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ZNF32 promotes the self-renewal of colorectal cancer cells by
regulating the LEPR-STAT3 signaling pathway
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Due to the self-renewal characteristics and tumorigenic abilities of cancer stem cells (CSCs), CSCs have been demonstrated to play
vital roles in carcinogenesis and antitumor therapy. Our previous report found that Krüppel-like family members (KLFs) and zinc
finger protein 32 (ZNF32) play oncogenic roles in carcinogenesis. However, the roles and mechanism of ZNF32 in CSCs are still
unknown. Our study demonstrated that ZNF32 was highly expressed in colorectal CSCs, which promoted their self-renewal capacity
and tumorigenicity. Overexpression of ZNF32 in colorectal cancer (CRC) cells increased their self-renewal capacity. Furthermore, we
identified the leptin receptor (LEPR) as the downstream target gene of ZNF32 and verified that the ZNF32-mediated regulation of
CRC self-renewal is achieved via the LEPR- signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, ZNF32
regulated the expression of SOX2, a core transcription factor in stem cells. Finally, we demonstrated that ZNF32 and LEPR were
positively correlated in CRC tissues. ZNF32 expression was negatively correlated with the prognosis of CRC patients. Therefore,
therapeutically targeting the ZNF32-LEPR-STAT3 pathway in the clinic is tempting.
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INTRODUCTION
Colorectal cancer (CRC) was the second leading cause of cancer-
related death worldwide in 2018, with an incidence rate of 10.2%
and a mortality rate of 9.2% [1]. Cancer stem cells (CSCs) were first
identified and isolated in acute myeloid leukemia by Lapidot et al.
in the early 1990s [2] and represent a subpopulation of cells with
distinctive differentiation, proliferation, and self-renewal capabil-
ities in tumor tissues [3, 4]. Subsequently, CSCs have also been
identified in other hematological malignancies and a variety of
solid tumors [5–11]. Due to their inherent self-renewal character-
istics and tumorigenic abilities, CSCs have been demonstrated to
play vital roles in tumor development, metastasis, reoccurrence,
and resistance to antitumor therapies [3, 12]. In recent years,
studies on CSCs have attracted a substantial number of
researchers and promoted the understanding of the biological
features and regulation of CSCs. Compared to somatic cells, CSCs
tend to abnormal overexpress many transcription factors, such as
Oct4, Sox2, Nanog, KLF4, and MYC [4, 13]. We and others have also
identified various signaling pathways that are involved in the
regulation of CSCs, including Wnt, NF-κB, Notch, Hedgehog, JAK-
STAT, PI3K/AKT/mTOR, and TGF/SMAD [13].
Krüppel-like factors (KLFs) belong to a group of transcription

factors that contain the C-terminus of the zinc finger domain, bind
to the target DNA sequence, and are highly conserved in
evolution [14]. KLFs not only regulate cell proliferation, differ-
entiation, metabolism, apoptosis, and migration and control
physiological processes such as growth, development, and

embryogenesis but also regulate the pathogenesis of many
diseases, including the onset, development, and maintenance of
tumorigenesis [15–17]. KLF4 is closely related to the self-renewal
capacity of leukemia stem cells, osteosarcoma stem cells, and
colon cancer stem cells [18–21].
Zinc finger protein 32 (ZNF32) is an important transcription

factor in the KLFs that has attracted interest from an increasing
number of researchers. Previously, we demonstrated that ZNF32
regulates the TGF-β receptor 2 signaling pathway in lung
adenocarcinoma to confer multidrug resistance [22]. Notably, we
recently showed that ZNF32 can promote breast cancer stem cell-
like properties by enhancing GPER transcription [23]. We
hypothesized that ZNF32-mediated regulation might also be
applicable for other cancer stem cells. In the present study, we
sought to investigate the functional roles of ZNF32 and
demonstrated that ZNF32 can promote the self-renewal capacity
of colorectal CSCs.

MATERIALS AND METHODS
The details of some experimental procedures were described previously
[22], and described in Supplementary Materials and methods.

Materials and cell culture
Human CRC cell lines SW480, HCT116, and SW620 were purchased from
ATCC. These cell lines were authenticated by STR profiling. Primary CRC
cells (pCRC1, pCRC2, and pCRC3) were extracted from tumor tissues
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obtained from the first affiliated hospital of Chengdu medical college. CRC
cells were cultured in DMEM (HyClone, USA) with 10% fetal bovine serum
(Gibco, Australia) in a 37°C, 5% CO2 humidified incubator. CSCs were grown
in DMEM / F12 (Hyclone, USA) with EGF (20 ng/μl, Peprotech, USA), β-FGF
(20 ng/μl, Peprotech, USA). We screened colorectal CSCs by serum-free
suspension culture. AG490 (Sigma) was dissolved in ethanol (5 mg/ml),
then used as 20 μM for experiments.

