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Comprehensive transcriptomic characterization reveals core
genes and module associated with immunological changes via
1619 samples of brain glioma
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Glioma is the most common primary malignant brain tumor with limited treatment options and poor prognosis. To investigate the
potential relationships between transcriptional characteristics and clinical phenotypes, we applied weighted gene co-expression
network analysis (WGCNA) to construct a free-scale gene co-expression network yielding four modules in gliomas. Turquoise and
yellow modules were positively correlated with the most malignant glioma subtype (IDH-wildtype glioblastomas). Of them, genes in
turquoise module were mainly involved in immune-related terms and were regulated by NFKB1, RELA, SP1, STAT1 and STAT3.
Meanwhile, genes in yellow module mainly participated in cell-cycle and division processes and were regulated by E2F1, TP53, E2F4,
YBX1 and E2F3. Furthermore, 14 genes in turquoise module were screened as hub genes. Among them, five prognostic hub genes
(TNFRSF1B, LAIR1, TYROBP, VAMP8, and FCGR2A) were selected to construct a prognostic risk score model via LASSO method. The
risk score of this immune-related gene signature is associated with clinical features, malignant phenotype, and somatic alterations.
Moreover, this signature showed an accurate prediction of prognosis across different clinical and pathological subgroups in three
independent datasets including 1619 samples. Our results showed that the high-risk group was characterized by active immune-
related activities while the low-risk group enriched in neurophysiological-related pathway. Importantly, the high-risk score of our
immune signature predicts an enrichment of glioma-associated microglia/macrophages and less response to immune checkpoint
blockade (ICB) therapy in gliomas. This study not only provides new insights into the molecular pathogenesis of glioma, but may
also help optimize the immunotherapies for glioma patients.
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INTRODUCTION
Gliomas are tumors that arise from glial or precursor cells, which
accounts for 80% of malignant tumors in central nervous system
(CNS) [1]. With surgical resection, radiotherapy, and chemotherapy
treatment, the patient’s prognosis remains dismal [2]. In 2016 CNS
WHO classification, gliomas are further classified by histological
and molecular characteristics, including lower-grade gliomas
(LGG), isocitrate dehydrogenase-mutant (IDH-mutant) and 1p/
19q-codeleted; LGG, IDH-mutant without 1p/19q-codeleted; LGG,
IDH-wildtype; glioblastomas (GBM), IDH-mutant; and GBM, IDH-
wildtype [3]. Moreover, a series of key genetic alterations are
reported in gliomas, including MGMT promoter methylation, EGFR
amplification, and MET gene fusion [4, 5]. The diversity of genetic
alterations and gene expression changes contribute to high
heterogeneity and resistance to treatment of gliomas.
Tumor microenvironment (TME) plays a pivotal role in the

occurrence and development of tumors. In addition to cancer cells,
TME is formed by many non-malignant cells, including immune

cells (macrophages, microglia, T lymphocytes), endothelial cells,
fibroblasts, and others [6, 7]. Nowadays, many computational
methods have been developed to estimate the types and fraction
of cells in tumor samples based on expression data. These provide
a landscape of TME to facilitate the understanding of tumor
progression and the design of new efficient immune therapies.
Glioma-associated microglia/macrophages (GAMs) are the most

multifunctional cells in glioma TME, accounting for approximately
30–50% of the total cell population [8]. Depending on the
respective stimuli, the polarization of microglia/macrophages is
either towards the pro-inflammatory/anti-tumor phenotype or
towards the anti-inflammatory/pro-tumorigenic phenotype [9]. In
glioma, GAMs are more likely to possess anti-inflammatory and
pro-tumorigenic phenotype [10], which enhances glioma invasion,
angiogenesis, tumor growth and contributes to an immunosup-
pressive TME [11].
In this study, we utilized the weighted gene co-expression

network analysis (WGCNA) to construct a free-scale gene co-
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expression network related to glioma patients’ clinical molecular
pathological traits. Then, we constructed and validated an
immune-related prognostic model using 1619 glioma cases from
three datasets. Furthermore, we explored the detailed relationship
between the risk score model and the landscape of immune-
related profiles and response to ICB therapy, especially anti-PD-1
immunotherapy. Our findings provide a powerful prognostic tool
for glioma patients, give new insights into the molecular
pathogenesis of glioma, and further may help optimize immu-
notherapies for glioma patients.

