC with naïve retinas for all four experimental
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groups (WT, Jun−/−, Ddit3−/−, Jun/Ddit3−/−) using edgeR (see
Methods). As expected, Jun and Ddit3 were significantly elevated
in WT retinas after CONC (Additional file 1b). Further, Jun was
elevated in Ddit3−/− retinas and Ddit3 was elevated in Jun−/−

retinas. This was consistent with previous reports that demon-
strated Jun deletion did not prevent DDIT3 expression in RGCs
[10], and Ddit3 deletion did not prevent JUN activation in RGCs
[17], suggesting these genes did not regulate each other after
optic nerve injury.
Overall, compared to naïve eyes, 1264 DE genes were detected

in WT animals after CONC with a false discovery rate (FDR) of less
than 0.05 (Fig. 1a). Retinas deficient in Ddit3, Jun, or Jun/ Ddit3 had
744, 383, and 286 DE genes respectively in response to CONC.
Some CONC-induced DE genes were genotype-specific while
others overlapped across genotypes (Fig. 1b). Increased RGC
survival correlated with fewer DE genes. Previous reports have
shown deficiency in Ddit3, Jun, and Jun/Ddit3 increased RGC
survival after CONC with Ddit3 deficiency having the least effect
and Jun/Ddit3 deficiency having the greatest effect (35 days post-
CONC; WT: 21.6%, Ddit3: 47.5%, Jun: 75.4%, Jun/Ddit3: 88.5%) [17].
Thus, the number of DE genes resulting from injury in each
genotype cohort correlated with RGC survival.
Canonical pathway analysis (Ingenuity Pathway Analysis, IPA)

was employed to determine biological processes enriched in DE
genes across genotypes. Analyses predicted multiple canonical

pathways were modulated by CONC in WT retinas but not in
retinas deficient in Jun, Ddit3 and/or Jun/Ddit3 (Additional file 1C,
Additional file 3). These included numerous RGC-intrinsic injury
signaling pathways such as ‘neuronal signaling’, ‘extrinsic inflam-
matory signaling’ and ‘cholesterol biosynthesis’. Compared to WT
retinas, fewer pathways were significantly enriched in response to
CONC in Ddit3, Jun, and dual Jun/Ddit3 deficient animals with the
dual Jun/Ddit3 deficient animals having the fewest significantly
enriched pathways. Jun deficiency appeared to lessen the
response to axonal injury to a larger degree than Ddit3 deficiency.
It was also intriguing that apparent RGC-extrinsic proinflammatory
canonical pathways were increased after axonal injury, however,
these same signals were not activated in Ddit3, Jun, and dual Jun/
Ddit3 deficient retinas. These results indicate a multitude of
transcriptional changes occur prior to the onset of cell death in
RGCs and likely also in retinal glial cells. For instance, canonical
pathway analyses predicted an attenuation of the complement
cascade that has been shown to be important in neurodegenera-
tion and to be an early extrinsic component of glaucomatous
neurodegeneration [34–39]. Components of the complement
cascade, including the initiating factors of the classical pathway
C1qa, C1qb, and C1qc, were activated in WT retinas after CONC but
were largely suppressed by Ddit3, Jun, and dual Jun/Ddit3
deficiency (Fig. 1c). Additional glial genes such as Itgam (microglia)
and Gfap (astrocytes, Müller glia) showed a similar pattern of

Fig. 1 Axonal injury altered the transcription of neuroinflammatory pathways in retinal tissue. CONC led to differential expression of
genes in wildtype (WT), Ddit3 (Ddit3−/−), Jun (Jun−/−), and dual Jun/Ddit3 (Jun−/−Ddit3−/−) deficient retinas (a). Venn diagram depicting the
overlap of CONC-responding DE genes in all experimental groups (b). Expression of inflammatory signaling genes including complement
genes and Gfap in WT, Jun, Ddit3, and dual Jun/Ddit3 deficient retinas after CONC as compared to unmanipulated retinas (c). Area marked with
a dot indicates the fold change of a gene is not significant (FDR ≥ 0.05) in a given genotype group. Area without a dot indicates the fold
change of a gene is significant (FDR < 0.05) in a given genotype group. To validate the gene expression data, retinal sections were stained for
C1QA and counterstained with DAPI to assess complement signaling after axonal injury. C1QA immunofluorescence was increased after
axonal injury in the retinal nerve fiber layer and inner plexiform layer in WT animals after CONC injury as compared to sham retinas, however,
these changes were not observed in Jun, Ddit3, or dual Jun/Ddit3 deficient retinas after CONC (d N= 3 per genotype; Scale bar: 50μm). Gfap
expression was also increased in WT animals but not Jun deficient or dual Jun/Ddit3 deficient retinas after CONC as compared to
unmanipulated retinas (c). Retinal sections were stained for GFAP and counterstained with DAPI after axonal injury. GFAP+ presumed Müller
glial processes were evident after axonal injury in WT animals as compared to sham retinas, however, these changes were not observed in
dual Jun/Ddit3 deficient retinas after CONC (e N= 3 per genotype; Scale bar: 50μm).
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expression to complement genes (Fig. 1c). To validate these
findings, immunofluorescence was performed on retinal sections
seven days after CONC for C1QA and GFAP. After CONC, C1Q+
immunoreactivity was increased in the innermost layer of the
retina near the inner limiting membrane, presumably labeling
astrocytes or Müller glia endfeet as has been described in previous
studies in WT retinas [36, 40], as compared to uninjured WT
animals (Fig. 1d). This increase in C1Q+ immunofluorescence was
markedly less in retinas from Ddit3- Jun-, and dual Jun/Ddit3-
deficient mice. Similarly, Ddit3-, Jun-, and dual Jun/Ddit3-deficient
retinas had less GFAP+ immunoreactivity compared to WT after
CONC. Immunoreactivity was primarily limited to the nerve fiber
layer (NFL) and ganglion cell layer (GCL) in WT retinal sections,
presumably labeling retinal astrocytes in addition to possible
Müller glia endfeet (Fig. 1e). These data suggest extrinsic
inflammatory responses to axonal injury in glial cells is dependent
upon or mediated by intrinsic RGC signaling.