In vivo experiment
BALB / c nude mice (female, 6-8 weeks) were purchased from Beijing Viton
Lihua Experimental Animal Technology Co., Ltd. (Beijing, China). Mice were
raised in the specific-pathogen-free facilities of the animal center of
Chengdu medical college. CRC cells and colorectal CSCs with different cell
numbers (103, 105, 107) were injected subcutaneously to evaluate the
tumorigenicity. There are 5 mice in each group. And each group was
repeated 3 times independently. All mice were sacrificed 3 weeks after
inoculation. All experimental protocols were approved by the animal
experimental teaching and research committee of Chengdu medical
college, and were performed in accordance with the nation’s relevant laws
and animal welfare.

Flow cytometry (FCM)
According to the manufacturer’s instructions, CD133 antibody was used to
detect colorectal CSCs surface markers. Briefly, cells with a density of 1 ×
106 / ml were fixed with methanol and incubated with the antibody at 4 °C.
After 60 min of incubation, cells were washed 3 times with cold PBS and

analyzed using a flow cytometer (BD, USA). By normalizing the
fluorescence with the controls, tumor stem cell marker positive cells were
identified.

Immunofluorescence assay (IFA) and Tunel
Cells were fixed with 4% paraformaldehyde for 15min and then
permeabilized with 0.1% Triton X-100 in PBS for 20min. Cells were
blocked with 5% bovine serum albumin (Sigma, Tokyo, Japan) for 60min.
Next, the cells were incubated with CD133 antibody (1: 200) at 4 °C
overnight and then with Cy3 labeled secondary antibody for 1 h. The
nucleus was stained with DAPI (Biyuntian, China) color core for 10min.
Cells were imaged with an upright fluorescence microscope (Nikon, Japan).
Tunel was performed as described previously [22]. And all operations were
performed according to the kit instructions (In situ cell death detection kit-
POD, 45197300, Roche Group).

3D colony-forming assay
The cells were seeded in 96-well plates at 100 cells / well, in which the
culture medium was mixed with 50% Matrigel, 50% serum-free DMEM /
F12, EGF, and β-FGF. After 14 days of culture, the clonal sphere formation
capacity was calculated.

Limiting dilution assay
Cells were planted into 96-well plates in suspension culture, approximately
1 cell per well. After 14 days of culture in serum-free DMEM / F12 medium

Fig. 1 Reduced expression of ZNF32 in colorectal CSCs inhibited their self-renewal ability. (A) Western blot detection of ZNF32 expression
in CRC cells (SW480 and pCRC1) and colorectal CSCs (CSC-SW480 and CSC-pCRC1). The image is one represent of three independent
experiments. (B) Western blot analysis of ZNF32, CD133, CD166 and ALDH1 between ZNF32-knockout (sh-ZNF32) and control (sh-NC) in CSC-
SW480 and CSC-pCRC1 cells. The image is one represent of three independent experiments. (C) IFA to detect CD133, a key marker of
colorectal CSC expression, between sh-ZNF32 and sh-NC in CSC-SW480 and CSC-pCRC1 cells. The antigenic determinant of CD133 were
located in the membrane, as a result, the positive cells were membranous positive (red). DAPI was used to stain nuclei. The image is one
represent of three independent experiments. (micron bar = 50 μm). (D) FCM to confirm CD133 expression between sh-ZNF32 and sh-NC in
CSC-SW480 and CSC-pCRC1 cells. The image is one represent of three independent experiments. (E) 3D colony-forming assay to analyze the
colony formation capacity between sh-ZNF32 and sh-NC in CSC-SW480 and CSC-pCRC1 cells. The data presented as the means ± S.Ds. The
dots of histogram were used to plot all data. (F) Limiting dilution assay to analyze the number of tumor spheres between sh-ZNF32 and sh-NC
in CSC-SW480 and CSC-pCRC1 cells. The data presented as the means ± S.Ds. The dots of histogram were used to plot all data. (G) CSCs (sh-
ZNF32 and sh-NC) with different cell numbers (103, 105, 107) were injected subcutaneously. All mice were sacrificed 3 weeks after inoculation,
the tumors were removed, and the tumor formation rate was calculated. There are 5 mice in each group. And each group was repeated 3
times independently. And consistent results were obtained. (H). The tumor morphology is shown in the tumor column. And the samples were
stained for HE and IHC analysis with Ki-67, CD133 and Tunel. The positive cells were stained brown. The image is one represent of three
independent experiments. (micron bar = 20 μm).
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supplemented with growth factors EGF and β-FGF, the tumorsphere
formation capacity was calculated.