MATERIALS AND METHODS
Sample selection, data processing, and study design
Transcriptional RNA sequencing data, whole-exome sequencing data, and
corresponding clinical traits information were downloaded from the
Chinese Glioma Genome Atlas database (CGGA, 325 samples for
mRNAseq_325 dataset; 693 samples for mRNAseq_693 dataset; 286 sam-
ples for WEseq_286; http://www.cgga.org.cn) [12, 13]. The patients in
CGGA datasets are Chinese people. CGGA325 and CGGA693 are two
independent cohorts that are collected by the same team at different
times. RNA sequencing data (702 samples), somatic mutation, and copy
number alterations (CNAs) data (646 samples), and corresponding clinical
traits information were obtained from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) as a validation dataset, which are mainly
Caucasian. According to the WHO 2016 classification criterion, these
samples were classified into five subtypes (IDH-mutant with chromosome
1p/19q codeletion LGG; IDH-mutant without chromosome 1p/19q codele-
tion LGG; IDH-wildtype LGG; IDH-mutant GBM; IDH-wildtype GBM). The
flowchart is shown in Supplementary Fig. S1.

Gene co-expression network construction and identification
of candidate hub genes
The ‘WGCNA’ package in R language was performed to construct a co-
expression network of the top 5000 most variant genes, which were
calculated by a robust method called median absolute deviation (MAD)
[14]. First, a matrix of adjacencies was built according to the Pearson’s
correlation value between paired genes. Then, we chose the soft
thresholding power β= 14 to construct an unsigned scale-free co-
expression network in this study. The weighted adjacency matrix was
transformed into topological overlap matrix (TOM). Thirdly, a standard
method, cutreeDynamic function, was performed to identify co-
expression gene modules with a module minimum size of 30 and merge
height cut of 0.25. The dissimilarity of the module eigengenes (MEs) was
calculated by the moduleEigengenes function in the ‘WGCNA’ package.
The association between MEs with clinical subtypes of gliomas was
assessed by Spearman’s correlation. A p value < 0.05 was significant, and
the module highly correlated with clinical subtypes of gliomas was
selected for further analysis. To identify candidate hub genes for further
analysis, we calculated the correlation between individual gene and
clinical subtypes of gliomas (Gene Significance, GS), as well as the
correlation between individual genes and MEs (Module Membership, MM).
The candidate hub genes were screen out with MM > 0.8 and GS > 0.2 in
each target module as threshold.

Transcriptional regulatory analysis
Transcriptional Regulatory Relationships Unraveled by Sentence-based
Text mining (TRRUST, https://www.grnpedia.org/trrust/) was performed to
identify transcription regulators (TFs) that significantly targeted candidate
hub genes in each module (FDR < 0.05) [15]. Then the results were
visualized by Cytoscape.

Protein−protein interaction analysis and identification of hub
genes
The connectivity among candidate hub genes in turquoise module was
visualized by Cytoscape, and a connectivity weight > 0.2 was set as a
threshold. Meanwhile, the protein-protein interaction network of these
genes was analyzed by the STRING database (https://string-db.org/) and
graphed by Cytoscape. The MCODE plug based on Cytoscape was used to
identify core cluster genes in these two networks. Venn analysis was
performed to compare these results (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

Functional enrichment analysis
Functional enrichment analysis was performed by Metascape (http://
metascape.org) [16]. The protein-protein interaction network was analyzed
by the STRING database (https://string-db.org/) and presented by
Cytoscape. The software GSEA downloaded from Broad Institute was used
for analysis and only gene sets with p.adjust < 0.05 were considered as
significant. The results were presented by ‘ggplot2’, ‘enrichplot’, and
‘clusterProfiler’ packages in R.

Construction of a prognostic risk score model
A univariate Cox proportional regression analysis was performed to
calculate the association between the expression of 14 hub genes and
overall survival (OS) in the CGGA dataset. Next, we performed the
LASSO method and selected five prognostic genes to construct a
prognostic risk model. Finally, the following formula was used to
calculate the risk score for each patient in CGGA training and TCGA
validation datasets.

Riskscore ¼
Xn

i¼1

exprgeneðiÞ ´CoeffgeneðiÞ

G-CIMP prediction based on expression data
We used TCGA and CGGA mRNA expression datasets to predict the glioma-
CpG island methylator phenotype (G-CIMP) according to previous studies
[17, 18].

Cell-cycle scoring and regression
We performed Seurat to compute cell-cycle phase based on cell-cycle
markers expression in the TCGA and CGGA datasets [19]. The chi-square
test was performed to calculate the difference between the high-risk and
low-risk groups.

Correlation of tumor metastasis with risk score in glioma
The local invasion and intravasation scores in each glioma sample were
quantified by the single-sample gene-set enrichment analysis (ssGSEA)
[20]. The Spearman correlation was performed to evaluate the correlation
of ssGSEA score and tumor metastasis.

