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Loss of miR-24-3p promotes epithelial cell apoptosis and
impairs the recovery from intestinal inflammation
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While apoptosis plays a significant role in intestinal homeostasis, it can also be pathogenic if overactive during recovery from
inflammation. We recently reported that microRNA-24-3p (miR-24-3p) is elevated in the colonic epithelium of ulcerative colitis
patients during active inflammation, and that it reduced apoptosis in vitro. However, its function during intestinal restitution
following inflammation had not been examined. In this study, we tested the influence of miR-24-3p on mucosal repair by studying
recovery from colitis in both novel miR-24-3p knockout and miR-24-3p-inhibited mice. We observed that knockout mice and mice
treated with a miR-24-3p inhibitor had significantly worsened recovery based on weight loss, colon length, and double-blinded
histological scoring. In vivo and in vitro analysis of miR-24-3p inhibition in colonic epithelial cells revealed that inhibition promotes
apoptosis and increases levels of the pro-apoptotic protein BIM. Further experiments determined that silencing of BIM reversed the
pro-apoptotic effects of miR-24-3p inhibition. Taken together, these data suggest that miR-24-3p restrains intestinal epithelial cell
apoptosis by targeting BIM, and its loss of function is detrimental to epithelial restitution following intestinal inflammation.
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INTRODUCTION
Ulcerative colitis (UC) is a chronic inflammatory disease of the
colon and rectum. For patients with UC, achieving and maintain-
ing mucosal healing is an important predictor of sustained disease
remission [1]. Following a flare of inflammation, mucosal repair
requires intestinal epithelial cells to proliferate, migrate, and resist
apoptosis [2-4]. Molecular pathways such as Wnt and EGFR drive
proliferative events [5, 6] while integrins regulate migration into
the wound [7, 8]. Apoptosis is orchestrated by families of proteins
such as Bcl-2 that can be activated by either extrinsic or intrinsic
apoptotic signals, initiating a cascade of events that result in
Caspase activation, PARP cleavage, and DNA fragmentation [9].
Various studies over the past 15 years have profiled UC patient
tissue for alterations in microRNA expression [10]. These experi-
ments have uncovered a number of specific microRNAs with
functional significance for the pathophysiology of UC. In a recent
study, we reported that microRNA-24-3p (miR-24-3p) is expressed
in the intestinal epithelium and is elevated in UC patients [11]. We
also observed that overexpression of miR-24-3p reduces caspase
activity in intestinal epithelial cells. Therefore, we hypothesized
that genetically removing or inhibiting miR-24-3p would enhance
epithelial cell death and reduce mucosal repair after inflammation.
In this study, we first challenged miR-24-3p knockout or miR-24-
3p-inhibited mice with colitis. We observed that either method of
miR-24-3p manipulation resulted in worse histological outcomes

compared to controls. As miR-24-3p inhibition dramatically
increased epithelial apoptosis and impaired recovery from colitis,
we then investigated the molecular mechanism through which
miR-24-3p regulates apoptosis. Our data support a model in which
miR-24-3p suppresses epithelial apoptosis by targeting the pro-
apoptotic Bcl-2 family member BIM. Together our data suggest
that miR-24-3p is essential for mucosal protection and repair after
an inflammatory insult to the colon.