RNA-sequence analysis
RNA was extracted from CSC-pCRC1, CSC-SW480, pCRC1, and SW480. The
RNA-seq analysis was conducted by Yunshen Biological Company, where
the downstream target genes of ZNF32 were screened. The RNA-sequence
information of CSCs and bulk cells were summarized in Supplementary
Table 1.

Statistical analysis
Statistical analysis was performed with SPSS 21.0 software. Medcalc
software is used to calculate the sample size to ensure that there is
sufficient capacity to detect the prespecified effect amount. Student’s t-test
was used for comparison between the two groups, and one-way analysis
of variance was used for comparison of multiple groups. In Kaplan–Meier
curves survival analysis, log-rank test was used. The variance was similar
between the groups that are being statistically compared. P < 0.05 was
considered statistically significant.

RESULTS
Reduced expression of ZNF32 in colorectal CSCs inhibited
their self-renewal ability
Colorectal CSCs were enriched by serum-free suspension culture
(Fig. S1A). WB and qPCR were performed to detect the expression
of stem cell markers CD133, CD166, and ALDH1, the result showed
they are most stable and significant highly expressed in CSC-
SW480 and CSC-pCRC1 relative to bulk cells (Fig. S1B, C). This was
further supported by IFA and FCM (Fig. S1D, E). In addition, the

self-renewal capacity and tumorigenicity of CSC-SW480 and CSC-
pCRC1 were significantly enhanced compared to bulk cells (Fig.
S1F–H). However, in other colorectal CSCs (CSC-SW620, CSC-
HCT116, CSC-PC2, and CSC-PCR3), the expression of CD133,
CD166, and ALDH1 were not consistent raised relative to bulk
cells (Fig. S2A, B). Because CRC is a heterogeneous disease, the
status of EGFR, MMR, BRAF, APC, TP53, and KRAS in CRC cells were
summarized (Table S1). FCM analysis further demonstrated that
CD133 was highly expressed in CSC-SW620 and CSC-pCRC2 (Fig.
S2C), and the tumorigenicity of CSC-SW620 and CSC-pCRC2 were
significantly enhanced compared to bulk cells (Fig. S2D). The
above results indicate that colorectal CSCs screened by serum-free
suspension culture have enhanced self-renewal ability compared
to bulk cells.
And we found that ZNF32 was significantly upregulated in CSC-

SW480, CSC-SW620, CSC-pCRC1, and CSC-pCRC2 compared to
bulk cells (Figs. 1A and S3B), implying that ZNF32 may play some
regulatory roles in colorectal CSCs. To address this hypothesis,
stable colorectal CSCs with ZNF32 knockdown were constructed.
Our study showed that sh-ZNF32 significantly reduced the
expression of ZNF32 and stem cell markers compared to sh-NC
group (Figs. 1B and S3C). IFA and FCM also confirmed the
remarkable reduction in CD133 expression in sh-ZNF32-
transduced colorectal CSCs (Figs. 1C, D and S3A, D). In addition,
we found that the colony-forming ability of colorectal CSCs was
dramatically impaired by ZNF32 knockdown (Fig. 1E, F). Similarly,
an in vivo experiment demonstrated that the tumorigenicity of
colorectal CSCs was also significantly compromised by ZNF32
knockdown (Figs. 1G, S3E, and S4A–D). And we further analyzed

