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The BH3-only protein NOXA serves as an independent predictor
of breast cancer patient survival and defines susceptibility to
microtubule targeting agents
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Breast cancer (BC) treatment frequently involves microtubule-targeting agents (MTAs), such as paclitaxel, that arrest cells in mitosis.
Sensitivity to MTAs is defined by a subset of pro- and anti-apoptotic BCL2 family proteins controlling mitochondrial apoptosis. Here,
we aimed to determine their prognostic value in primary tumour samples from 92 BC patients. Our analysis identified high NOXA/
PMAIP mRNA expression levels as an independent prognostic marker for improved relapse-free survival (RFS) and overall survival
(OS) in multivariate analysis in BC patients, independent of their molecular subtype. Analysis of available TCGA datasets of 1060 BC
patients confirmed our results and added a clear predictive value of NOXA mRNA levels for patients who received MTA-based
therapy. In this TCGA cohort, 122 patients received MTA-treatment and high NOXA mRNA levels correlated with their progression-
free interval (PFI) and OS. Our follow-up analyses in a panel of BC cell lines of different molecular subtypes identified NOXA protein
expression as a key determinant of paclitaxel sensitivity in triple-negative breast cancer (TNBC) cells. Moreover, we noted highest
additive effects between paclitaxel and chemical inhibition of BCLX, but not BCL2 or MCL1, documenting dependence of TNBC cells
on BCLX for survival and paclitaxel sensitivity defined by NOXA expression levels.
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INTRODUCTION
Breast cancer (BC) is with 13.3% the most common type of cancer
in women [1]. BC can be classified into three main subfamilies
according to the presence or absence of the hormone receptors
for oestrogen (ER) and progesterone (PR) and the human
epidermal growth factor receptor 2 (HER2) status: Luminal A/B
(about 40%, ER+/PR+/-/HER2-), HER2+ (10-15%, ER-/PR-/HER2+) and
those negative for all these marker, referred to as TNBC (15-20%,
ER-/PR-/HER2-). TNBC therapy involves aggressive chemotherapies
due to lack of clear molecular targets [2, 3]. PARP1 inhibitors,
Olaparib and Talazobarib, and the immune checkpoint inhibitor
Atezolizumab, targeting PD-L1, in combination with the micro-
tubule targeting agent (MTA) paclitaxel are novel treatment
strategies used, reviewed by Lyons [4].
MTAs, like vincristine or paclitaxel, inhibit microtubule dynamics

[5]. This eventually activates the spindle assembly checkpoint
(SAC) and triggers mitotic (M)-arrest when applied in tissue
culture, eventually leading to apoptosis [6]. Paclitaxel shows
success in treating metastatic breast and ovarian cancer, as well as
various leukaemias [5, 7]. Although MTAs are largely successful,
resistance and neurotoxicity limit their broader application [8].
One way to evade mitotic cell death (MCD) is to overexpress anti-
apoptotic BCL2 proteins [9]. In BC, MCL1, BCL2 and BCLX are often

found amplified [10, 11], making them more resistant to different
types of therapeutics [12, 13], including paclitaxel [14]. MCD is a
desired outcome in cancer therapy, yet clinical efficacy also
involves alternative anti-proliferative and pro-inflammatory effects
[15]. Of note, tumour cells often manage to escape cell death in a
process called “mitotic slippage”, the premature exit from mitosis,
triggered by the gradual decay of cyclin B levels below a critical
threshold, allowing cell survival [16, 17].
We and others recently demonstrated that the molecular