MATERIALS AND METHODS

Creation of miR-24-3p knockout mice

CRISPR was used to generate both Mir24-1 and Mir24-2 knockout mice
(Jackson Laboratory, Bar Harbor, ME, USA). Mir24-1 mice were crossed with
Mir24-2 mice in house and 9-week-old female mice were used for colitis
experiments as they could be co-housed with wild type (C56BL/6NJ) mice.
For Mir24-1 the following gRNAs were used: 5-CAGCTGATGCCACA
CGTGAT-3’, 5'-ACACCCCCACCCATCACGTG-3’, 5-TGCCTCAGGCACTTACAG
AT-3’ and the resulting mouse lacked Ch13: 63,448,871-63,449,119. The
following genotyping primers were used for Mir24-1 knockout mice:
5/-CTGCCTCAAGGCTGTGTTGT-3/,  5-TCTACAAATCCCCACCTCGG-3'. For
Mir24-2 the following gRNAs were used: 5-AGCTCAGTAGGCACGGGAGG,
ATCAACTGTTTCAGCTCAGT-3/, 5-TGAGCCTCCAGCAGACAACG-3’ and the
resulting mouse lacked Chr8: 84,935,477-84,935,627. The following
genotyping primers were used for Mir24-2 knockout mice: 5-TATG
TGAGACCCAGCCTGGT-3, 5'-GAGGGGACATAACTGGCTTTT-3.
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In vivo inhibitor treatment and colitis recovery model
Mouse-based experiments were done in accordance with the UCLA IACUC
under protocol #2013-030. Mice were randomly assigned to each group.
Custom large scale in vivo miRCURY locked nucleic acid (LNA) inhibitors
were used (Qiagen, Hilden, Germany). These specific LNA inhibitors bind to
the target miRNA, inhibiting RNA-Induced Silencing Complex loading. The
catalog numbers for the control inhibitor and miR-24-3p inhibitor were
339203 YCl0201861-FZA and 339203 YCI0201383-FZA, respectively. The
drugs were diluted in sterile 0.9% saline solution and 100 pl was injected
per mouse at the concentrations stated in the figure legends. For
intravenous (IV) injections, intraocular administration was performed. For
colitis experiments, mice were injected intraperitoneally with 2.5 mg/kg of
the inhibitor on days —1, 3, and 7 after dextran sulfate sodium (DSS). Male
9-week-old C57BL/6J mice were used (Jackson Laboratory). Mice were
housed 4 per cage, maintained on a 12:12 h light-dark cycle, and given
access to food and water ad libitum. To induce colitis, mice were given 5%
DSS (w/v; MP Biomedical, Irvine, CA, USA) dissolved in drinking water. The
DSS solution was refreshed on day 3. Mice received DSS for 5 days and
were then switched to water alone and euthanized for tissue collection on
day 10; this places tissue collection in the time frame when repair and
recovery processes are active [12].

Histology

After mice were euthanized via carbon dioxide and cervical dislocation,
colons were dissected, flushed with phosphate buffered saline (PBS), cut
open longitudinally and Swiss-rolled. After overnight fixation in 4%
formaldehyde, colons were transferred to 70% ethanol. The Translational
Pathology Core Laboratory at UCLA embedded them in paraffin, cut
5-micron sections, and performed hematoxylin and eosin (H&E) staining.
An Aperio AT scanner was used to digitize the slides and ImageScope
software was used to view the H&E slides (Leica Camera, Wetzlar,
Germany). The double-blinded average histology score from three
independent and concordant reviewers were based on immune cell
infiltration and epithelial ulceration with the scores of 0-3 corresponding
to none, mild, moderate, and severe, respectively.

Ki67 Immunohistochemistry and scoring

A Bond Polymer Refine Detection kit was used for antigen retrieval,
washes, and signal detection (Leica Biosystems, #DS9800). A Leica Bond RX
machine was used to dewax and re-hydrate the slides. For antigen
retrieval, slides were placed in buffer ER2 at 100 °C for 20 min. Slides were
blocked in peroxide for 5 min. After blocking slides were washed three
times. A Ki67 antibody was incubated with the sections for 1h at the
concentration of 1:1000 (Cell Signaling Technologies, #12202). Slides were
then washed three times before being incubated with DakoCytomation
Envision System Labelled Polymer HRP anti-rabbit for 10 min (Agilent,
Santa Clara, CA, #K4003). Slides were washed three times for 2 min each.
After polymer blocking, slides were washed five times in wash buffer then
once in deionized water. Next, slides were incubated with Mixed DAB
Refine for 10 min. After washing in deionized water wash three times,
slides were incubated with hematoxylin for 10 min. Slides were then
washed in wash buffer three times and once in deionized water. Finally,
slides were dehydrated in series of alcohols, cleared with Histoclear and
mounted with Permount (Vector Laboratories, Burlingame, CA). A blinded
pathologist quantified the number of positive Ki67 positive epithelial cells
per total epithelial cells within and surrounding the ulcer. Results are
displayed as the average score of all ulcer associated regenerating crypts
per mouse.

RNA isolation and RT-PCR

A miRNeasy kit (Qiagen) was used to extract and purify miRNA from the
mouse distal colon or cultured cells according to the manufacturer’s
instructions. A LNA RT kit (Qiagen) was used to generate cDNA from
miRNA, according to the manufacturer’s instructions. A CFX384 real-time
PCR system was used to amplify and detect SYBR Green mediated signal
(Bio-Rad Laboratories, Hercules, CA, USA). To measure miR-24-3p, a
miRCURY LNA miRNA PCR assay primer was used (#YP00204260; Qiagen).
The housekeeping primers were RNU1A1 and RNU5G (#YP00203909 and
#YP00203908, respectively; Qiagen).