Fig. 2 Overexpression of ZNF32 in CRC cells increased the self-renewal capacity. (A) Western blot analysis of ZNF32, CD133, CD166 and
ALDH1 between ZNF32-overexpressing (lv-ZNF32) and control (lv-Vector) SW480 and pCRC1 cells. The image is one represent of three
independent experiments. (B) IFA to detect CD133 expression between lv-ZNF32 and lv-Vector in SW480 and pCRC1 cells. The CD133-positive
cells were membranous positive (red). The image is one represent of three independent experiments. (micron bar = 50 μm). (C) FCM to
confirm CD133 expression between lv-ZNF32 and lv-Vector in SW480 and pCRC1 cells. The image is one represent of three independent
experiments. (D) 3D colony-forming assay to analyze the colony formation capacity between lv-ZNF32 and lv-Vector in SW480 and
pCRC1 cells. The data presented as the means ± S.Ds. The dots of histogram were used to plot all data. (E) Limiting dilution assay to analyze
the number of tumor spheres between lv-ZNF32 and lv-Vector SW480 and pCRC1 cells. The data presented as the means ± S.Ds. The dots of
histogram were used to plot all data. (F) CRC cells (lv-ZNF32 and lv-Vector) with different cell numbers (103, 105, 107) were injected
subcutaneously, and the tumor formation rate was calculated. There are 5 mice in each group. And each group was repeated 3 times
independently. (G) The tumor morphology is shown in the tumor column. And the samples were stained for HE and IHC analysis with Ki-67,
CD133 and Tunel. The positive cells were stained brown. The image is one represent of three independent experiments. (micron bar = 20 μm).
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the cell proliferation (Ki-67) and apoptosis (Tunel) in tumor tissues.
After knocking out ZNF32 in colorectal CSCs, the proportion of Ki-
67 positive cells were decreased, and the proportion of apoptosis
cells was increased (Figs. 1H and S4E, F, H, I), while the CD133-
positive cells was also significantly reduced (Figs. 1H and S4G, J).
These results suggest that interference with ZNF32 expression
reduces the self-renewal capacity of colorectal CSCs.

Overexpression of ZNF32 in CRC cells increased their self-
renewal capacity
To further verify that ZNF32 expression is associated with the self-
renewal capacity of colorectal CSCs, we constructed stable
overexpressing ZNF32 CRC cell lines (Fig. 2A). In contrast with
the knockdown in colorectal CSCs, overexpression of ZNF32 in
CRC cells significantly upregulated the expression of CD133,
CD166, and ALDH1 (Fig. 2A). IFA and FCM confirmed that
overexpression of ZNF32 in SW480 and pCRC1 cells strikingly
increased the proportion of CD133-positive cells, especially in
pCRC1 cells (Figs. 2B, C and S3F). In addition, the overexpression of
ZNF32 also enhanced the colony-forming capacity and tumor-
igenicity of SW480 and pCRC1 cells, which showed similar features
towards colorectal CSCs (Fig. 2D–F). And tumor growth curve
further confirmed that overexpression of ZNF32 can increase the
tumorigenicity of SW480 and pCRC1(Fig. S5A–D). And the cell
proliferation and apoptosis were further analyzed in tumor tissues.
After overexpression of ZNF32 in SW480 and pCRC1 cells, the
proportion of Ki-67 positive cells were increased, and the
proportion of apoptosis cells was decreased (Figs. 2H and S5E, F,

H, I), while the CD133-positive cells was also significantly increased
(Figs. 2H and S5G, J). Overall, the above results indicated that
overexpression of ZNF32 increased the self-renewal capacity and
tumorigenicity of CRC cells.

RNA-sequence analysis of CRC and colorectal CSCs
Having shown that the expression of ZNF32 is closely related to
the self-renewal capacity of colorectal CSCs, we sought to screen
the potential downstream genes and signaling pathways involved
in ZNF32 regulation. We first performed RNA sequencing to
conduct an in-depth comparison analysis of mRNA derived from
CSC-pCRC1, CSC-SW480, and their corresponding bulk cells. Any
gene whose expression was changed twice or more was selected
(Table S2). This revealed 1,818 and 900 genes that were
significantly upregulated and downregulated, respectively (Fig.
3A, B). Next, we conducted gene ontology (GO) term enrichment
analysis. There was considerable alteration in terms of a variety of
biological process (BP), cellular component (CC), molecular
function (MF) (Fig. 3C, D). In particular, activated genes were
majorly related to cell differentiation. We also performed the
Pathway (KEGG) Analysis (Fig. 3E, F), which identified that JAK/
STAT signaling pathway was significantly activated in colorectal
CSCs.