Jun, Ddit3, and dual Jun/Ddit3 specific signaling after axonal
injury
In order to determine specific Jun, Ddit3, and dual Jun/Ddit3
targets in response to axonal injury, DE genes that were affected
by the interaction of CONC treatment and gene type were
determined using edgeR (FDR < 0.05, Fig. 2a). A total of 73 CONC-
responding genes were predicted to be ‘regulated’ by Jun. Of
these, 23 were unique to Jun, with 50 shared with Ddit3 (47 genes)
or Jun/Ddit3 (3 genes, Fig. 2a). Enrichment of the 73 genes
revealed 35 genes were related to cell death and survival
including neuronal cell death, apoptosis of neurons, and survival
of ganglion cells (Fig. 2b, Table 1, Additional file 5). Genes
predicted to be activated by Jun included Ecel1 (endothelin
converting enzyme-like 1), Lif (leukemia inhibitory factor), Jak3
(janus kinase 3), and known Jun targets Atf3 and Hrk [10] (Fig. 2c,
d). Ecel1 is a member of the M13 family of endopeptidases that are
important regulators of neuropeptide and peptide hormone
signaling. ECEL1 (also known as DINE), has previously been shown
to be activated in response to injury in both the peripheral
nervous system and central nervous system– with its activation
dependent upon genes including Jun, Atf3, and Lif [41]. Genes
predicted to be inhibited by Jun included Ccer2 (Coiled-Coil
Glutamate Rich Protein 2), Pou4f2 (POU Class 4 Homeobox 2), and
Isl2 (SL LIM Homeobox 1, Fig. 2e, f). Only 4 CONC-responding
genes were predicted to be regulated by Ddit3, with three of these
also regulated by Jun (Fig. 3a). These included Avil, Gm12889,
Stk32a, and Stbd1 (Fig. 3b, c). Interestingly, 93 CONC-responding
genes were predicted to be regulated by Jun and Ddit3 (dual Jun/
Ddit3). Of the 93, 43 were predicted to be regulated by a
combination of both Jun and Ddit3 (Fig. 4a). These included Cdsn,
Myc, Col16a1, and Bbc3 that were activated and Hydin, Npy1r,
Clstn2, and Ano3 that were inhibited by Jun/Ddit3 (Fig. 4b, c).
Collectively, this analysis reveals putative novel targets of Jun and
Ddit3 in axonal injury for future testing.

Ddit3, Jun, and dual Jun/Ddit3 deficiency attenuate glial
responses after axonal injury
IPA upstream regulator analysis was then performed to determine
transcriptional hubs downstream of JUN and DDIT3 (Additional file
6a, Fig. 5). This analysis identified potentially key differences
between samples deficient in Jun and/or Ddit3. For example, the
upstream regulator ATF4 was largely activated in response to
CONC in WT mice (Additional file 6b) but BDNF was suppressed in
WT mice after injury (Additional file 6c). Regulatory effect analysis
predicted a group of regulators (CAMP, GAPDH, NCSTN, CCN5)
controlled a network of genes involved in activation and migration
of myeloid cells and phagocytes, only in WT but not in Jun and/or
Ddit3 deficient groups (Table 2, Fig. 5a). Myeloid and microglia
proinflammatory signaling has been thought to contribute to
pathogenic signaling in neurodegenerative conditions, including

after mechanical optic nerve injury [42–48]. This network contained
19 upregulated genes comparing CONC to DNT in WT retinas that
were differentially suppressed by Jun, Ddit3, or dual Jun/Ddit3
deficiency. For instance, Itgb2, C3ar1, Csf1, and Stat1 were
suppressed by Jun deficiency; Cd44 and Ctss were suppressed by
Ddit3 deficiency; and Csf1r and Jun were suppressed by dual Jun/
Ddit3 deficiency (Fig. 5b, c).
Only three genes (Itga5, Spp1, Tac1) remained activated in all