mechanism underlying MCD depends on the activity of BH3-only
proteins, most notably BIM and NOXA, and the degradation of anti-
apoptotic MCL1 [18]. We could further demonstrate that NOXA
protein mediates the degradation of MCL1 during extended
M-arrest and that knockdown of NOXA leads to MCL1 stabilisation
and resistance to MTAs in HeLa cervical cancer and A549 lung
cancer cells [18]. In a follow-up study, we reported that the co-
degradation of NOXA/MCL1 complexes during extended M-arrest
requires the mitochondrial E3-ligase MARCH5 [19], suggesting that
its inhibition may help increase the efficacy of MTAs. Interestingly,
ablation of the mitochondrial GTPase DRP1, deregulating mitochon-
drial network dynamics, sensitizes epithelial cancer cells to MTA-
induced apoptosis [20]. Taken together, this places mitochondria at
the core of mitotic cell death regulation and MTA treatment success.
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Along this line, BH3 mimetics, inhibiting anti-apoptotic BCL2
proteins, are confirmed to be sufficient to prime cancer cells to
various chemotherapeutics, including paclitaxel [21]. BH3-
mimetics bypass the need for upstream inducers of BH3-only
proteins, such as p53 or PTEN, which are frequently impaired in
human cancers. The first valid prototype of a BH3-mimetic, ABT-
737, targeting BCL2, BCLX and BCLW, showed promising efficacy
in haematological malignancies [22]. However, several cancer
types are resistant to ABT-737, or its orally bioavailable successor,
Navitoclax (ABT-263), due to the overexpression of MCL1 [23].

ABT-199 (Venetoclax), solely targeting BCL2 within the sub-
nanomolar-range, shows clinical efficacy in CLL [24], is heavily
explored in clinical trials and shows promising results in ER+ BC
patient-derived xenotransplants (PDX) [25]. Wehi-539 and its
successors, A-1155463 and A-1331852, are targeting BCLX within
sub-nanomolar-range [26] but cause thrombocytopenia, limiting
clinical application [27, 28]. More recently, a highly specific MCL1
inhibitor, S63845, was shown to have potent anti-tumour activity
as a single-agent in preclinical leukaemia models [29], as well as in
combination with ABT-199 in BC PDX studies [30].
Here, we tested the predictive value of BCL2 family expression levels

for BC patient survival in a patient cohort with detailed clinical follow-
up and investigated the biological significance of the NOXA/MCL1 axis
for MCD in BC cell lines exposed to paclitaxel and BH3 mimetics.

RESULTS
High NOXA/PMAIP mRNA expression predicts superior survival
of BC patients receiving MTA-based therapy
We investigated the mRNA expression of pro-apoptotic effectors
(BAX, BAK, BOK), BH3-only proteins previously involved in MTA-
induced cell death (BID, BIM, PUMA, NOXA) and anti-apoptotic
BCL2 family members (MCL1, BCL2, BCLX, BCLW, BCLB) within
fresh-frozen tissue samples of different molecular subtypes from
92 patients with primary BC. Our first analysis revealed significant
differences in relative mRNA levels between healthy and diseased
tissue for anti-apoptotic BCL2, BCLX/BCL2L1 and MCL1. Of note,
BCL2 expression was significantly lower in cancerous tissue
(Fig. 1A), while BCLX and MCL1 levels were found increased (Fig.
1B). Analysis of their pro-apoptotic counterparts, the BH3-only
proteins BID and NOXA, revealed a significant increase in mRNA
levels in cancerous compared to non-neoplastic tissue (Fig. 1B). In
contrast, PUMA and BIM/BCL2L11 levels and the effector proteins
BAX, BAK or BOK or the anti-apoptotic proteins BCLW and BCLB
were comparable (Fig. 1C). Pearson correlation analyses revealed
significant associations for the co-expression of MCL1 with PUMA
or BAX, as well as BCLW/BCL2L2 with PUMA or BAX. Amongst the
pro-death proteins, an interdependence was noted between BAX
and BAK or the BH3-only protein PUMA or BID with BAX (Suppl. Fig.
1A), suggesting co-regulation of gene expression.
When analysing clinical parameters, we confirmed previous

findings [25] by documenting high BCL2 mRNA expression in low-
grade and luminal A type BC patients still expressing HR (Suppl.
Table 1). Consistent with BCL2 being a target of HR signalling,
levels were generally higher in HR+ tumours (Suppl. Table 1). BCLX
expression correlated with the same parameters and was enriched
in HER2+ tumours but no longer associated with low tumour
grade. Neither MCL1 nor BCLW mRNA showed any correlation with
clinical parameters, but BCLW showed higher expression in large
tumours. Amongst the pro-apoptotic genes, expression of BID
associated with high tumour grade while NOXA was found higher
expressed in medullary carcinomas (Suppl. Table 1).
Performing ROC analyses to define the best cut-off to identify