Cell culture and transfections
Mycoplasma negative SW480 cells were purchased from American Type
Culture Collection (Manassas, VA, USA) and were grown in DMEM + 10%
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FBS and 1% penicillin and streptomycin (Corning, Manassas, VA, USA). Non-
transformed Young Adult Mouse Colon (YAMC) cells were grown under
permissive conditions [33 °C in RPMI 1640 supplemented with 10% FBS, 5
units per mL Interferon-gamma (Peprotech, Cranbury NJ #315-05), 1% ITS
(Corning, #25800CR), and 1% penicillin and streptomycin]. For experi-
ments, cells were transferred to nonpermissive conditions [37°C in
transfection media without interferon or ITS]. To facilitate transfection,
70 puM lipofectamine RNAiMax was used according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA). For overexpression experi-
ments, both a miR-24-3p mimic and a miRNA mimic negative control were
used at a concentration of 50 nM (#PM10737 and #AM17110, respectively;
Ambion, Austin, TX, USA). For inhibition experiments, the miR-24-3p
antisense oligonucleotide and control inhibitor were used at a concentra-
tion of 50nM. The control (#4390843) and BIM (#4390824-s195011)
Silencer Select siRNAs were also used at 50nM (Invitrogen). All
transfections were performed in Optimem | (Invitrogen, #31985062).

Western blotting

Semi-confluent cells were harvested in reducing Laemmlli sample buffer and
subjected to 3 passes through a 25-gauge needle. Equal volumes of lysates
were separated on 4-20% gradient denaturing polyacrylamide gels and
transferred to PVDF membranes with a TransBlot Turbo RTA transfer kit (Bio-
Rad). Membranes were blocked in 5% blotting-grade blocker in PBS with
0.05% Tween-20 and probed with antibodies against BIM (1:1000, Cell
Signaling Technology, Danvers, MA, USA, 2933), Cleaved PARP (1:1000, Cell
Signaling Technology, #9541), BCL-2 (1:1000, Cell Signaling Technology
#2872), BAX (1:1000, Cell Signaling Technology, #5023) and Tubulin (1:5000,
Sigma-Aldrich, St. Louis, MO, USA, #T5168). Horseradish peroxidase-labeled
secondary antibodies were obtained from Jackson ImmunoResearch (West
Grove, PA, USA). Clarity enhanced chemiluminescent reagent and a
Chemidoc Touch (Bio-Rad) imaging system were used to develop and
image the blots. All signal intensities reported are normalized to Tubulin.

Apoptosis assays

Caspase 3/7: 100,000 cells were plated in transfection mix on 96 well plates.
For staurosporine treatment, cells were transfected overnight before
exposure to 2 uM staurosporine (Tocris Bioscience, Bristol, UK) or vehicle
[dimethyl sulfoxide (DMSO) (1:1000)] for 4 h. For tumor necrosis factor
(TNF) treatment, cells were transfected overnight before exposure to
100 ng/mL TNF (R&D Systems, #210TA020CF) or vehicle control (PBS). After
treatment cells were then washed once in PBS, and 100 pl of a 1:1 mix of
Caspase 3/7 GLO buffer to PBS was added per well (Promega, Madison, WI,
USA). After 15-30 min of lysis, a Synergy HT plate reader was used to
measure luminescence (BioTek Instruments, Winooski, VT, USA).

In vivo TUNEL: After routine deparaffinization and hydration, slides were
microwaved in 10 mM citrate pH 6.0 supplemented with 0.05% Tween-20.
A TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) kit
was used to label apoptotic cells according to the manufacturer's
instructions (Roche, Basel, Switzerland). Nuclei were counterstained with
DAPI and slides were mounted in Prolong Gold (Invitrogen). An Versa
scanner was used to image the slides (Leica). TissueStudio software was
used to automatically score and quantify the number of total and TUNEL-
positive intestinal epithelial cells (Defiens Inc, Carlsbad, CA, USA).

In vitro TUNEL: 180,000 cells were plated in transfection mix on
chambered slides. After 24 h, cells were treated with 2 uM staurosporine or
DMSO vehicle for 4 h. Cells were then fixed with 4% formaldehyde and
assessed for apoptosis with a Click-it TUNEL plus kit according to the
manufacturer’s instructions (Invitrogen). Nuclei were counterstained with
DAPI; slides were mounted in Prolong Gold (Invitrogen) and imaged on a
Zeiss 710 confocal microscope (Carl Zeiss AG, Oberkochen, Germany). The
cell counter function in ImageJ (National Institutes of Health, Bethesda,
MD) was used to individually label and count cells.