genotypes, suggesting the majority of neuroinflammatory activity
after axonal injury is mediated through Jun and/or Ddit3, but that
some degree of microglial response is independent of Jun and/or
Ddit3. To test this, microglia activation was evaluated using IBA1 (a
marker of microglia/macrophages) and CD68 (a marker of
phagocytic microglia). IBA1+ cells were assessed in whole-
mount retinas from all experimental (CONC) and control (SHAM)
cohorts seven days after CONC (Fig. 6a). Compared to WT sham
retinas, IBA1+ immunofluorescence was greatly increased in WT
retinas after CONC at both the ONH and peripheral retina. IBA1+
‘streaks’ were apparent in WT animals after CONC that appeared
to follow the path of some RGC axons as they extend from the
optic nerve. In contrast to the ramified IBA1+ cells in sham retinas,
amoeboid morphology was apparent after CONC in WT animals.
IBA1+ immunofluorescence was noticeably less in Ddit3-, Jun- and
Jun/Ddit3-deficient retinas compared to WT after CONC. Jun and
Jun/Ddit3 deficient retinas displayed a largely ramified morphol-
ogy after injury, while Ddit3 deficient animals displayed amoeboid
morphology after injury. CD68 was also differentially expressed in
all experimental cohorts as compared to sham control retinas of
the same genotype (Fig. 5c). As compared with a paucity of CD68
+ cells in sham retinas, multiple CD68+ cells were observed after
CONC in the inner retina in WT retinas, with the majority observed
in the GCL and IPL. CD68+ immunoreactivity was comparatively
decreased in Ddit3, Jun and dual Jun/Ddit3 deficient retinas
(Fig. 6b). Together, these findings support previous reports that
retinal glial activation occurs early after axonal injury and confirm
transcriptional data that these proinflammatory responses are
attenuated by Jun and Ddit3 deficiency. Also, the level of
microglial activation inversely correlated to RGC survival pre-
viously observed in each of these cohorts at extended timepoints
after CONC [17].
Given Jun/Ddit3 deletion prevented the majority of RGC

apoptosis after CONC injury [17], it is likely CONC-induced glial
responses are triggered by RGC-intrinsic JUN/DDIT3 activation and
subsequent apoptosis. However, JUN accumulation in macroglia
has been observed after glaucoma-relevant injury [49, 50] and has
been implicated in driving glial activation [51, 52]. Six3cre has
been shown to recombine floxed alleles in retinal macroglia in
addition to retinal neurons [17, 25, 53]. Thus, it remained possible
Jun/Ddit3 deletion from glial cells resulted in attenuated glial
responses after CONC.
To determine whether glial activation is triggered by RGC-

intrinsic JUN/DDIT3 activation and subsequent apoptosis, or
alternatively as a result of glia-intrinsic JUN/DDIT3 activation, WT
and Jun−/−Ddit3−/− animals were subjected to excitotoxic N-methyl
D-aspartic acid (NMDA) injury. Unlike after CONC injury [17], Jun/
Ddit3 deletion did not prevent RGC death after NMDA injury [28].
Thus, this experimental paradigm allowed the assessment of Jun/
Ddit3-deficient glia in response to RGC death. NMDA caused a
robust increase in expression of C1Q, IBA1, CD68, and GFAP in
Müller glia processes. These changes were not attenuated by glial
Jun/Ddit3 deletion (Additional file 8a-d). Likewise, increased ONH
immunofluorescence of IBA1 and CD68 was not attenuated by Jun/
Ddit3 deletion from glia (Additional file 8e-g). These data suggest
Jun/Ddit3-deficient glia are capable of activation in response to RGC
death, thus suggesting attenuation of glial activation after CONC
was not necessarily due to loss of glial JUN/DDIT3.
To further investigate the importance of RGC-intrinsic JUN/

DDIT3 activation in mediating CONC-induced glial activation, Junf
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alleles were specifically recombined from RGCs using a virally
delivered Cmvcre recombinase. As assessed with a TdTomato
reporter line, AAV2.2-Cmv-cre-Gfp robustly recombined floxed
alleles in RGCs, and only recombined floxed alleles in a small
subset of SOX2+Müller glia, GFAP+ astrocytes, and IBA1+

microglia, and did not recombine floxed alleles in the ONH
(Additional file 9). RGC-specific Jun deletion prevented CONC-
induced increases in expression of C1Q, GFAP in Müller glia
processes, IBA1, and CD68 (Additional file 10). Taken together,
these data strongly implicate the importance of RGC-intrinsic JUN/
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DDIT3 signaling and subsequent apoptosis in driving glial
activation after CONC.

DISCUSSION
Axonal injury is an important component of the pathogenesis of
glaucoma and other neurodegenerative diseases. Unfortunately,
the critical molecular signaling pathways leading from axonal
injury to glaucomatous neurodegeneration are not well defined.
Deficiency in the transcription factors Jun and Ddit3 provides
robust, long-term protection of RGC somas after axonal injury.
Defining the transcriptional response controlled by these genes
after axonal injury will lead to a deeper understanding of the
molecular events that control axonal injury-induced RGC death,
which will likely be necessary for the development of treatments
for optic neuropathies [7]. However, to date, few transcriptional
targets of Jun and Ddit3 have been identified. To identify the
downstream transcriptional targets of these molecules, whole
retina RNA sequencing was performed after acute axonal injury
(CONC). This approach allowed for the study of both intrinsic and
extrinsic transcriptional signaling networks in retinas where
intrinsic pro-death signaling had been arrested.