ChIP-sequence analysis of CRC cells
Next, we conducted ChIP-sequence analysis to further identify the
downstream genes regulated by ZNF32 in CRC cells. SW480 cells
were transfected with the plasmid expressing FLAG-tagged

Fig. 3 RNA-sequence analysis of CRC cells and colorectal CSCs. (A) Heat map of 2718 differentially expressed genes between bulk cells and
colorectal CSCs (SW480 and pCRC1 vs CSCs-SW480 and CSC-pCRC1). Each column represents one sample; each row represents one probe set.
Red indicates upregulated expression, while green indicates downregulated expression. The image is one represent of three independent
experiments. (B) A volcano plot was arranged using the fold change and P value. The red rectangle represents differentially expressed genes
between bulk cells and colorectal CSCs, P < 0.05, fold change ≥ 2.0. The image is one represent of three independent experiments. (C) GO
analysis of upregulated genes between bulk cells and colorectal CSCs. The data presented here are from one representative experiment of
three independent experiments. (D) GO analysis of downregulated genes between bulk cells and colorectal CSCs. The data presented here are
from one representative experiment of three independent experiments. (E) KEGG pathway analysis of upregulated genes between bulk cells
and colorectal CSCs. The data presented here are from one representative experiment of three independent experiments. (F) KEGG pathway
analysis of downregulated genes between bulk cells and colorectal CSCs. The data presented here are from one representative experiment of
three independent experiments.
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ZNF32, with the FLAG-tagged empty vector as a control. The
results showed that SW480-pcDNA3.1-Flag-ZNF32 identified 1,235
peak genes, 58.43% of which were located in the intergenic region
and 3.24% at the promoter region (Fig. 4A). More peak genes
(1,639) were identified in the SW480-pcDNA3.1-Flag-Vector group,
with 56.61% in the intergenic region and 3.74% in the promoter
area (Fig. 4A). Differentially enriched regions of the promoter for
SW480-pcDNA3.1-Flag-ZNF32 compared to the SW480-pcDNA3.1-
Flag-Vector group are summarized in Table S3. Further GO analysis
revealed the functional changes of differential genes in BP, CC,
and MF (Fig. 4B, C). The further signaling pathways analysis
demonstrated that glycerophospholipid metabolism and JAK-
STAT signaling pathway were activated (Fig. 4D), while purine
metabolism and necroptosis were inhibited (Fig. 4E).

ZNF32 regulated the self-renewal capacity of colorectal CSCs
through the LEPR-STAT3 signaling pathway
Based on the analysis of RNA sequencing and ChIP-sequence
analysis, the JAK-STAT signaling pathway was screened by both
methods, suggesting that it plays an important role of self-renewal
in colorectal CSCs. We further analyzed the JAK-STAT signaling
pathway-associated genes changes, and found that IL19//LEPR//
PIAS4 is the most significant upregulated genes (Table S4).
Previously, we confirmed GA/CATTT as the transcriptional binding
site of ZNF32 [23]. By analyzing the promoters of IL19//LEPR//
PIAS4, we found that the promoter region of leptin receptor (LEPR)
contained two transcriptional binding sites of ZNF32 (Fig. S6A).
ChIP analysis further confirmed that ZNF32 binds the promoter
region of LEPR (Fig. 5A), indicating that LEPR was the downstream
target gene of ZNF32. To further verify the role of LEPR in CRC, we
analyzed the expression of LEPR and its downstream signal STAT3
in colorectal CSCs. We found that in CSC-SW480 and CSC-pCRC1

cells, LEPR expression was increased, as well as downstream STAT3
and activated pSTAT3 (Fig. S6B, C). In addition, we detected the
expression of another transcription factor, SOX2, which was also
significantly elevated in colorectal CSCs (Supplementary Fig. 6B).
Similarly, in SW480 and pCRC1 cells with ZNF32 overexpressed,
the expression of LEPR, STAT3, pSTAT3, and SOX2 was significantly
upregulated compared to that in the control cells (Fig. 5B). To
further verify the relationship between ZNF32 and LEPR and their
role in colorectal CSCs, stable SW480 and pCRC1 cells over-
expressing ZNF32 and with knockdown of LEPR were constructed.
We found that the expression of LEPR, STAT3, and pSTAT3 was
significantly downregulated (Fig. 5C), as were CD133, CD166, and
ALDH. Notably, SOX2 expression also decreased, but to a lesser
extent (Fig. 5C). In addition, in order to prove the axis involved in
stem cell regulation, we used AG490, a specific inhibitor of STAT3
phosphorylation, to further analyze the regulatory effect of ZNF32
on STAT3 signaling pathway (Fig. S6D). And interfering with LEPR
expression significantly inhibited CRC cells colon formation and
tumor formation (Figs. 5D–F and 7A–D). Furthermore, we
confirmed that knocked out the LEPR gene in SW480-lv-ZNF32
and pCRC1-lv-ZNF32, the CD133 and Ki-67 positive cells were
decreased, and the proportion of apoptosis cells was increased in
tumor tissues (Figs. 5G and S7E–J). Collectively, the above results
indicate that ZNF32 regulated the self-renewal capacity and
tumorigenicity of colorectal CSCs through the LEPR-STAT3
signaling pathway.