Lipocalin-2 assay

A mouse Lipocalin-2 DuoSet ELISA was used to measure fecal Lipocalin-2
(R&D Systems, #DY1857). One to two fresh pellets were weighed and
diluted in 1mL reagent diluent. 100 uL of the resulting sample was
analyzed according to the manufacturer’s instructions. The positive control
was feces from a DSS-treated mouse diluted 1:100 in reagent diluent.

Statistical analysis
Statistical differences between two groups were evaluated using an
unpaired t-test. For statistical analyses of more than two groups, a Tukey
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Fig. 1 miR-24-3p knockout mice exhibit reduced mucosal repair after colitis. A Representative agarose gels of Mir24-1 and Mir24-2
genotyping. B After reverse transcription of colonic RNA, PCR was used to measure the level of miR-24-3p. n =6 mice/group in two
independent experiments. Mean + SD. C A schematic describing the time course for colitis recovery experiments. D A graph of percent weight
change over the course of recovery after colitis. n=16/13 mice/group for wild type and miR-24-3p knockout, respectively, from three
independent experiments. Mean + SEM. E On day 10 of the protocol, mice were euthanized, and colon lengths were measured from the
rectum to the cecum. n = 16/13 mice/group for wild type and miR-24-3p knockout, respectively, from three independent experiments. Mean
+SEM. F A representative image of the central colons of wild type or miR-24-3p knockout mice. Green arrows indicate areas of re-
epithelization and red arrows indicate areas of ulceration. Scale bars = 0.5 mm. G Representative graphs of double-blind histology scores.
n=5/4 mice per group for wild type and miR-24-3p knockout, respectively, from two independent experiments. Mean + SD. *p < 0.05;
**p < 0.01; ***p < 0.001.

corrected, multiple comparisons, one-way ANOVA was performed. Sample and a 150 base pair deletion surrounding Mir24-2 (Fig. 1A). When
sizes were based on prior experience with the same methods as a guide to the levels of miR-24-3p were analyzed by qPCR in Mir24-1~/~ x
what is needed to detect a difference. Graphing was completed using Mir24-2~/~ compared to wild type mice, there was essentially a
GraphPad Prism \{ersion 6 (G_ra.phPad' Software, Inc., San Diego, CA, USA). complete loss of miR-24-3p in the double knockout mice (miR-24-
P<0.05 was considered statistically significant. 3p knockout). To determine if these mice had spontaneous colitis,

we performed a Lipocalin-2 (Lcn-2) assay [13]. We did not observe

any differences in fecal Lcn-2 between wild type and miR-24-3p

RESULTS knockout mice and neither appeared to have elevated Lcn-2 levels
miR-24-3p knockout mice exhibit reduced mucosal repair (Supplemental Fig. 1). A fecal pellet from a mouse with acute DSS
after colitis colitis was used a positive control, and in line with other studies

To determine whether miR-24-3p regulates the recovery from displayed a signal of over 2000 pg/mg Lcn-2 (Supplemental Fig. 1).
colitis we first created a knockout mouse. As miR-24-3p is Next, we subjected these mice to colitis. On day 0, mice received
produced at 2 separate genomic loci, Mir24-1 and Mir24-2, CRISPR DSS, a molecule that induces colitis by causing distal colonic
was used to create a 248 base pair deletion surrounding Mir24-1 ulcerations [14]. Starting on day 5, mice were placed on water for
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an additional 5 days to enable the onset of mucosal repair
mechanisms (Fig. 1C). We measured the weight of the mice each
day as greater weight loss is indicative of worse disease [15]. When
analyzing the percent weight change, a maximum weight loss for
both wild type and miR-24-3p knockout mice occurred on day 7-8
(Fig. 1D), but the knockout mice lost considerably more weight
(15-20% in knockout versus 10-15% in wild type mice).
Furthermore, while by day 9-10 wild type mice had recovered
nearly all lost weight, miR-24-3p knockout mice failed to regain
weight. Another measure of colitis is reduced colon length. On day
10, miR-24-3p knockout mice displayed significantly shorter
colons (Fig. 1E). After a double-blinded review of the entire colon
histology, increased immune cell infiltrate and ulcerations to the
epithelium were observed in knockout mice compared to wild
type controls (Fig. 1F, G). While wild type mice started to recover
the epithelium at the central/distal colon interface, the knockout
mice still displayed only a layer of concentrated immune cells.
These results suggest that genomic deletion of miR-24-3p impairs
recovery from colitis.