significant patient survival differences across cancer subtypes
revealed a clear correlation between higher BCL2 expression levels
and a superior RFS. Higher levels of MCL1 correlated significantly
with a good OS in univariate analyses (Table 1). Of note, NOXA and
BOK expression showed a strong correlation with both RFS and
OS. While high NOXA expression was associated with superior
survival, strong BOK expression was associated with poor survival
(Table 1). Importantly, this correlation pattern for BOK and NOXA
was maintained when multivariate analyses were performed
(Table 2). Expression of BCL2 still correlated with RFS, while levels
of MCL1 correlated only with improved OS (Table 2). Notably,
these correlations were verified by analysing the TCGA database
containing expression data of 1060 BC patients; from those, 471
patients were treated with chemotherapy, from which 112
patients received MTAs (Fig. 2A–D). Strikingly, NOXA mRNA

Fig. 1 mRNA expression analysis of BCL2 family members in 10
non neoplastic and 92 neoplastic breast tissues. mRNA expression
of A BCL2 (p= 0.039), B BCLX (p= 0.035), MCL1 (p= 0.001), BID (p=
0.020) and NOXA (p= 0.002) and C PUMA, BIM, BAX, BAK, BOK,
BCLW and BCLB. Extreme values are marked with asterisks, outliers
with circles.
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expression levels correlated with OS and PFI within BC patients
from the TCGA dataset treated with MTA but no other type of
chemotherapy (Fig. 2E, F), showing its relevance and confirming
the predictive value of our data (Table 2). Selected patient samples
were also tested for NOXA protein levels, confirming a correlation
between mRNA and protein levels (Suppl. Fig. 1B). Within the
TCGA validation cohort, however, BOK expression levels no longer
correlated with survival (data not shown).

NOXA protein expression defines MTA-sensitivity in TNBC cell
lines
We further investigated the expression profile of NOXA and its
relevance for MTA-treatment in relation to other members of the

BCL2 protein family in more detail. Therefore, we chose eight
different BC cell lines, representing the three main subfamilies:
Luminal A/B (MCF-7, T47D and ZR-75-1), TNBC (HS-578-T, MDA-
MB-231, Cal-51 and BT20) and HER2+ (SKBR3) and analysed
protein expression levels of the most common pro-and anti-
apoptotic proteins.
The expression of BCL2, NOXA, BIM, BCLB and BOK differed

substantially amongst cell lines, whereas MCL1, BCLX, or BID
expression levels show less variability (Fig. 3A, B). The protein
expression of NOXA was highest in the TNBC cell lines, while BOK
was hardly detectable in this subset. MDA-MB-231, HS-578-T and
T47D also showed a slightly higher expression of BCLX than the
other BC cell lines (Fig. 3A), suggesting co-dependence on BCLX

Table 1. Univariate survival analysis of relapse free and overall survival of 92 patients with primary breast cancer diagnosed and treated at the
Medical University of Innsbruck, AT.

Variable Relapse-free survival Overall survival

Median, years
(95% CI)

P-value (logrank-
test)

Median, years
(95% CI)

P-value
(logrank-test)

Size T1 n.r. 0.150 n.r. 0.093

T2/3/4 8.09 (0.00–19.35) 10.44 (4.62–16.25)

LN Negative n.r. 0.112 n.r. 0.007

Positive n.r. 9.93 (6.35–13.50)

Tumour grade I n.r. 0.609 10.73 (8.69–12.78) 0.886

II 8.09 (n.r.) 14.64 (8.81–20.47)

III n.r. 16.91 (8.76–20.06)

Histology invasive lobular
breast cancer

n.r. 0.187 18.69 (5.86–31.53) 0.905

invasive ductal
breast cancer

8.09 (0.00–17.91) 12.15 (6.51–17.79)

medullary breast cancer n.r. 16.91 (5.20–28.62)

MP premenopausal 8.09 (0.00–19.69) 0.492 n.r 0.106

postmenopausal n.r. 10.73 (5.33–16.14)

HER2 neg n.r. 0.127 16.91 (12.90–20.92) 0.067

pos 5.23 (3.85–6.62) 7.25 (3.22–11.28)

ER neg n.r. 0.646 16.91 (5.01–28.81) 0.696

pos 19.23 (2.81–35.65) 14.64 (8.94–20.35)

PR neg n.r. 0.709 10.20 (0.00–22.45) 0.376

pos 19.23 (3.15–35.32) 14.64 (9.48–19.80)

MTA chemotherapy no 5.95 (0.00–16.78) 0.057 8.76 (6.60–10.92) 0.001

yes nr. n.r.