JUN and DDIT3 mediated intrinsic signaling in RGCs after
axonal injury
After axonal injury in the optic nerve, degeneration of the RGC soma
and axon is known to be compartmentalized—that is, distinct
molecular signaling pathways control axonal degeneration and somal
apoptosis [1, 7, 8, 54, 55]. Transcriptional changes in the soma are also
known to contribute to axonal degeneration programs after injury,
including those driven by retrograde JNK-JUN signaling [56, 57].
Our study revealed Ddit3 and Jun mediate activation of

overlapping and distinct RGC-intrinsic processes after axonal injury.
Several of these genes have been previously identified, including
Bim, Hrk, and Atf3. Interestingly, deficiency of these genes did not
phenocopy Jun and/or Ddit3 deficiency after axonal injury [10, 18].
Transcriptional changes related to cell metabolism were also

identified in these data, and metabolic changes are thought to
play an important early role in RGC neurodegeneration [58–61].
Specific genes identified in these data that are known to be
important for cellular metabolism include Nmnat2, Nad, Sqstm1,
Slc3a2, and Slc7a11. Unfortunately, the transcriptional changes
mediated by Ddit3 and Jun that could be critical for controlling
RGC death after axonal injury were not readily apparent in this
dataset. Numerous recently published studies have assessed
transcriptional changes in RGCs at the single-cell level in
unmanipulated retinas and after axonal injury [62, 63]. Using
bioinformatic tools to compare the data sets generated here with
studies like Tran et al. [62] will be a powerful approach to unravel the
critical transcriptional changes that control RGC death after axonal
injury in glaucoma and perhaps other optic neuropathies.

Jun and Ddit3 deficiency uncovers extrinsic events not
necessarily correlated with RGC loss
Retinal neurodegeneration after the axonal injury is complex
because multiple cell types and multiple signaling pathways
contribute to RGC death. Jun/Ddit3 deficiency provides sustained,
robust protection to RGCs after axonal injury, and thus these data
allowed for the study of the transcriptional changes that occur in
other retinal cell types in the absence of significant RGC death.
Ddit3, Jun, and Jun/Ddit3 deficiency prevented most of the
neuroinflammatory signaling that occurs after CONC. For instance,
both Ddit3 and Jun appear to be upstream of complement
activation in the retina after CONC (Figs. 1–2). This was supported
by immunofluorescence showing reduced levels of C1Q in Jun/
Ddit3 deficient mice (Fig. 1). In addition, Jun/Ddit3 deficiency
appeared to lessen the presence of activated and phagocytic
microglia (Fig. 6). Neuroinflammatory processes have been
suggested as early extrinsic drivers of neurodegeneration in the
retina [42, 48, 64, 65], but these data predict the earliest signaling
after the axonal injury is intrinsic to RGCs. In accordance with this
hypothesis, RGC-specific deletion of Jun prevented increases in
C1Q, GFAP, IBA1, and CD68 immunofluorescence after CONC
(Additional file 10). Thus, our data suggest RGC-intrinsic JUN
activity, rather than glial JUN activity, accounts for changes in
inflammatory markers after CONC. However, some immune
related-genes and pathways were differentially expressed in all
genotypes after optic nerve crush. These included the myeloid-
related transcription factor Spp1, a gene which we have shown is
important in neuroinflammatory responses [29]. These data show
some extrinsic processes could not be prevented by deletion of
Jun/Ddit3, highlighting the need for further studies exploring the
relationship between RGC pro-death factors and extrinsic neuroin-
flammatory processes. Future work should consider single-cell
sequencing of glaucoma-relevant cell types to improve the
resolution of the molecular control of RGC death.

Limitations of this study and future directions
A limitation to our experimental approach is the Ddit3 allele is a
germline deletion, while the Jun allele is a floxed allele, which was
recombined with the inner neural retinal cre Six3cre. Six3cre is known

Fig. 2 DE gene analysis revealed CONC-responding genes affected by Jun. The DE genes resulting from interaction of CONC treatment and
genotype were determined using the following equation in edgeR package. The category of the DE genes included the CONC-responding
genes dependent on Jun (J.CONC genes), dependent on Ddit3 (D.CONC genes), or dependent on both Jun and Ddit3 (JD.CONC). J.CONC
genes= (Jun−/− CONC – Jun−/− DNT) – (WT CONC – WT DNT), D.CONC genes= (Ddit3−/− CONC – Ddit3−/− DNT) – (WT CONC – WT DNT), JD.
CONC genes= (Jun−/−Ddit3−/− CONC – Jun−/− Ddit3−/− DNT) - (WT CONC – WT DNT). The Venn diagram shows the overlap of the DE genes
as a result of interaction of CONC treatment and genotype, highlighting the CONC-responding genes affected by Jun (a). Cell death and
survival was determined to be the top molecular and cellular function as determined by IPA analysis (shown in Table 1). The top disease and
function annotations of the cell death and survival category were found to be neuronal cell death, apoptosis of neurons, and survival of
ganglion cells (b). The fold change of top 10 CONC-responding genes activated (c) and inhibited (e) by Jun in all genotypes. Area marked with
a dot indicates the fold change of a gene is not significant (FDR ≥ 0.05) in a given genotype group. Area without a dot indicates the fold
change of a gene is significant (FDR < 0.05) in a given genotype group. Box plots demonstrate the expression levels of activated (d) and
inhibited (f) genes in all genotypes after CONC (orange) as compared to unmanipulated retinas (DNT, green).