A cell-permeable miR-24-3p inhibitor is effective in the colon
5 days after one dose

We next optimized the use of a miR-24-3p inhibitor as a second
means of testing this microRNA’s function. We first tested the
route of administration and efficacy of a cell-permeable antisense
oligonucleotide against miR-24-3p. We started with a high dose,
12.5mg/kg, and analyzed its ability to inhibit miR-24-3p 3 days
after either IV or intraperitoneal (IP) injections. Both methods of
administration resulted in near complete loss of miR-24-3p
detection by qPCR (Fig. 2A). As these LNA inhibitors function by
binding and masking/sequestering the target miRNA [16], the loss
in gPCR signal reflects the unavailability of miR-24-3p primers to
bind to their target. We next determined that an IP injection with a
dose as low as 2.5 mg/kg resulted in full inhibition; furthermore, at
that dose, the effect persisted for 5 days but not 7 (Fig. 2B, Q).
From these experiments, we concluded that a 4-day, 2.5 mg/kg
dosing interval would be sufficient to inhibit miR-24-3p expression
in our in vivo DSS recovery model.

Inhibition of miR-24-3p diminishes mucosal repair after colitis
To test the effects of miR-24-3p inhibition on colitis, we injected
mice on day —1, day 3, and day 7 with either a control inhibitor or
the miR-24-3p inhibitor (Fig. 3A). On day 0, mice received DSS,
which was withdrawn on day 5; mice were then followed for an
additional 5 days to enable the onset of mucosal repair
mechanisms. We confirmed near complete inhibition of miR-24-
3p at the end of our 10-day protocol (Fig. 3B). As expected, mice
treated with either the control inhibitor or the miR-24-3p inhibitor
reached peak weight loss levels by day 8 (Fig. 3C). However, after
peak weight loss, control inhibitor-treated mice began to recover
whereas miR-24-3p-inhibited mice continued to lose weight. This
resulted in a significant 8% difference in body weight between the
two groups on day 10 (Fig. 3C). Furthermore, miR-24-3p-inhibited
colons were almost a full centimeter shorter than control inhibitor-
treated colons (Fig. 3D). To analyze histological damage, we H&E-
stained Swiss-rolled colons. In control inhibitor-treated mice only
the most distal region of the colon was ulcerated on day 10;
however, miR-24-3p-inhibited mice were significantly ulcerated
throughout the colon (Fig. 3E). When observing magnified
segments of the central-distal region of the colons, crypt
regeneration was apparent in control inhibitor-treated mice on
day 10 (Fig. 3F). However, there was little crypt regeneration in
mMiR-24-3p-inhibited mice (Fig. 3F). These effects were quantified
by double-blinded reviewers who scored the extent and severity
of immune cell infiltrate and epithelial ulceration, with the sum of
the two being the total histology score. Histological scores were
significantly elevated in the miR-24-3p inhibitor-treated DSS
recovery group as compared to controls, confirming impaired
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Fig. 2 A cell-permeable miR-24-3p inhibitor is effective in the
colon 5 days after one dose. A Mice received an intraperitoneal (IP)
or intravenous (IV) injection of 12.5 mg/kg control inhibitor or miR-
24-3p (miR-24) inhibitor and colonic RNA was extracted 4 days later.
n =3 mice per group, for IP/IV representative of two independent
experiments. Mean + SD. B IP injections of 12.5, 6.25, and 2.5 mg/kg
of a miR-24-3p inhibitor (miR-24) were tested for their efficacy at
4 days post injection. n =3 mice per group, representative of two
independent experiments. Mean * SD. C Mice were IP injected with
2.5 mg/kg of a miR-24-3p inhibitor and were sacrificed 3, 5, or 7 days
later. n =3 mice per group. Mean = SD. ***p < 0.001.

intestinal restitution (Fig. 3G). We did not observe any differences
in the histology of miR-24-3p inhibitor-treated mice without DSS
treatment as compared to controls (Fig. 3F). The effects of miR-24-
3p do not appear to be due to alteration in initial injury or
inflammation, since histological scoring performed on day 5
(Supplemental Fig. 2A) showed no differences in ulceration or
infiltration scores between control and miR-24-3p-inhibited mice
(Supplemental Fig. 2B). Together, these results suggest that miR-
24-3p inhibition weakens the recovery from acute colitis, and
indicate that the effects in the knockout mice are not due to off-
target effects of the gene editing.