Cell types enrichment analysis
Estimation of STromal and Immune cells in MAlignant Tumours using
Expression data (ESTIMATE) have been described in our previous study
[21]. CIBERSORT (http://cibersort.stanford.edu) method was performed to
characterize cell composition based on gene expression profiles in
previous study [21, 22]. The relationship between risk score and cell
infiltration fraction in glioma was analyzed by Spearman correlation
analysis and graphed by R package ‘ggplot2’. The correlation between risk
score and different factors was calculated by Pearson analysis and
presented by R package ‘corrplot’.

PD-L1 protein and Tumor Immune Dysfunction and Exclusion
(TIDE) analysis
The protein expression of PD-L1 was detected by the reverse-phase
protein array (RPPA) analysis and obtained from The Cancer Proteome
Atlas (TCPA, http://tcpaportal.org). TIDE is a computational method to
predict ICB clinical response based on pre-treatment tumor profiles. This
model is based on two mechanisms of tumor immune evasion: the
induction of T-cell dysfunction in tumors with high infiltration of cytotoxic
T lymphocytes (CTL) and the prevention of T-cell infiltration in tumors with
low CTL level [23]. The TIDE score and ICB response of patients with glioma
in the CGGA dataset were calculated by TIDE web (http://tide.dfci.harvard.
edu) after uploading the scaled transcriptome profiles.

Immunohistochemistry (IHC) staining
We performed IHC in paraffin-embedded samples obtained from the CGGA
sample bank. IHC analysis with AIF1 (Proteintech, 10904-1-AP, 1:500), TNF
(Abcam, ab270264,1:150), CD163 (Abcam, ab189915, 1:500), and TIM3
(Abcam, ab241332, 1:500) antibodies were conducted according to our
previous procedures [24, 25]. The protein expression levels were evaluated
independently by two experienced pathologists and the scoring criteria
refer to our published article [25].
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Statistical analysis
Student’s t test was performed to calculate the significance of differences
between patients in two groups. Fisher test was performed to detect the
difference of genomic alterations between the high-risk and low-risk
groups. Kaplan−Meier survival analysis and the log-rank test were
performed to assess the statistical significance between the high-risk
and low-risk groups using R language packages (survival, survminer, and
ggplot2). The receiver operating characteristic (ROC) curve analysis was
used to evaluate the predictive accuracy and sensitivity of our prognostic
model within 1-year, 3-year, and 5-year of OS by ‘pROC’ package in R. The

independent prognostic factors were identified by univariate and multi-
variate Cox regression analysis, and presented by ‘forestplot’ package in R.
An individualized prediction model was constructed using R language
packages (survival and rms). p < 0.05 was considered statistically significant.

RESULTS
Construction of a prognostic immune signature in glioma
We obtained RNA expression data of 325 glioma samples in CGGA
database. First, the genes are ranked according to their variance of

Fig. 1 Construction of a prognostic risk signature for OS by WGCNA and LASSO analysis. A Heatmap shows correlation between the gene
modules and clinical traits. Each cell contains the corresponding correlation and p value. B The Module Membership (MM) versus Gene
Significance (GS) scatterplot for GBM with IDH wildtype in turquoise or yellow module. Each dot represents a gene, and the red lines were set
as a threshold for Module Membership > 0.8 and Gene Significance > 0.2. C The proportion of candidate hub genes in the turquoise and
yellow modules. D GO (BP) and KEGG enrichment annotation of candidate hub genes in turquoise or yellow module. GO gene ontology, BP
biological process. In the network diagram, the roman number residing in each circle represents a functional term; values on each line
indicate number of overlap genes between terms. E Key regulated upstream transcription regulators (TFs) of candidate hub genes in module
by TRRUST. F Hub genes were selected based on overlap between co-expression network and STRING analysis. G Univariate Cox regression
results for the 14 genes in the CGGA dataset. H Coefficient values of the five selected genes by LASSO.
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gene expression in the samples, and the top 5000 genes were
selected for further analysis. We selected β= 14 (scale-free R2=
0.894) as the soft thresholding power to build a scale-free network
(Supplementary Fig. S2A, B). According to their expression pattern,
they were divided into four modules by average linkage clustering
(Supplementary Fig. S2C, D). After combining clinical traits, we
found that IDH-wildtype GBM positively correlated with turquoise
(R= 0.63, p= 3e−37) and yellow (R= 0.37, p= 1e−11) modules,
but negatively correlated with blue (R=−0.52, p= 1e−23) and
brown (R=−0.38, p= 1e−12) modules (Fig. 1A).
According to the threshold (MM > 0.8 and GS > 0.2), a total of