Table 1. Top 5 molecular and cellular function annotations of IPA
disease and function based on 73 ONC-responding genes of affected
in Jun−/− mice.

Rank Name p-value range # Molecules

1 Cell Death and Survival 5.54E-3–1.11E-7 35

2 Cell Morphology 5.44E-3–5.63E-6 33

3 Cellular Movement 5.54E-3–5.99E-6 31

4 Molecular Transport 4.67E-3–6.73E-6 30

5 Protein Synthesis 1.39E-3–6.73E-6 16

Each molecular and cellular function annotation contains a subset of
function annotations with a p-value range and the number of involved
molecules listed. Analysis revealed that 35 out of 73 DE genes are involved
in cell death and survival category.
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to recombine alleles in astrocytes and likely Müller glia, as it is
expressed in early retinal progenitor cells [25, 53]. Thus, it is possible
the RGC protection afforded by this model of Jun and Ddit3 deficiency
and the transcriptional changes that occur in each experimental
cohort after CONC may be confounded by the manipulation of
signaling pathways in retinal cells other than RGCs. One example of
this possibility is that intravitreal injection of TNF activates JUN in
Müller glia. Intravitreal injection of TNF prior to CONC was protective
of RGCs, and the mechanism for this protection has been proposed to
be JUN activity in Müller glia [66]. Given retinal injury may activate
JUN in other cell types, which might serve protective or deleterious
roles, it is important to interpret whole retina transcriptional changes
within these limitations. Another factor that might confound the
analysis of transcriptional data is the recombination efficiency of
Six3cre (known to recombine Jun floxed alleles in ~80% of RGCs)
[9, 17]. Given this, it is possible the number of significantly regulated
genes in Jun and Ddit3/Jun deficient retinas may represent some
genes which are strongly expressed in cells that continue to express

JUN. Thus, the number of differentially regulated genes may in fact be
lower than reported in Jun and Ddit3/Jun deficient retinas. Finally, we
have previously shown an uncoupling of the transcriptional response
in the retina and ONH in glaucoma. In this study, we did not profile
the ONH where changes to supporting cells, such as astrocytes,
microglia, and vascular cells, such as endothelial cells and pericytes
may be similarly important in determining axonal degeneration or
survival.

CONCLUSIONS
Transcriptional changes after axonal injury are an important part
of the signaling cascade driving RGC death. We identified the
transcriptional changes that occur downstream of Jun and Ddit3,
two transcription factors that are known to control the majority of
axonal injury-induced RGC death. By specifically identifying the
transcriptional changes that occur in retinas where intrinsic pro-
death signaling has been arrested, these data also allowed for the

Fig. 3 DE gene analysis revealed CONC-responding genes affected by Ddit3. The Venn diagram shows the overlap of the DE genes as a
result of interaction of CONC treatment and genotype, highlighting the CONC-responding genes affected by Ddit3 (a). The fold change of
CONC-responding genes altered by Ddit3 in all genotypes (b). Area marked with a dot indicates the fold change of a gene is not significant
(FDR ≥ 0.05) in a given genotype group. Area without a dot indicates the fold change of a gene is significant (FDR < 0.05) in a given genotype
group. Box plots demonstrate the expression levels of CONC-responding genes affected by Ddit3 in all genotypes after CONC (orange) as
compared to unmanipulated retinas (c, DNT, green).
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Fig. 4 DE gene analysis revealed CONC-responding genes affected by both Jun and Ddit3. The Venn diagram shows the overlap of the DE
genes as a result of interaction of CONC treatment and genotype, highlighting the CONC-responding genes affected by Jun and Ddit3
together (a). The fold change of top 10 CONC-responding genes activated (b) and inhibited (d) by Jun and Ddit3 together in all genotypes.
Area marked with a dot indicates the fold change of a gene is not significant (FDR ≥ 0.05) in a given genotype group. Area without a dot
indicates the fold change of a gene is significant (FDR < 0.05) in a given genotype group. Box plots demonstrate the expression levels of
activated (c) and inhibited (e) genes in all genotypes after CONC (orange) as compared to unmanipulated retinas (DNT, green).
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Fig. 5 Myeloid cell function is an important upstream regulator after axonal injury. The IPA regulator effect revealed the top upstream
regulator network leading to myeloid cell-related functions in WTmice (a red or blue color indicates the trend of activation or inhibition of an
upstream regulator, target gene, or their predicted function, respectively). The top 5 upstream regulator networks among all genotypes were
summarized in Table 1. The fold change of the target genes in the top regulator effect was reported for all genotypes (b). Genes were grouped
by the significance level of the fold change observed in each strain (Group 1 gene: not affected by Jun, Ddit3, and Jun/Ddit3 together; Group II
gene: modulated by Jun, Ddit3, or Jun/Ddit3 together; Group III: genes modulated by only Jun, Group IV: genes affected by either Jun or Ddit3
but not Jun/Ddit3 together; group V: genes modulated by Jun/Ddit3 together). Area marked with a dot indicates the fold change of a gene is
not significant (FDR ≥ 0.05) in a given genotype group. Area without a dot indicates the fold change of a gene is significant (FDR < 0.05) in a
given genotype group. Box plots demonstrate the expression levels of selected gene related to myeloid cells functions in all genotypes after
CONC (orange) as compared to unmanipulated retinas (c DNT, green).