Inhibition of miR-24-3p enhances intestinal epithelial cell
death after colitis

To investigate the cause of attenuated recovery following colitis,
we next analyzed whether miR-24-3p inhibition was causing
increased intestinal epithelial cell apoptosis. Using a terminal UTP
nucleotide end labeling (TUNEL) assay, we stained mouse colons

Cell Death and Disease (2022)13:8
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pertains to the colitis recovery experiments. B After colitis and recovery, the level of miR-24-3p in the distal colon was measured by RT-qPCR.
n =4 mice/group. Mean = SD. C A graph of percent weight change over the course of recovery after colitis. n = 24 mice/group from three
independent experiments. Mean = SEM. Three independent experiments. D On day 10 of the protocol, mice were euthanized, and colon
lengths were measured from the rectum to the cecum. n =8 mice per from three independent experiments. Mean + SD. E Representative
H&E-stained Swiss-rolls used for histology scoring. Scale bars =2 mm. F Magnified images of the central colons from control inhibitor or miR-
24-3p inhibitor-treated mice. The green arrows indicate areas of re-epithelization and red arrows indicate areas of immune cell infiltration and
epithelial ulceration. Scale bars = 0.4 mm. G Representative graphs of double-blind histology scores. n =8 mice per group for water treated,

n =16 mice per group for DSS treated from two independent experiments. Mean * SD. *p < 0.05; **p < 0.01; ***p < 0.001.

harvested on day 10 of DSS recovery for DNA damage. Mice
treated with the control inhibitor had few TUNEL-positive cells
(Fig. 4A), suggesting low levels of apoptosis during epithelial
restitution. However, miR-24-3p-inhibited mice had patches of
TUNEL-positive cells throughout the epithelium. Automated
quantification of these stained slides showed consistently
elevated TUNEL-positive cells in miR-24-3p-inhibited mice com-
pared to controls across multiple experiments (Fig. 4B). Another
possible cause for the lack of epithelialization in mice lacking or
with inhibited miR-24-3p could be stunting of epithelial cell
proliferation post injury. To determine if proliferation was altered
at day 10, we performed immunohistochemistry for Ki67 in miR-
24-3p knockout and wild type mice. There was a high level of
proliferation in colonocytes from both knockout and wild type
mice (Fig. 4C). When quantified, there were no differences
between the two genotypes (Fig. 4D). Taken together, these data

Cell Death and Disease (2022)13:8

suggest that miR-24-3p inhibition caused elevated apoptosis,
which is a likely explanation for impaired recovery from colitis.

miR-24-3p inhibition promotes Caspase 3/7 activation in vitro
To determine if the increased epithelial cell death after miR-24-3p
inhibition was due to immune cell-independent effects, we
transitioned to in vitro studies using cultured epithelial cells. We
conducted apoptosis assays on intestinal epithelial cells treated
with either the miR-24-3p inhibitor or a miR-24-3p mimic, in the
presence or absence of the cell death inducers staurosporine or
TNF. We chose two apoptosis assays targeting different steps in
the apoptotic cascade a Caspase 3/7 activity assay, an inter-
mediary event, and TUNEL staining, which measures DNA
fragmentation, a final event. Cells treated with the miR-24-3p
inhibitor had increased caspase activity at baseline compared to
control inhibitor-treated cells (Fig. 5A). Increased Caspase activity
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was also observed in cells treated with staurosporine plus the miR-
24-3p inhibitor compared to cells treated with staurosporine plus
the control inhibitor. Conversely, miR-24-3p overexpression also
reduced Caspase activity induced by staurosporine (Fig. 5B). To
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determine if miR-24-3p inhibition can have additive effects on cell
death for a more IBD relevant cell death inducer we treated
SW480 cells with TNF. We observed that after 4h of TNF
treatment, Caspase activity was elevated in control inhibitor-
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treated cells (Fig. 5C). When comparing TNF-treated control
inhibitor and miR-24-3p treated cells we observed that, similar
to staurosporine, miR-24-3p inhibition elevated Caspase activity in
the presence of TNF compared to controls. To determine if the
effects of miR-24-3p inhibition on apoptosis were also observable
in non-transformed intestinal epithelial cells we employed the
YAMC cell line [17]. We observed that in the absence of any cell
death inducer, Caspase activity was elevated when miR-24-3p was
inhibited in YAMC cells (Fig. 5D). In summary, miR-24-3p
expression promotes intestinal epithelial cell survival under
proinflammatory and pro-apoptotic conditions.