ZNF32-LEPR signaling was negatively correlated with the
survival of CRC patients
Finally, we investigated ZNF32 and LEPR expression in clinical
tumor specimens from CRC patients. We collected tumor speci-
mens from 100 patients, 80 of whom had both tumor tissue (CRC)

Fig. 4 ChIP-sequence analysis of CRC cells. (A) ChIP-sequence analysis identified 1,235 peak genes in the SW480-pcDNA3.1-Flag-ZNF32
group and 1639 peak genes in the SW480-pcDNA3.1-Flag-Vector group. The data presented here are from one representative experiment of
three independent experiments. (B) GO analysis of upregulated genes between SW480-pcDNA3.1-Flag-ZNF32 and SW480-pcDNA3.1-Flag-
Vector cells. The data presented here are from one representative experiment of three independent experiments. (C) GO analysis of
downregulated genes. The data presented here are from one representative experiment of three independent experiments. (D) KEGG
pathway analysis of upregulated genes between SW480-pcDNA3.1-Flag-ZNF32 and SW480-pcDNA3.1-Flag-Vector cells. The data presented
here are from one representative experiment of three independent experiments. (E) KEGG pathway analysis of downregulated genes between
SW480-pcDNA3.1-Flag-ZNF32 and SW480-pcDNA3.1-Flag-Vector cells. The data presented here are from one representative experiment of
three independent experiments.
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and normal tissue adjacent (AN) to the tumor. The clinicopatho-
logical factors of CRC patients are summarized in Table 1. First, our
data showed that the expression of ZNF32 in CRC was significantly
higher than that in AN (Fig. 6A, B) (p < 0.0001). Similarly, the
expression of LEPR in tumor tissue was also remarkably elevated
compared with that in normal tissues (Fig. 6C, D) (p < 0.001). But
very interesting, by analyzing the public dataset GEPIA (http://
gepia.cancerpku.cn/), we found that there was no significant
difference in the expression of ZNF32 and LEPR in CRC tumor
tissue compared to healthy mucosa (Fig. S8A, C). Correlation
analysis of the histopathological scores of ZNF32 and LEPR
demonstrated that the expression of the two genes was positively
correlated in CRC tissues (r= 0.6495, p < 0.0001, Fig. 6E). Next,
based on the histopathological score of ZNF32, we set up the
average value to define high or low expression. Of the 100 speci-
mens, 47 were defined as high and 53 as low expression of ZNF32.
It is worth noting that ZNF32 and LEPR expression showed
strikingly positive associations with the TNM stage of patients (p
= 0.0042 and 0.0193, respectively) but not with other parameters
(Table 1). In addition, the survival status of these 100 patients was
followed up and reviewed from January 2010 to December 2018,
which showed that patients with high ZNF32 expression generally
had a shorter survival (p= 0.0369, Fig. 6F). Furthermore, of the 100
patients, 78 (36 with high and 42 with low ZNF32 expression) had
received different cycles of chemotherapy (platinum combined
with fluorouracil). Notably, further survival analysis found that
among the 78 patients, patients with high ZNF32 expression had a
remarkably shorter survival (p= 0.0024, Fig. 6G). We further used

TCGA data (https://www.cancer.gov/tcga) to analysis the prog-
nosis information of ZNF32 and LEPR in CRC patients. The results
showed that the expression of ZNF32 was negatively correlated
with the prognosis of CRC patients, which was consistent with our
research (Fig. S8B). And the expression of LEPR is negatively
correlated with the prognosis in CRC patients before 100 months
(Fig. S8C). Therefore, our results demonstrated that both ZNF32
and LEPR were highly expressed in CRC tissues, and were
negatively correlated with the prognosis of CRC patients.