290 and 141 candidate hub genes were obtained in turquoise and
yellow modules, respectively (Fig. 1B, C). Two hundred and ninety
candidate hub genes in turquoise module were enriched in
‘inflammatory response’, ‘immune effector process’, ‘wound healing’,
and ‘adaptive immune response’. The enriched pathways were
‘complement and coagulation cascades’, ‘focal adhesion’, and
‘leukocyte transendothelial migration’ (Fig. 1D). Meanwhile, 141
candidate hub genes in yellow module were enriched in cell-cycle
and cell-division related gene ontology (GO) terms. The enriched
KEGG pathways were ‘cell cycle’, ‘p53 signaling pathway’, and ‘DNA
replication’ (Fig. 1D). These results indicate that these two co-
expression modules play distinct roles in the genesis or
progression of glioma.
Then, we explored upstream TFs of candidate hub genes via the

TRRUST database. A total of 50 and 31 TFs were involved in
turquoise and yellow modules, respectively (Supplementary
Tables S1, S2). Only two TFs (SP1 and PTTG1) overlapped. The
top five TFs for yellow module were E2F1, TP53, E2F4, YBX1, and
E2F3. These targets included CCNB1, CDK1, CHEK1, CCNA2, and
CDC6, which are important cell-cycle and cell division genes (Fig.
1E). Meanwhile, the top five TFs for turquoise module were NFKB1,
RELA, SP1, STAT1, and STAT3, which are regulators of known
immune-related genes, such as TLR2, CD14, CD58, TGFB1 (Fig. 1E).

These results indicate that two co-expression modules regulated
by different TFs in glioma.
Due to the highest correlation between turquoise module and

GBM with IDH wildtype, we displayed a highly connected network
in this module based on gene co-expression in gliomas. A cut-off
of reliability above 0.2 was applied to identify central nodes, and a
gene co-expression network complied with 66 nodes and 628
edges was built up and visualized via Cytoscape (Supplementary
Fig. S3A). A highly interconnected subnetwork with 24 nodes and
260 edges was identified by MCODE [26] (Supplementary Fig.
S3B). Then, the connectivity of these 66 genes was revalidated by
STRING database, which supplied functional and physical protein
associations (Supplementary Fig. S3C), and three clusters have
obtained from this network by MCODE (Supplementary Fig. S3D).
Then, 14 genes were selected in both networks and designated as
hub genes by VENN analysis (Fig. 1F). Hub genes were significantly
related with ‘leukocyte mediated immunity’, ‘immune system
process’, and ‘myeloid leukocyte’ activation by STRING and
Metascape (Supplementary Fig. S3E, F).
We identified that 14 hub genes were statistically related with OS

of glioma patients in the CGGA dataset (Fig. 1G). Then, LASSO
regression algorithm was adopted to construct a prognostic
immune signature, including TNFRSF1B, LAIR1, TYROBP, VAMP8, and
FCGR2A (Fig. 1H). In both CGGA and TCGA datasets, these genes
were associated with gliomas prognosis (Fig. 1G and Supplementary
Fig. S4), which is consistent with previous reports that these genes
can overenhance or attenuate tumor growth [27–31].

Association of the risk score with clinical features and
malignant phenotype in glioma
According to the risk score, the patients were arranged and the
landscape of corresponding pathological characteristic was shown
in Fig. 2A. The results indicated that risk scores were significantly
higher in elder patients, low Karnofsky Performance Score (KPS),

Fig. 2 Relationship between the signature risk score and the pathological characteristics in the CGGA dataset. A The distribution of
clinical and pathological characteristics arranged by the increasing risk score. B, C Distribution of risk score in patients stratified by TCGA
subtype and G-CIMP subtype. D The relationship between risk score and cell-cycle proportion in the CGGA dataset. E The correlation between
risk score and invasion index was analyzed by Pearson correlation analysis. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; n.s. no
significance.

Y. Zhang et al.

4

Cell Death and Disease         (2021) 12:1140 



high WHO grade, IDH wildtype, without 1p/19q codeletion, MGMT
promoter unmethylation, EGFR amplification patients in the CGGA
dataset. Due to larger sample size, a more significant results were
shown in the TCGA dataset (Supplementary Fig. S5A). Gain of chr7
and loss of chr10, co-gain of chr19/20 are gathered in patients
with high-risk score in the TCGA dataset (Supplementary Fig. S5A).
Furthermore, the risk score is higher in mesenchymal subtype (Fig.
2B and Supplementary Fig. S5B) and non-G-CIMP subtype (Fig. 2C
and Supplementary Fig. S5C) in the CGGA and TCGA datasets.
Compared to the low-risk group, the high-risk group recruited a
higher proportion of cases in S (CGGA, Fig. 2D) or G2/M phase
(TCGA, Supplementary Fig. S4D), which predict strong cell
proliferative activity in the high-risk group. Moreover, the risk
score showed a significantly positive correlation with invasion
score, especially the intravasation score (Fig. 2E and Supplemen-
tary Fig. S5E). Collectively, these results indicate that the risk score
of five-gene signature is closely related with the clinical features
and malignant phenotype of glioma.