miR-24-3p promotes intestinal epithelial cell survival

To determine if the differences in caspase activation due to miR-
24-3p manipulation result in alterations in DNA fragmentation
TUNEL assays were performed. We observed that miR-24-3p
inhibition increased the proportion of TUNEL-positive cells by ~2-
fold (Fig. 6A). Furthermore, miR-24-3p inhibitor-treated cells co-
treated with staurosporine had a 2-fold increase in TUNEL
positivity compared to control inhibitor cells given staurosporine.
While overexpression of miR-24-3p at baseline resulted in no
significant effects on TUNEL staining, it repressed TUNEL positivity
induced by staurosporine (Fig. 6B). These results suggest that miR-
24-3p restrains intestinal epithelial cell death, likely explaining
weakened recovery after DSS colitis when mice were treated with
the miR-24-3p inhibitor.

miR-24-3p regulates the pro-apoptotic protein BIM in
intestinal epithelial cells

When comparing the seed sequence of miR-24-3p to the 3'UTR of
the Bcl-2 family of apoptosis-associated proteins, BIM (Bcl-2
interacting mediator of cell death), a pro-apoptotic mediator,
has perfect complementarity [18]. We therefore tested if miR-24-
3p regulates BIM in intestinal epithelial cells. Western blots against
BIM and cleaved PARP (Poly ADP-ribose polymerase), a down-
stream target of BIM, demonstrated that miR-24-3p inhibition

Cell Death and Disease (2022)13:8

alone increases BIM and cleaved PARP levels compared to cells
treated with the control inhibitor (Fig. 7A). In staurosporine-
treated cells, miR-24-3p inhibition also increased the levels of both
BIM and cleaved PARP compared to control inhibitor-treated cells.
When miR-24-3p was overexpressed, BIM levels dramatically
decreased compared to control cells (Fig. 7B). Additionally, miR-
24-3p overexpression was able to almost entirely revert the
increases in BIM and cleaved PARP induced by staurosporine,
demonstrating the potent anti-apoptotic abilities of a miR-24-3p
analog in intestinal epithelial cells. To determine the specificity of
the effects of miR-24-3p on BIM we analyzed two other BCL-2
family members, BCL-2 and BAX, by western blot. We did not
observe either BCL-2 or BAX protein levels to be altered by either
miR-24-3p manipulation or staurosporine treatment (Supplemen-
tal Fig. 3A-D).

Downregulation of BIM reduces the induction of apoptosis
caused by miR-24-3p inhibition

In order to determine if the pro-apoptotic effects of miR-24-3p
depletion require BIM, we used next used an siRNA to down-
regulate BIM. Transfection with anti-BIM siRNA resulted in a robust
downregulation of BIM protein (Fig. 8A). BIM siRNA reduced
TUNEL positivity rates with miR-24-3p inhibition to a level similar
to control inhibitor plus control siRNA treatment (Fig. 8B). These
experiments demonstrate that BIM contributes to the effects of
miR-24-3p inhibition on apoptosis and is a likely player in miR-24-
3p-mediated regulation of mucosal repair after colitis (Fig. 8C).

DISCUSSION

miR-24-3p is consistently upregulated in IBD [11, 19-21]. Genes
that are upregulated in UC often are involved in mitigation of
tissue injury and restoration of homeostasis. For example, the
ErbB4 receptor tyrosine kinase and the non-coding RNA BC012900
are both elevated in UC but inhibition of either worsens disease
and increases IEC death in vivo and in vitro [22, 23]. Localizing to
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Fig. 7 miR-24-3p regulates the pro-apoptotic protein BIM in
intestinal epithelial cells. A Western blots and densitometric
analysis of BIM, cleaved PARP and Tubulin from SW480 cells treated
with control or the miR-24-3p inhibitor in the presence or absence
of staurosporine. Four independent experiments. Mean + SEM.
B Western blots and densitometric analysis of BIM, cleaved PARP
and Tubulin from cells treated with control or miR-24-3p mimic in
the presence or absence of staurosporine. Three independent
experiments. Mean + SEM. *p < 0.05; **p < 0.01; ****p < 0.0001.

the intestinal epithelium, miR-24-3p is likely to influence IEC
homeostasis. One study from our lab has tried to ascribe a
functional importance for miR-24-3p as it relates to IECs in vitro
[11]. While in vitro studies are important to understanding cell
type specific functions, colitis is a complex disease involving the
interaction of many cell types. We therefore sought to determine if
inhibition or loss of miR-24-3p would positively or negatively
impact mice challenged with colitis. Overall, the findings
presented here support a role for miR-24-3p in recovery from
colitis through inhibition of apoptosis.