Radiation therapy no n.r. 0.316 14.64 (9.68–19.61) 0.870

yes 6.77 (0.00–17.27) 17.78 (9.74–25.83)

Endocrine therapy no n.r. 0.658 14.64 (4.38–24.90) 0.601

yes 8.09 (0.00–18.43) 12.15 (6.23–18.07)

BCL2 mRNA expression low (≤48th percentile) 4.72 (2.07–7.36) 0.003 8.59 (2.04–15.14) 0.117

high (>48th percentile) n.r. 15.46 (7.41–23.52)

MCL1mRNA expression low (≤53rd percentile) 5.95 (n.r.) 0.128 9.35 (7.11–11.59) 0.014

high (>53rd percentile) 19.23 (n.r.) 17.95 (n.r.)

NOXA mRNA
expression

low (≤12th percentile) 1.98 (1.44–2.52) <0.001 3.28 (1.64–4.92) <0.001

high (>12th percentile) n.r. 16.91 (13.39–20.43)

BOK mRNA expression low (≤34th percentile) n.r. 0.008 n.r. 0.010

high (>34th percentile) 5.95 (2.70–9.20) 10.44 (6.92–13.96)

Note: The significance level (P) was determined by log-rank test.
LN lymph node status, MP menopausal status, HER2 human epidermal growth factor receptor 2 status, ER oestrogen receptor status, PR progesterone receptor
status, HR hormone receptor status, n.r. not reached.
p values that are statistically significant are shown in bold.
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for survival. The strong expression of different BCL2 pro-survival
proteins suggests variable dependency for cell survival that does
not correlate with a particular molecular subtype, which we
investigated in the next step using selective BH3 mimetics.

BH3-mimetics efficiently enhance the effects of paclitaxel
All cell lines were treated either with fixed concentrations of
paclitaxel alone or in combination with a graded concentration of
the different BH3 mimetics, including ABT-737, ABT-199, S63845
and Wehi-539 (Suppl. Fig. 2), or vice versa (Suppl. Fig. 3). MTT-
assay was used as an indirect readout for cell viability. As
expected, the cell lines showed different sensitivity against
paclitaxel which did not correlate with a particular molecular
subtype. Two of the TNBC cell lines, Cal-51 and BT20, were most
sensitive to MTA-treatment. Their metabolic activity dropped to
about 31% and 25%, respectively, when treated with paclitaxel
alone (Fig. 4A). In contrast, the ER+ cell lines ZR-75-1 (83%), T47D
(58%) and MCF-7 (50%) showed reduced MTA-sensitivity (Fig. 4A).
A saturation using 50 nM paclitaxel was visible for all cell lines
tested. Higher concentrations did not reduce metabolic activity
any further, with the notable exception of the HS-578-T cells
(Suppl. Fig. 3).
Inhibiting the pro-survival BCL2 proteins with the different BH3

mimetics alone was mostly ineffective. The BCL2 inhibitor ABT-199
did not affect any cell line at the assayed concentrations (up to
5 µM), including MCF7 cells, which showed the highest BCL2
expression. Similar, the MCL1 inhibitor S63845 only affected MCF-
7 and SKBR3 cell lines (Suppl. Fig. 2). However, ABT-737, inhibiting
BCL2, BCLX and BCLW, and the BCLX inhibitor, Wehi-539, showed
activity in some cell lines when used at high doses as a single
agent (Fig. 4B–E). Notably, combining paclitaxel with BH3
mimetics led to additive effects, despite variations in their overall
potency (Fig. 4, Suppl. Figs. 2, 4, 5). In combination with the MCL1
inhibitor S63845, paclitaxel most potently reduced the metabolic
activity of MCF7 cells from 50% (paclitaxel) to 22% (paclitaxel+
S63845; Fig. 4A). The combination of paclitaxel with the BCL2
inhibitor ABT-199 had only a mild effect on HS-578-T or MCF-7
cells despite their high BCL2 levels. (Fig. 4A, Suppl. Figs. 2, 4, 5).
Potent effects on all cell lines tested were consistently seen

when paclitaxel was combined with ABT-737, having the most
substantial impact on the TNBC cell lines HS-578-T and MDA-MB-
231. Their metabolic activity was further reduced on average by
27% and 25%, respectively, in the combination setting (Fig. 4A).