DISCUSSION
Because CSCs comprise only a small fraction of heterogeneous
tumor cell populations (<1% in solid tumors), their enrichment is
generally challenging [24]. In the present study, we employed a
serum-free suspension culture method to enrich colorectal CSCs
from the CRC cell lines and CRC primary cells. A group of cell
surface markers are generally used to define colorectal CSCs,
including CD44, CD133, CD166, CD24, EpCAM, LGR5, and ALDH
[25, 26]. The expression of CD133 is one of the most important
features of colorectal CSCs. Isolated single CD133+ CRC cells show
self-renewal and multi-lineage differentiation [27]. And more
study demonstrated that CD166 was an additional differentially
expressed marker for colorectal CSCs [25]. In addition, High
expression of ALDH1 has been identified as a CSC marker in
various types of cancer, including CRC [25]. So, we detected the
expression of CD133, CD166, and ALDH. And our data showed
significantly higher expression of these markers in the enriched

Fig. 5 ZNF32 regulated the self-renewal capacity of colorectal CSCs through the LEPR-STAT3 signaling pathway. (A) DNA fragments from
SW480-pcDNA3.1-Flag-ZNF32 and SW480-pcDNA3.1-Flag-Vector cells were immunoprecipitated with Flag-specific antibodies and analyzed
via RT-PCR using the indicated LEPR (-1698/-1333) primers. The data presented here are from one representative experiment of three
independent experiments and are presented as the means ± S.Ds. (B) Western blot analysis of ZNF3, LEPR, STAT3, pSTAT3 and SOX2 between
lv-ZNF32 and lv-Vector SW480 and pCRC1 cells. SW480 and pCRC1 cells with overexpression of ZNF32 and knockdown of LEPR, Western blot
analysis to detect the expression of LEPR, SOX2, STAT3 and pSTAT3 and the stem cell markers CD133, CD166 and ALDH (C), the image is one
represent of three independent experiments. 3D colony-forming assay to analyze the colony formation capacity. The data presented as the
means ± S.Ds. The dots of histogram were used to plot all data (D), and limiting dilution assay to analyze the number of tumor spheres. The
data presented as the means ± S.Ds. The dots of histogram were used to plot all data (E). In vivo experiments to confirm the tumorigenicity of
sh-LEPR and sh-NC between SW480-lv-ZNF32 and pCRC1-lv-ZNF32 cells. There are 5 mice in each group. Each experiment was performed at
least in triplicate, and consistent results were obtained (F). (G). The tumor morphology is shown in the tumor column. And the samples were
stained for HE and IHC analysis with Ki-67, CD133 and Tunel. The positive cells were stained brown. The image is one represent of three
independent experiments. (micron bar = 20 μm).
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CSC-SW40 and CSC-pCRC1, indicating the high efficiency of
enrichment. However, in the other colorectal CSCs, the expression
of CD133, CD166, and ALDH1 were not consistent raised relative
to bulk cells. This indicates that these stem markers were
expressed differently in different colorectal CSCs. Because CRC is
a heterogeneous disease, KRAS activates, microsatellite instability
and mutation of APC are all related to the phenotype of colorectal
CSCs [28–30]. And the status of EGFR, MMR, BRAF, APC, TP53 in
CRC cells were different. So, the differential expression of CSC
markers in different colorectal CSCs may related to the mutation
of these genes.
ZNF32 has been shown to be expressed in many cancer cells,

including CRC cells. In our present study, we revealed that
compared to their bulk cells, colorectal CSCs had remarkably
elevated ZNF32 expression, suggesting that ZNF32 might play an
important role in colorectal CSCs. Through two independent
experiments with different strategies, we demonstrated that the
expression of ZNF32 in CRC cells was closely related to
differentiation towards colorectal CSCs, which was positively
correlated with the expression of the colorectal CSC markers
CD133, CD166, and ALDH1. Notably, we further showed that
ZNF32 expression was also well associated with the self-renewal
capacity of these colorectal CSCs. Similarly, another research
group recently found that ZNF207 is required for the self-renewal
and pluripotency of human embryonic stem cells [31]. Jen et al.
also demonstrated that ZNF322A promotes lung tumorigenesis as
a transcription suppressor of c-Myc expression [32]. We previously
demonstrated that in lung adenocarcinoma, ZNF32 contributes to
the induction of multidrug resistance [22]. Our results in the
present study provide another possible explanation that the high
expression of ZNF32 in cancer cells facilitates their differentiation
toward CSCs, which are known to be drug resistant [33, 34]. In fact,
our analysis of clinical specimens in this study showed that
patients with higher ZNF32 expression generally have a shorter
survival than those with lower ZNF32 expression, despite the
multiple cycles of treatment with platinum-based combined
fluorouracil-based chemotherapy they previously received.
The JAK-STAT3 pathway is a primary signaling pathway and