Somatic variations in the two risk groups
To investigate the difference between the high- and low-risk
groups at the genomic level, we analyzed copy number
variation (CNV) and somatic mutation from the CGGA and
TCGA datasets. Low-risk group had a high frequent deletion in
MSH4, FUBP1, JUN, NRAS, CIC, and CDC20 in the CGGA dataset
(Fig. 3A). In contrast, the high-risk group showed more
frequently deleted regions in CDKN2A, CDKN2B, PTEN, and
amplification in PDGFRA. The low-risk group presented a high
mutation frequency in IDH1, CIC, and NOTCH1. While the high-
risk group enriched in TP53 mutation. Furthermore, a more
significant result was showed in the TCGA dataset (Fig. 3B),
which contained a large sample size. High occurrence of EGFR
mutation, EGFR and MET amplification were gathered in
patients with high-risk score in the TCGA dataset. ATRX
mutations are enriched in patients with low-risk score. These
findings indicate that gliomas with different risk scores show
different genomic alterations.

Fig. 3 Comparison of genomic alterations between the high-risk and low-risk group in the CGGA and TCGA datasets. Differential somatic
mutations and copy number variations analyses within two risk groups (Fisher test) in CGGA (A) and TCGA (B) datasets. CNV copy number
variations; N.S., no significance.
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The immune-related risk score signature served as an
independent prognostic factor
Using the median risk score as a threshold, patients were
distributed to high- and low-risk group in the CGGA training
dataset. Patients with high-risk score had a higher mortality rate
than those with low-risk score (Fig. 4A). LGG patients with the low-
risk group showed the highest survival rates, whereas GBM
patients with the high-risk group showed the lowest survival rates
(p < 0.0001, Fig. 4B). When IDH mutation status, 1p/19q codeletion
status and risk score were considered, patients within IDH
mutation and 1p/19q codeletion in the low-risk group showed
the best outcomes, whereas patients with IDH-wildtype in the
high-risk group presented the worst prognosis (p < 0.0001,

Fig. 4C). As shown in Fig. 4D, the area under the curve (AUC)
reached 0.729 at 1 year, 0.790 at 3 years, and 0.790 at 5 years. In
univariate Cox regression analysis, risk score was statistically
related with OS in CGGA (HR= 3.10, p= 7.14E−24, Fig. 4E). After
adjusting for other confounding factors, the risk score still
remained an independent prognostic indicator for OS in patients
with gliomas (CGGA: HR= 2.79, p= 3.77E−06, Fig. 4E). The similar
results were validated in the TCGA (Supplementary Fig. S6A−E)
and CGGA693 (Supplementary Fig. S7A−E) datasets. It indicates
that risk score is an independent prognostic factor for OS.
Finally, the independent prognostic indicators for OS in

multivariable Cox regression were selected and integrated to
construct a prediction model. The risk score contributed the risk

Fig. 4 The prognostic value of the five-gene prognostic signature in CGGA dataset. A The risk score distribution (top) and survival status
distribution (bottom) for glioma patients. B Kaplan–Meier survival curves for patients with glioma, classified into four groups based on grade
and risk scores. C Kaplan–Meier survival curves for patients with glioma, classified by molecular pathological characteristic and risk scores.
D ROC curves verified the prognostic performance of the risk score. E Univariate and multivariate Cox regression analyses of the association
between clinic pathological factors and OS of patients. F Construction of a nomogram for survival prediction. G The calibration curve for the
nomogram model. Three colored lines (blue, red and black) represent the performance of the nomogram. A closer fit to the diagonal gray line
indicates a better estimation. ****p < 0.0001; ***p < 0.001; **p < 0.01.
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points from 0 to 100 in the CGGA dataset (Fig. 4F). The C-index for
the prediction nomogram was 0.793 in the CGGA dataset. The
calibration chart showed excellent agreement between the
predictions and observations of the 1-year, 3-year, and 5-year
probability of OS (Fig. 4G). It means that the signature is highly
accurate.