This finding points towards a critical role for BCLX for cell survival
after paclitaxel treatment. Consistently, the most pronounced
effects were seen using paclitaxel together with the selective BCLX
inhibitor, Wehi-539. This inhibitor further decreased metabolic
activity by 33% and 49% in the HS-578-T and MDA-MB-231,
respectively (Fig. 4). An increase of the paclitaxel concentration to
500 nM combined with Wehi-539 eliminated all viable MDA-MB-
231 cells (Suppl. Fig. 3A).
To optimise the effect between paclitaxel and BH3 mimetics, we

chose the estimated LD50 concentration of paclitaxel and titrated
the different BH3 mimetics. Only inhibition of BCLX, by using ABT-
737 or Wehi-539, showed effects as single agents at the highest
drug concentration used, i.e., 5 µM. (Fig. 4B–E, Suppl. Figs. 2, 4, 5).
An additive effect was best seen in the TNBC cell lines, identifying
BCLX as their primary survival factor that, together with the NOXA/
MCL1 axis, may define responsiveness to MTAs.

The NOXA/MCL1 axis controls paclitaxel-induced cell death in
TNBC cell lines
We could previously show that NOXA driven degradation of MCL1
during extended M-arrest promotes cell death [18]. This may
explain why chemical inhibition of MCL1 had little effect on
paclitaxel sensitivity, as it is automatically degraded upon
paclitaxel treatment. We chose the TNBC cell lines HS-578-T,
MDA-MB-231 and Cal-51 to analyse the relevance of the NOXA/
MCL1 axis for MCD as they showed the strongest NOXA
expression. Of note, while MCL1 levels were comparable in these
cell lines, NOXA expression appears graded, with the MDA-MB-231
cell line having the highest, followed by HS-578-T and the Cal-51
showing the lowest NOXA levels (Fig. 3).
All three cell lines were synchronised with a double-thymidine

arrest and released into paclitaxel-containing media to induce
prolonged M-arrest. Mitotic shake off was used to enrich cells
arrested in mitosis. CDK1-mediated phosphorylation of CDC27 in
mitosis, a component of the anaphase-promoting complex (APC),
validated the synchronisation procedure (Fig. 5). We observed that
MCL1 and NOXA are co-degraded during extended M-arrest in all
three TNBC cell lines. Overall, the NOXA levels followed MCL1
expression and peaked in G2/M before being co-degraded (Fig. 5)
The reduction of MCL1/NOXA levels correlated well with

apoptosis onset, as monitored by caspase-mediated cleavage of
PARP1. Cal-51 cells showed the strongest PARP1 cleavage during
extended M-arrest, followed by HS-578-T cells. In strong contrast,

Table 2. Multivariate Cox-regression analysis of relapse free survival and overall survival of 92 patients with primary breast cancer diagnosed and
treated at the Medical University of Innsbruck, AT.

Relapse-free survival Overall survival

Variable HR of relapse (95% CI) P-value HR of death (95% CI) P-value

Size T1 vs. T2/3/4 1.63 (0.66–4.02) 0.289 1.49 (0.60–3.69) 0.386

LN neg. vs. pos. 1.79 (0.75–4.29) 0.193 2.91 (1.17–7.24) 0.022

Tumour grade grade I vs. grade II/III 1.94 (0.42–8.90) 0.394 1.02 (0.34–3.10) 0.975

MP pre vs. post 0.63 (0.34–1.19) 0.157 1.35 (0.70–2.62) 0.369

HR neg. vs. pos. 0.87 (0.42–1.80) 0.709 0.80 (0.42–1.54) 0.507

HER2 neg. vs. pos. 1.47 (0.74–2.92) 0.269 1.76 (0.91–3.40) 0.091

MTA chemotherapy no vs. yes 2.00 (0.95–4.21) 0.067 3.31 (1.35–8.16) 0.009

BCL2 mRNA expression Low vs. high (<or>48th percentile) 0.31 (0.15–0.66) 0.002 — —