S.B. Syc-Mazurek et al.

9

Cell Death and Disease          (2022) 13:244 



study of RGC extrinsic signaling changes that occur after axonal
injury. We determined neuronal and proinflammatory signaling
is significantly upregulated after axonal injury; Ddit3, Jun, and
Jun/Ddit3 deficiency attenuate differentially expressed genes
after injury; and finally, proinflammatory changes after acute
axonal injury in the retina are likely secondary to RGC apoptosis
rather than a primary driver of retinal neurodegeneration. These
results identify downstream networks of Jun and Ddit3 that may
be broadly important for neurodegeneration.

DATA AVAILABILITY
The dataset(s) supporting the conclusions of this article is(are) included within the
article (and its additional file(s)). The sequencing dataset discussed in thisTa
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Fig. 6 Jun, Ddit3, and Jun/Ddit3 deficiency attenuated myeloid
cell responses after axonal injury. Whole-mount retinas were
stained with IBA1 to label microglia/macrophages 7 days after
CONC. As compared to WT sham retinas, IBA+ immunofluorescence
was greatly increased in WT retinas after CONC at both the optic
nerve head (ONH) and peripheral retina. IBA+ immunofluorescence
was decreased in Ddit3 deficient animals and greatly diminished in
Jun and dual Jun/Ddit3 deficient retinas (a N ≥ 5 per genotype. Scale
bars: 50 μm) Retinal sections were also stained for CD68 and
counterstained with DAPI 7 days after CONC. Increased CD68+
immunofluorescence was evident after CONC in WT retinas as
compared to sham retinas, however, these changes were not
observed in the dual Jun/Ddit3 deficient retinas after CONC (b, N= 3
per genotype; Scale bar: 50μm).
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publication is deposited at NCBI’s Gene Expression Omnibus (GEO accession number
GSE168789).

REFERENCES
1. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, et al. Axons of

retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J
Cell Biol. 2007;179:1523–37.

2. Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW. Progressive ganglion cell loss
and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC
Neurosci. 2006;7:66.

3. Jakobs TC, Libby RT, Ben Y, John SW, Masland RH. Retinal ganglion cell degen-
eration is topological but not cell type specific in DBA/2J mice. J Cell Biol.
2005;171:313–25.

4. Inman DM, Sappington RM, Horner PJ, Calkins DJ. Quantitative correlation of
optic nerve pathology with ocular pressure and corneal thickness in the DBA/2
mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2006;47:986–96.

5. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in
human glaucoma. II. The site of injury and susceptibility to damage. Arch Oph-
thalmol. 1981;99:635–49.

6. Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic
transport in monkey optic nerve. Invest Ophthalmol. 1974;13:771–83.

7. Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury
response in glaucoma. Prog Retin Eye Res. 2019;73:100769

8. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, et al. Susceptibility to
neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet.
2005;1:17–26.

9. Syc-Mazurek SB, Fernandes KA, Libby RT. JUN is important for ocular
hypertension-induced retinal ganglion cell degeneration. Cell Death Dis. 2017;8:
e2945.

10. Fernandes KA, Harder JM, Kim J, Libby RT. JUN regulates early transcriptional
responses to axonal injury in retinal ganglion cells. Exp Eye Res. 2013;112:106–17.

11. Fernandes KA, Harder JM, Fornarola LB, Freeman RS, Clark AF, Pang IH, et al. JNK2
and JNK3 are major regulators of axonal injury-induced retinal ganglion cell
death. Neurobiol Dis. 2012;46:393–401.

12. Hu Y, Park KK, Yang L, Wei X, Yang Q, Cho KS, et al. Differential effects of unfolded
protein response pathways on axon injury-induced death of retinal ganglion
cells. Neuron. 2012;73:445–52.

13. Yang L, Li S, Miao L, Huang H, Liang F, Teng X, et al. Rescue of Glaucomatous
Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticu-
lum Stress Molecules. J Neurosci. 2016;36:5891–903.

14. Isenmann S, Bahr M. Expression of c-Jun protein in degenerating retinal ganglion
cells after optic nerve lesion in the rat. Exp Neurol. 1997;147:28–36.

15. Kwong JM, Caprioli J. Expression of phosphorylated c-Jun N-terminal protein
kinase (JNK) in experimental glaucoma in rats. Exp Eye Res. 2006;82:576–82.

16. Levkovitch-Verbin H, Quigley HA, Martin KR, Harizman N, Valenta DF, Pease ME,
et al. The transcription factor c-jun is activated in retinal ganglion cells in
experimental rat glaucoma. Exp Eye Res. 2005;80:663–70.

17. Syc-Mazurek SB, Fernandes KA, Wilson MP, Shrager P, Libby RT. Together JUN and
DDIT3 (CHOP) control retinal ganglion cell death after axonal injury. Mol Neu-
rodegeneration. 2017;12:71.

18. Harder JM, Fernandes KA, Libby RT. The Bcl-2 family member BIM has multiple
glaucoma-relevant functions in DBA/2J mice. Sci Rep. 2012;2:530.