The risk signature is strongly associated with immune
functions in glioma
The Pearson correlation analysis was used to identify genes that
were strongly positively (R > 0.7, p < 0.0001) or negatively (R <
−0.6, p < 0.0001) correlated with the risk score in the CGGA and
TCGA datasets. Totally, 685 and 1063 genes were separately
identified in these two datasets (Fig. 5A and Supplementary Fig.
S8A). By Metascape analysis, positively correlated genes were
mainly enriched in the biological processes of ‘myeloid leukocyte
activation’, ‘cytokine-mediated signaling pathway’, ‘activation of
immune response’, and ‘lymphocyte activation’ (Fig. 5B and
Supplementary Fig. S8B). While negatively correlated genes were
involved in ‘chemical synaptic transmission’, ‘synapse organization’,
and ‘neuronal system’ (Supplementary Fig. S9). In addition to
interferon response and inflammatory response (Supplementary
Table S3), the high-risk score group also enriched in ‘IL6/JAK/
STAT3 signaling’, ‘TNFα signaling via NFκB’ and ‘epithelial

mesenchymal transition’ in both CGGA and TCGA datasets by GSEA
(Fig. 5C and Supplementary Fig. S8C). These results suggest that
the risk score could be a good indicator of the immune response
in glioma. Lastly, we performed a correlation analysis on the two
datasets. Except for the term ‘T cell mediated immune response to
tumor cell’, almost all immune functions are positively correlated
with the risk score (Fig. 5D and Supplementary Fig. S8D).

The high-risk score of signature predicate an enrichment of
macrophages in glioma
To investigate the correlation between risk score and the TME, we
first calculated the stromal and immune scores of each case in the
CGGA and TCGA datasets. The results showed that both stromal
and immune score were positively correlated with the risk score
(Fig. 6A and Supplementary Fig. S10A). The tumor purity was
negatively related with the risk score (Fig. 6A and Supplementary
Fig. S10A). These results suggested that the proportion of
infiltrating immune cells in gliomas increased along with the risk
score increasing. Then, eight kinds of tumor-infiltrating immune
cells (TICs) were significantly correlated with the risk score, and
macrophages showed the strongest correlation (Fig. 6B, Supple-
mentary Fig. S10B and Supplementary Table S4). These findings
led us to speculate the relationship between our gene signature
and glioma infiltrated macrophages, which promoted immuno-
suppression. An open single-cell sequencing dataset of

Fig. 5 GO and GSEA annotation of genes associated with risk score in the CGGA dataset. A Heatmap of genes that are positively and
negatively associated with risk score. B Functional enrichment of the positive related genes with the risk score by Metascape. C Enriched gene
sets in HALLMARK collection by samples with high-risk score. D The correlation coefficient between risk score and different immune function
scores. IMMU9 represents a negative correlation and other IMMNUs represent a positive correlation.
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glioblastomas demonstrated that these genes were highly
expressed in macrophages, compared to other cells (Fig. 6C).
Furthermore, general microglia/macrophage marker (AIF1) was
significant positively correlated with risk score. In details, specific
markers were selected to represent the polarization status of
GAMs in glioma [32]. The correlation between risk score and anti-
tumor state markers is inconsistent, but the risk score is positively
correlated with pro-tumorigenic state markers (Fig. 6D and
Supplementary Fig. S10C). Except TNF (R= 0.24, p= 0.46, n= 12,
Fig. 6F), risk scores were significantly positively correlated with
AIF1 (R= 0.43, p= 0.046, n= 22, Fig. 6E) and CD163 (R= 0.68, p=
0.0004, n= 23, Fig. 6G) by IHC assay. Taken together, these results
indicated that samples with high-risk score showed an enrichment
of GAMs in glioma, especially GAMs in pro-tumorigenic
phenotype.

The risk signature is associated with immune checkpoint and
ICB response
Although ICB combination therapy has been shown to be effective
in preclinical models of glioma, the efficacy in patient needs to be
further verified [33]. Here, we first explored the relationship
between the risk score of signature and the well-studied
checkpoints. The results show that PD-L1, PD-L2 and TIM3 were
positively correlated with the risk score (Fig. 7A). In addition, we
also found that PD-L1 protein levels were higher in LGG and GBM
patients with high-risk score from the TCPA database (Fig. 7B), and
the expression of TIM3 protein was positively correlated with risk
scores verified by the IHC assay (R= 0.62, p= 0.0026, n= 21,