MCL1 mRNA expression Low vs. high (<or>53rd percentile) — — 0.41 (0.22–0.79) 0.008

NOXA mRNA expression Low vs. high (<or>12th percentile) 0.14 (0.06–0.32) <0.001 0.15 (0.06–0.38) <0.001

BOK mRNA expression Low vs. high (<or>34th percentile) 4.16 (1.74–9.93) 0.001 4.47 (2.05–9.78) <0.001

Note: The significance level was determined by Cox regression analysis.
HR hazard ratio, LN lymph node status, MP menopausal status, HER2 human epidermal growth factor receptor 2 status, RR relative risk.
p values that are statistically significant are shown in bold.
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MDA-MB-231 cells showed no detectable PARP1 cleavage,
indicating resistance against paclitaxel (Fig. 5A). These patterns
fit the observed paclitaxel sensitivity/resistance phenotypes noted
in the MTT-assays presented above (Fig. 4A, Suppl. Fig. 3F).
All three cell lines showed the described phosphorylation of

BIM in mitosis, which promotes its APCCDC20-driven degradation
[18, 31]. BCLX and BCL2 are well known to be phosphorylated
during mitosis [9, 32–34]; this was best observed for BCLX, most of
it migrating significantly slower in SDS-PAGE, less notable for
BCL2, at least with the antibody used (Fig. 5).
To assess the relevance of NOXA/MCL1 turnover for tumour cell

survival, we generated NOXA-KO derivatives from these three

TNBC cell lines using two independent sgRNAs targeting NOXA.
While the steady-state levels of MCL1 did not substantially differ in
asynchronous cells, we could observe a clear stabilisation of MCL1
in the absence of NOXA compared to parental cells upon
extended M-arrest (Fig. 5). HS-578-T cells showed the most robust
MCL1 stabilisation upon M-arrest, followed by the MDA-MB-231
cells, while this effect was modest in the Cal-51 cell line.
Regardless, the absence of NOXA was beneficial for survival upon
MTA-treatment, as PARP1 cleavage was strongly reduced in the
HS-578-T (Fig. 5B) and the Cal-51 cells (Fig. 5C). As there was no
PARP1 cleavage detectable in the parental MDA-MB-231 cells, no
such effect was observed in NOXA-KO cell lines (Fig. 5A).

Fig. 2 Kaplan–Meier survival analysis in the TCGA cohort. A PFI and B OS based on BCL2 mRNA-expression in 471 BC patients treated with
chemotherapy other than MTA. C DFI and D PFI based on MCL1 mRNA-expression in 112 BC patients treated with MTA chemotherapy. E PFI
and F OS based on NOXA mRNA-expression in 112 BC patients treated with MTA chemotherapy.
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NOXA promotes paclitaxel-induced cell death and synergy
with BH3-mimetics
Monitoring PARP1 cleavage by western blot may not have been
sensitive enough to reveal a contribution of NOXA to paclitaxel-
induced cell death, either when used alone or in combination with
BH3-mimetics. Hence, to assess if NOXA-deficiency provides MDA-
MB-231 cells with a potential survival benefit, we treated these
cells with paclitaxel plus BH3-mimetics (Fig. 6, Suppl. Fig. 5). The
metabolic activity was reduced in the parental cell line by
paclitaxel to a mean of 56%, remaining higher in the NOXA-KO
clones (72% and 66%, respectively). This effect became more
prominent when paclitaxel was combined with different BH3-
mimetics (Fig. 6A, Suppl. Fig. 4A, Suppl. Fig. 5). Again, ABT-737 and
Wehi-539 showed the most potent effects in the parental cell line,
indicative of their BCLX dependence in the presence of MTAs.
Accordingly, viability was partially rescued by the deletion of
NOXA. Synergy between PTX and Wehi-539 and NOXA-
dependence were also detectable by western blotting in
unsynchronised cells using PARP1 cleavage as a readout. Again,
MCL1/NOXA complexes were degraded over time in PTX treated
cells and loss of NOXA reduced PARP1 cleavage. Expression levels

of BCLX, BCL2, BID or BIM did not change substantially but showed
mobility shifts consistent with phosphorylation in mitosis (Suppl.
Fig. 6). Similar results were seen in the HS-578-T cell lines upon
NOXA deletion (Fig. 6B, Suppl. Fig. 5). In the Cal-51 cells, the
deletion of NOXA conveyed only modest paclitaxel resistance
when compared to the other two TNBC cell lines, consistent with
the moderate impact on PARP1 cleavage (Fig. 5C).