19. Jauhiainen A, Thomsen C, Strombom L, Grundevik P, Andersson C, Danielsson A,
et al. Distinct cytoplasmic and nuclear functions of the stress induced protein
DDIT3/CHOP/GADD153. PloS One. 2012;7:e33208.

20. Calkins DJ. Critical pathogenic events underlying progression of neurodegen-
eration in glaucoma. Prog Retinal Eye Res. 2012;31:702–19.

21. Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family
controls the death of retinal ganglion cells. Prog Retinal Eye Res. 2017;57:1–25.

22. Howell GR, Soto I, Libby RT, John SW. Intrinsic axonal degeneration pathways are
critical for glaucomatous damage. Exp Neurol. 2013;246:54–61.

23. Farley MM, Watkins TA. Intrinsic Neuronal Stress Response Pathways in Injury and
Disease. Annu Rev Pathol. 2018;13:93–116.

24. Behrens A, Sibilia M, David JP, Mohle-Steinlein U, Tronche F, Schutz G, et al.
Impaired postnatal hepatocyte proliferation and liver regeneration in mice
lacking c-jun in the liver. EMBO J. 2002;21:1782–90.

25. Furuta Y, Lagutin O, Hogan BL, Oliver GC. Retina- and ventral forebrain-specific
Cre recombinase activity in transgenic mice. Genesis. 2000;26:130–2.

26. Panagis L, Thanos S, Fischer D, Dermon CR. Unilateral optic nerve crush induces
bilateral retinal glial cell proliferation. Eur J Neurosci. 2005;21:2305–9.

27. Ramirez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salobrar-Garcia E, et al.
Macro- and microglial responses in the fellow eyes contralateral to glaucomatous
eyes. Prog Brain Res. 2015;220:155–72.

28. Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic
signaling pathway in excitotoxic retinal ganglion cell death. Sci Rep. 2018;8:4641.

29. Yang H, Graham LC, Reagan AM, Grabowska WA, Schott WH, Howell GR. Tran-
scriptome profiling of brain myeloid cells revealed activation of Itgal, Trem1, and
Spp1 in western diet-induced obesity. J Neuroinflammation. 2019;16:169.

30. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation
sequencing data. PLoS One. 2012;7:e30619.

31. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with
or without a reference genome. BMC Bioinforma. 2011;12:323.

32. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient align-
ment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

33. Lun AT, Chen Y, Smyth GK. It’s DE-licious: A Recipe for Differential Expression
Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR.
Methods Mol Biol. 2016;1418:391–416.

34. Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG, Sousa GL, et al.
Combinatorial targeting of early pathways profoundly inhibits neurodegenera-
tion in a mouse model of glaucoma. Neurobiol Dis. 2014;71:44–52.

35. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, et al.
Molecular clustering identifies complement and endothelin induction as early
events in a mouse model of glaucoma. J Clin Investig. 2011;121:1429–44.

36. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The
classical complement cascade mediates CNS synapse elimination. Cell.
2007;131:1164–78.

37. Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, et al. Oxidative stress and
the regulation of complement activation in human glaucoma. Invest Ophthalmol
Vis Sci. 2010;51:5071–82.

38. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neu-
roinflammation. Mol Immunol. 2007;44:999–1010.

39. Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the
complement system in neuroinflammation, neurodegeneration and brain
homeostasis. Front Cell Neurosci. 2014;8:380.

40. Stasi K, Nagel D, Yang X, Wang RF, Ren L, Podos SM, et al. Complement com-
ponent 1Q (C1Q) upregulation in retina of murine, primate, and human glau-
comatous eyes. Invest Ophthalmol Vis Sci. 2006;47:1024–9.

41. Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, Kiyama H. Neuronal injury-
inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the
interaction with Sp1 in damaged neurons. J Biol Chem. 2008;283:6988–96.

42. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al.
Neurotoxic reactive astrocytes are induced by activated microglia. Nature.
2017;541:481–7.

43. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, et al. Reduced
retina microglial activation and improved optic nerve integrity with minocycline
treatment in the DBA/2J mouse model of glaucoma. Investigative Ophthalmol Vis
Sci. 2008;49:1437–46.

44. Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of
chronic glaucoma. J Comp Neurol. 2011;519:599–620.

45. Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Vidal-
Sanz M, Agudo-Barriuso M. Microglial dynamics after axotomy-induced retinal
ganglion cell death. J Neuroinflammation. 2017;14:218.

46. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neu-
rotherapeutics. 2010;7:354–65.

47. Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold
Spring Harb Perspect Med. 2014;4:a017269.

48. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, et al. Radiation
treatment inhibits monocyte entry into the optic nerve head and prevents
neuronal damage in a mouse model of glaucoma. J Clin Investig.
2012;122:1246–61.

49. Hashimoto K, Parker A, Malone P, Gabelt BT, Rasmussen C, Kaufman PS, et al.
Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in
experimental ocular hypertension in monkeys and after exposure to elevated
pressure in vitro. Brain Res. 2005;1054:103–15.

50. Chidlow G, Wood JPM, Casson RJ. Investigations into Hypoxia and Oxidative
Stress at the Optic Nerve Head in a Rat Model of Glaucoma. Front Neurosci.
2017;11:478.