Fig. 7C). These results present a partial relationship between the
risk signature and checkpoint expression. In a previous dataset
[34], there was no difference in the distribution of PD-1 expression
between anti-PD-1 responders and non-responders before treat-
ment with PD-1 inhibitors in GBM patients (Wilcoxon p= 0.58,
Fig. 7D). Here, we investigate the relationship of patient’s response
to ICB and risk score in the CGGA dataset by applying the Tumor
Immune Dysfunction and Exclusion (TIDE) [23]. As results, patients
in the low-risk score group (50.6%, 82/162) were more likely to
respond to ICB therapy than those in the high-risk score group
(34.4%, 56/163) (Fisher p= 0.0035, Fig. 7E). In addition, we found
more frequent PTEN loss (Fisher p= 0.0048, Fig. 7F) and higher
PI3K-Akt pathway activity (p < 0.0001, Fig. 7G) in high-risk patients,
consistent with these molecular events being identified as not
benefiting from PD1 inhibitors [34]. Zhao et al. [34] have identified
a series of gene sets differentially enriched in responders versus
non-responders before anti-PD-1 immunotherapy. By ssGSEA, we
found that these gene sets also showed significant differences
between the low-risk and high-risk groups (Fig. 7H). In summary,
these results indicated that glioma with the high-risk group might
be less responsive to ICB therapy, especially anti-PD-1
immunotherapy.

DISCUSSION
In this study, we found the unique gene signature in each subtype
of glioma, which is based on a large-scale gene expression profile
and integrated analysis. Turquoise and yellow modules were

Fig. 6 The relationship between risk score and tumor microenvironment in the CGGA dataset. A Scatter plots showed the relationship
between stroma score, immune score, or tumor purity and risk score. B The correlation between immune infiltrating cells and the risk score.
****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, no significance. C Expression of five genes in single cells based on the GSE131928
database. D The correlation coefficient between risk score and glioma-associated microglia/macrophages markers. E−G The distribution of
AIF1 (E), TNF (F) and CD163 (G) protein expression in the high- and low-risk groups by IHC staining. Scale bar, 50 μm.
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significantly positive correlated with GBM, IDH-wildtype, which is
the most malignant subtype in glioma (Fig. 1A). The biological
function and upstream TFs of these modules are significantly
distinct. Genes in turquoise module participated in immune
process and mainly regulated by NFKB1, RELA, SP1, STAT1, and
STAT3 (Fig. 1D, E). Activation of NF-κB induced transcription of
cytokines, cell cycle, apoptosis, and angiogenesis factors, which
are drivers in tumor-promoting environment [35]. STAT3 is
constitutively activated both in tumor cells and TICs. Activated
STAT3 not only triggers glioma progression through affecting cell
proliferation, apoptosis, invasion, and angiogenesis, but also
functions as an inducer of immune evasion within GBM
microenvironment [36]. Genes in yellow module are involved in
cell cycle and cell division and regulated by E2Fs and TP53 (Fig.
1D, E). The CDKs/RB/E2Fs signaling pathway is a major transcrip-
tional machinery of cell-cycle-dependent gene expression [37].
Owing to inactivation of RB, amplification of CDKs or deletion of
CDK inhibitors, E2Fs activity is high in virtually all cancers [37].
Inactivation of ARF/MDM2/TP53 signaling pathway occurred in
87% GBM patients, including deletion or mutation of ARF,
amplifications of MDM2 or MDM4, deletion or mutation of TP53

[38]. Our results verified that immune response and cell-cycle
dysfunction are two core deregulated processes in the pathogen-
esis of glioma and regulated by distinct upstream pathways.
By comprehensive bioinformatic analysis, a five-immune gene

signature, including TNFRSF1B, LAIR1, TYROBP, VAMP8, and
FCGR2A, was constructed (Fig. 1F–H). TNFRSF1B, a receptor of
TNF and lymphotoxia-α, can directly promote tumor cell
proliferation and activate immunosuppressive cells [27]. LAIR1 is
an immune inhibitory receptor, plays a negative role in solid
tumor growth, and the activation of LAIR1 on immune cells may
lead to suppression of anti-tumor immune responses [28]. TYROBP
is a transmembrane signaling polypeptide and triggers receptors
on the immune cells’ surface [39]. TYROBP expression was
significantly higher in the LGG tissues compared to the normal
tissues and associated with worse prognosis and poor clinic
pathological parameters in glioma [29]. VAMP8 is a SNARE protein,
which function as an oncogene by promoting cell proliferation
and therapeutic resistance in glioma [30]. FCGR2A is a cell surface
receptor on phagocytic cells, involved in the process of
phagocytosis and clearance of immune complexes [40]. Silencing
FCGR2A expression suppressed glioma proliferation, migration and