Both transient inhibition and knockout of miR-24-3p resulted in
increased severity of colitis including a greater degree of weight
loss and increased histologic ulceration inflammatory cell
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infiltration. The difference in body weight with knockout/
inhibition of miR-24-3p was seen only following withdrawal of
DSS suggesting that loss of miR-24-3p impaired mucosal in the
recovery phase. This is supported by similar histologic scores at
the completion of the colitis phase (day 5). Importantly, miR-24-3p
knockout mice do not develop spontaneous colitis and have
baseline bodyweight and levels of fecal lipocalin that are similar to
wild type.

miR-24 has been shown to be involved in both promoting
epithelial cell proliferation and inhibiting apoptosis [18, 24-29].
While knockout/inhibition of miR-24-3p increased apoptosis
during recovery, there was no difference in epithelial proliferation
at this time point. This suggests a role for regulation of apoptosis
by miR-24-3p during healing from colitis. To determine whether
there was an IEC-specific effect on apoptosis, we tested the effects
of manipulating miR-24-3p in cultured colonic epithelial cells and
observed similar increases in cell death upon inhibition of miR-24-
3p. It appears that regardless of cell type miR-24-3p represses
apoptosis.

We decided to focus on the pro-apoptotic protein BIM as
multiple other studies have demonstrated that miR-24-3p directly
binds to the 3'UTR of BIM, downregulating BIM protein levels and
repressing apoptosis [18, 24]. It was evident that inhibition of miR-
24-3p elevated BIM protein levels in cultured IECs even without a
cell death inducer. Additionally, it appears that BIM was the sole
Bcl-2 family protein regulated by miR-24-3p inhibition.

Our findings are in line with those of other studies showing that
miR-24-3p directly targets many mRNAs associated with anti-
apoptotic, anti-proliferation and DNA damage responses. Nearly
every study demonstrates the same end result—that miR-24-3p
improves cell survival. One other study has analyzed the effects of
miR-24-3p on IECs in vitro [30]. They demonstrated that miR-24-3p
overexpression reduced the pro-survival effects of PMS1 homolog
2 mismatch repair system component pseudogene 2 (PMS2L2).
While different than the overall effects we see of miR-24-3p on
survival these effects could be specific to DNA repair or
PSM2L2 alone.

This study is not without limitations. First, our primary analysis
represents a single snapshot during the disease time course.
Analysis of histology between days 6 and 10 would provide more
definitive understanding of whether the role of miR-24-3p is
restricted to recovery, whether anti-apoptotic effects may be
observed at earlier timepoints and whether there are changes in
proliferation at other time points. Second, while we focused on
BCL-2 family proteins, miR-24-3p has also been shown to target
mMRNAs of other pro-apoptotic proteins such as FAF1 (FAS-
associated factor 1) and the senescence-associated protein p16
[31, 32]. Furthermore, miR-24-3p has been shown to regulate the
apoptosis-inducing DNA damage response and extrinsic apop-
tosis pathway [25], both of which could also mediate the
impaired healing after loss or inhibition of miR-24-3p [33, 34].
Finally, the presence/absence and function of miR-24 in immune
cells also needs to be clarified in order to fully understand our
results. It is clear that global inhibition of apoptosis worsens
colitis as BIM global knockout mice do worse on colitis protocols
[35]. It is likely that these mice do worse due to the fact that
activated immune cells fail to die and keep producing
inflammatory factors. As we have observed that miR-24-3p
colonic expression might be specific to the epithelium, the
possibility of cell-specific targeting of BIM through miR-24-3p
could be key to future therapies. Regardless of the cause, it is
apparent that global inhibition or loss of miR-24-3p results in
worse inflammatory outcomes.

Current drug treatments for UC mainly target the immune
system and inflammatory cytokines [36]. However, it is well
noted that the best clinical sign for remission from inflamma-
tion is the re-epithelialization of the intestinal mucosa [1, 3].
Two major mechanisms for this restitution lie in the survival and
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proliferation of the epithelial cells. Our results suggest that miR-
24-3p analogs could potentially enhance epithelial cell survival
without negatively influencing proliferation, enabling the
epithelium to withstand the apoptosis-inducing effects of the
proinflammatory milieu. To address this, in vivo studies over-
expressing miR-24-3p need to be performed. While it is
currently technically difficult to overexpress microRNAs
in vivo, future studies aimed at improving the stability and
uptake of microRNA mimics, perhaps using lipid nanoparticles,
could overcome these obstacles [37]. While miR-24-3p over-
expression in vivo will likely improve colitis outcomes, the
possibility of promoting colorectal cancer is apparent as many
studies observe miR-24-3p to be elevated in cancer [38].
However, since the severity and duration of active inflammation
correlate with elevated cancer risk in UC it is entirely possible
that transient miR-24-3p based treatments could improve colitis
outcomes without inducing cancer.
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