51. MacDonald JM, Doherty J, Hackett R, Freeman MR. The c-Jun kinase signaling
cascade promotes glial engulfment activity through activation of draper and
phagocytic function. Cell Death Differ. 2013;20:1140–8.

52. Albanito L, Reddy CE, Musti AM. c-Jun is essential for the induction of Il-1β gene
expression in in vitro activated Bergmann glial cells. Glia. 2011;59:1879–90.

53. Rattner A, Yu H, Williams J, Smallwood PM, Nathans J. Endothelin-2 signaling in
the neural retina promotes the endothelial tip cell state and inhibits angiogen-
esis. Proc Natl Acad Sci USA. 2013;110:E3830–3839.

54. Raff MC, Whitmore AV, Finn JT. Axonal self-destruction and neurodegeneration.
Science. 2002;296:868–71.

S.B. Syc-Mazurek et al.

11

Cell Death and Disease          (2022) 13:244 



55. Whitmore AV, Libby RT, John SW. Glaucoma: thinking in new ways-a role for
autonomous axonal self-destruction and other compartmentalised processes?
Prog Retinal Eye Res. 2005;24:639–62.

56. Simon DJ, Pitts J, Hertz NT, Yang J, Yamagishi Y, Olsen O, et al. Axon Degen-
eration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling. Cell.
2016;164:1031–45.

57. Maor-Nof M, Romi E, Sar Shalom H, Ulisse V, Raanan C, Nof A, et al. Axonal
Degeneration Is Regulated by a Transcriptional Program that Coordinates
Expression of Pro- and Anti-degenerative Factors. Neuron. 2016;92:991–1006.

58. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, et al.
Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in
aged mice. Science. 2017;355:756–60.

59. Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative
Disease Glaucoma. Front Neurosci. 2017;11:146.

60. Leruez S, Marill A, Bresson T, de Saint Martin G, Buisset A, Muller J, et al. A Meta-
bolomics Profiling of Glaucoma Points to Mitochondrial Dysfunction, Senescence, and
Polyamines Deficiency. Invest Ophthalmol Vis Sci. 2018;59:4355–61.

61. Baltan S, Inman DM, Danilov CA, Morrison RS, Calkins DJ, Horner PJ. Metabolic
vulnerability disposes retinal ganglion cell axons to dysfunction in a model of
glaucomatous degeneration. J Neurosci. 2010;30:5644–52.

62. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, et al. Single-Cell
Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuro-
protective Genes. Neuron. 2019;104:1039–55 e1012.

63. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, et al. Single cell
transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat
Commun. 2018;9:2759.

64. Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in
healthy and diseased retina. Prog Neurobiol. 2019;173:18–40.

65. Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, et al. Commensal microflora-
induced T cell responses mediate progressive neurodegeneration in glaucoma.
Nat Commun. 2018;9:3209.

66. Mac Nair CE, Fernandes KA, Schlamp CL, Libby RT, Nickells RW. Tumor necrosis
factor alpha has an early protective effect on retinal ganglion cells after optic
nerve crush. J Neuroinflammation. 2014;11:194.

ACKNOWLEDGEMENTS
The authors would like to acknowledge Dr. Jeffery Harder for helpful discussions
about the manuscript and Dr. Yasuhide Furuta (Six3-cre) and and Drs. Erwin Wagner
and Jason Stoller (Junf) for generously providing mouse strains. The authors would
also like to thank the Genomic Technology at the Jackson Laboratory for RNA
extraction and RNA-sequencing service. This work was supported by EY018606 (RTL),
EY027701 (GRH, RTL), EY030739 (OJM), Research to Prevent Blindness (an unrestricted
grant to the Department of Ophthalmology at the University of Rochester Medical

Center), and the Diana Davis Foundation Chair for Glaucoma Research (GRH). The
funding agencies had no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

AUTHOR CONTRIBUTIONS
All authors designed and interpreted the experiments. All authors both edited the
manuscript and read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41419-022-04666-3.

Correspondence and requests for materials should be addressed to Gareth R. Howell
or Richard T. Libby.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

S.B. Syc-Mazurek et al.

12

Cell Death and Disease          (2022) 13:244 

https://doi.org/10.1038/s41419-022-04666-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Transcriptional control of retinal ganglion cell death after axonal injury
	Introduction
	Materials and Methods
	Mice
	Controlled optic nerve crush
	NMDA Intravitreal injections
	RGC-specific deletion of Junf alleles with adenoassociated viral cre delivery
	RNA sample preparation and sequencing
	RNA-sequencing data analysis
	Immunohistochemistry
	Statistical analysis

	Results
	Jun, Ddit3, and dual Jun/Ddit3 deficiency differentially alters retinal transcriptional profiles in response to axonal injury
	Jun, Ddit3, and dual Jun/Ddit3 specific signaling after axonal injury
	Ddit3, Jun, and dual Jun/Ddit3 deficiency attenuate glial responses after axonal injury

	Discussion
	JUN and DDIT3 mediated intrinsic signaling in RGCs after axonal injury
	Jun and Ddit3 deficiency uncovers extrinsic events not necessarily correlated with RGC loss
	Limitations of this study and future directions

	Conclusions
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