Fig. 7 The relationship between risk score and tumor immune response. A The correlation coefficient between risk score and immune
checkpoints. B The distribution of PD-L1 protein level in the high- and low-risk groups based on the TCPA datasets. **, p < 0.01. C The
distribution of TIM3 protein level in the high- and low-risk groups by IHC staining. Scale bar, 50 μm. D The distribution of PD-1 expression in
GBM patients before treatment with PD-1 inhibitors. **, p < 0.01. E The TIDE score and response results to immunotherapy of patients with
glioma. F Fraction of PTEN loss in the low-risk group versus high-risk group. G GSEA enrichment score of gene-set KIM_PTEN_TARGETS_UP for
the low-risk group versus high-risk group. ****, p < 0.0001. H Heatmap showing the gene sets differentially enriched in the low-risk group
versus high-risk group.
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invasion [31]. Collectively, the function of these genes in tumors,
especially VAMP8 and FCGR2A in gliomas, has been fully
demonstrated.
The high-risk score showed an enrichment of well-known

malignant features, which indicated that the high-risk score may
predict poor outcome of glioma patients (Fig. 2). As expected, the
risk score of our signature was significantly related to OS of glioma
patients in three independent datasets including 1619 cases (Fig. 4,
and Supplementary Figs. S6, S7). Our five-immune gene signature
showed a favorable efficiency in stratified subgroups, which are
divided by WHO grade, IDH and 1p/19q status. In addition, after
adjusting for other confounding factors, the risk score of signature
is an independent predictor of OS in patients with glioma. These
indicated that the risk score showed good predictions for the
outcome of different datasets and multiple subgroups.
The GO analysis showed that positive genes related with risk

score were enriched in immune-related responses (Fig. 5B), which
play decisive roles in different stages of tumor development and
affect the response to therapy [41]. The GSEA analysis has showed
that NF-κB signaling, Jak-Stat3 signaling, and epithelial-
mesenchymal transitions (EMT) are correlated with the high-risk
score group (Fig. 5C), which are critical mediators of tumor
invasion and immune evasion. The risk score of our immune
signature is positively correlated with almost all immune functions
(Fig. 5D). Taken together, these results confirmed the important
role of our signature in immune response and suggested that
genes in signature may affect the glioma microenvironment.
Then, a higher complexity of immune cells was showed in high-

risk patients, and the risk score was significantly positively
correlated with the abundance of macrophages (Fig. 6B). In
addition, we found that genes in our signature are highly
expressed in macrophages by an open single-cell sequencing
dataset of GBM (Fig. 6C), which may partly explain the correlation
between our signature and macrophage infiltration in glioma. By
correlation analysis and IHC assay (Fig. 6D–G), we further
demonstrated that patients with a high-risk score showed an
enrichment of macrophage in a tumor-supportive state, but not
an anti-tumor state.
Immune checkpoint inhibitors therapy, especially those target-

ing PD-1/PD-L1 and CTLA-4, have showed an efficacy in several
tumor types. However, less than 10% of GBM patients show long-
term response. We wondered that whether the score of our
immune signature can predict the glioma patient response to ICB
therapy. First, the risk score of signature showed a positive
correlation with immune checkpoints (Fig. 7A), especially PD-L1
[42], PD-L2 [43], TIM3 [44]. By TCPA and IHC assay, we verified that
the high-risk group showed a higher expression of PD-L1 and TIM3
protein (Fig. 7B, C). These results indicated that high-risk score
might predict an immune suppressive environment in tumor. In
current research community in glioma, however, there are no
markers that can be used to predict responses to immunotherapy
of glioma patients. In this study, we used TIDE algorithm to predict
the possibility of patient’s response to ICB therapy. As result, the
low-risk group is more likely to respond to ICB therapy (Fig. 7E).
With high frequency of PTEN deletions and PI3K-AKT pathway
activity (Fig. 7F, G), the high-risk group may not respond to PD-1
inhibitors. Consistent with previous study, glioblastoma revealed a
significant enrichment of PTEN mutations associated with immu-
nosuppressive expression signatures in PD-1 inhibitors non-
responders [34]. These results indicated that our signature can
be used to predict the response of glioma patients after receiving
ICB treatment, especially anti-PD-1 immunotherapy, thereby
further broadening the scope of application of this signature.
In summary, we constructed a gene co-expression network of

glioma, and analyzed the functional features and upstream TFs of
these modules. An immune gene signature was constructed and
showed a favorable efficiency in predicting prognosis of patients
with glioma. High-risk score of this signature predicted an

enrichment of macrophages and less response to ICB therapy in
glioma. Notably, our five-immune gene signature may help to
develop personalized treatment plans or estimate whether
patients can benefit from ICB treatment, especially anti-PD-1
immunotherapy.
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