plays a crucial role in many cellular processes [35]. It has also been
reported that aberrant activation of this pathway is associated
with many cancers [36, 37]. And it has been reported that
persistent activation of STAT3, and the phosphorylation level of
STAT3 may be associated with the poor prognosis of cancer [37].
Intriguingly, our RNA-seq and ChIP-seq results both indicated that
genes from the JAK-STAT pathway were upregulated. Based on
our previous report that the transcriptional binding site of ZNF32
is GA/CATTT [23], we further screened the key genes in the JAK/
STAT pathway and identified the LEPR gene as the downstream

target of ZNF32. Leptin is a hormone and inflammatory cytokine
that is involved in the regulation of appetite, metabolism and
angiogenesis [38]. Our previous study demonstrated that hyper-
leptinemia directly affects testicular structure and function
through the SOCS3/pSTAT3 pathway [39]. Through binding to
the receptor LEPR, leptin/LEPR signaling has been shown to be
related to the progression of a large number of cancers, such as
pancreas and colon cancers [38]. In particular, accumulating
evidence has demonstrated that leptin/LEPR binding strongly
influences the activation of the JAK/STAT pathway through the
phosphorylation of JAK2 and STAT3 [40]. This is in accordance
with our results that knockdown of LEPR significantly down-
regulated the expression of both STAT3 and pSTAT3. We also
showed that the silenced expression of LEPR remarkably
compromised the expression of CSCs markers, colony-forming
ability, and tumorigenicity. Similar to our findings, Zheng et al.
showed that LEPR is required for self-renewal capacity of triple-
negative breast cancer [41]. Notably, despite the important
regulatory role of the LEPR-STAT3 pathway in CSCs, limited
upstream regulators of STAT3 have been identified. Recently, one
research group first revealed that HN1L can promote breast CSCs
properties through the LEPR-STAT3 pathway [42]. We also found
that SOX2 was positively associated with ZNF32 in both CRC cells
and colorectal CSCs. Our previous work demonstrated that ZNF32
regulates SOX2 expression in zebrafish nervous lateral line system
regeneration [43]. However, the mechanism by which ZNF32
regulates SOX2 in colorectal CSCs needs to be further studied.
Otherwise, CD133, CD166, and ALDH1 are surface markers of
colorectal CSCs. In addition to us, many reports confirming the
association of STAT3 signaling pathways with the expression of
CD133, CD166, and ALDH1 in CSCS. However, there is no definite
evidence that STAT3 directly regulates the expressions of CD133,
CD166, and ALDH1. And how STAT3 involved in the regulation of
these markers still unknow. In addition, our analysis of clinical
specimens revealed that both ZNF32 and LEPR have a high level
of positively correlated expression in CRC tissues compared to
adjacent normal tissues. Patients with higher levels of ZNF32
expression tend to have shorter survival than those with lower
ZNF32 expression.
In conclusion, our study demonstrates that ZNF32 is highly

expressed in colorectal CSCs, promotes the self-renewal capacity
of colorectal CSCs and is associated with the clinical prognosis of
CRC patients. Importantly, we identified LEPR as the downstream
target gene of ZNF32 and verified that ZNF32-mediated regulation
occurs through the LEPR-STAT3 pathway. It will be tempting to
therapeutically target this pathway in the clinic. In fact, an LEPR
antagonist was recently tested in a preclinical murine model of
triple-negative breast cancer and showed improved survival

Table 1. The clinicopathological factors of CRC patients.

Characteristics Cases ZNF32 P Value LEPR P Value

High Low High Low

Gender Male 58 28 30 0.9224 31 27 0.8706

Female 42 19 23 24 18

Age(years) ≤60 25 10 15 0.5630 15 10 0.7277

>50 75 37 38 40 35

Liver metastasis Yes 5 4 1 0.2904 3 2 0.8176

No 95 43 52 52 43

TNM stage I and II 46 14 32 0.0042* 19 27 0.0193*

III and IV 54 33 21 36 18

Differentiation stage Well 17 6 11 0.0754 9 8 0.1288

Moderate 59 25 34 27 22

Poor 24 16 8 19 5
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benefits [44]. More studies involving ZNF32 and LERP will enhance
the clinical significance of the ZNF32-mediated LEPR-STAT3
pathway.

DATA AVAILABILITY
RNA sequencing to conduct an in-depth comparison analysis of mRNA derived from
CSC-pCRC1, CSC-SW480 and their corresponding bulk cells are included in
Supplementary Table 2. ChIP-sequence analysis of the differentially enriched regions
of the promoter for SW480-pcDNA3.1-Flag-ZNF32 compared to the SW480-
pcDNA3.1-Flag-Vector group are summarized in Supplementary Table 3.
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