DISCUSSION
Analysing a well-characterised set of 92 BC patient specimens that
have subsequently been treated with chemotherapy post-surgery,
NOXA was identified as the only BH3-only protein with prognostic
value across all molecular BC subtypes. High mRNA expression
strongly correlated with improved RFS and OS within uni- and
multivariate Cox-Regression analysis (Tables 1, 2). This observation
could be confirmed in an independent BC patient cohort of the
TCGA dataset. Most notably, NOXA levels also predicted superior
PFI and OS in the 122 TCGA patients treated with MTAs, but
not for the 350 patients receiving other chemotherapeutic agents
(Fig. 2E, F).
Of note, mRNA levels of BOK, implicated in endoplasmic

reticulum stress induced apoptosis [35], also showed a highly
significant prognostic value in uni- and multivariate analysis
(Tables 1, 2), but not the TCGA data set. BOK has been implicated
in Ca++ signalling from the ER [36] and pyrimidine synthesis
thereby affecting drug resistance and cell proliferation rates [37].
Yet, it remains unclear how low BOK expression would benefit BC
patients. A more detailed analysis of this protein in BC appears
warranted, in particular as loss of BOK reportedly prevents liver
cancer in mice [38].
Looking at the predictive value of anti-apoptotic BCL2 proteins,

we confirmed high mRNA levels of BCL2 as beneficial for RFS, as
noted before [39, 40], and reconfirmed this within the TCGA
dataset (Fig. 2A, B). A similar beneficial effect could be linked to
MCL1 mRNA expression (Fig. 2C, D). It remains a matter of debate
why high levels of a pro-survival protein may improve BC patients’
prognosis. Still, one can imagine a scenario where high BCL2 or
MCL1 expression may reduce the pressure to delete other cell
death regulators, such as p53, which comes at the price of
impaired genomic stability [41]. In fact, BCL2 overexpression has
been shown to delay tumour onset in animal models of
irradiation-driven lymphoma and myelodysplastic syndrome
transition into AML [42, 43]. MCL1 is a short-lived protein
regulated mainly at the translational and post-translation level;
hence, analysis of protein levels is critical. Consistently, studying a
panel of tumour tissue specimens on a tissue microarray revealed
that high expression of MCL1 predicts poor outcome in BC in all
but the HER2 amplified subtype [44]. Moreover, MDA-MB-468
TNBC were highly susceptible to chemical MCL1 inhibition or
genetic ablation and tumours forming in the MMTV-PyMT mouse
model of BC showed clear MCL1 dependence [44]. Consistent with
these observations, a recent study reported the beneficial effects
of chemical MCL1 inhibition and the MTA docetaxel in TNBC
patient-derived xenotransplant (PDX) studies in mice [30].
Our characterisation of the BCL2 protein family expression in

cell lines revealed high variation across subtypes (Fig. 3). The low
expression of NOXA in SKBR3, T47D and ZR-57-1 (Fig. 3B) might
indicate its downregulation as part of a selected survival
mechanism. Resistance to therapy is frequently correlated with
the downregulation of NOXA mRNA in multiple cancer types [45]
and linked to the fact that NOXA plays a decisive role in the
degradation of MCL1 [18, 46].
The TNBC MDA-MB-231 cell line showed an above-average

resistance to paclitaxel, compared to the two other TNBC cell lines,
which may be related to an increased propensity to undergo
mitotic slippage [47, 48]. Low BAK levels were shown to increase
resistance against paclitaxel [49], consistent with MCL1
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preferentially binding to BAK [46]. We could observe this for the
ZR-75-1 and T47D cell line (Fig. 3B, Suppl. Fig. 3F, G). However, Cal-
51 cells also showed a low BAK expression but are among the
most paclitaxel-sensitive cell lines (Fig. 3B, Suppl. Fig. 3C),
suggesting that BAK expression levels alone cannot be seen as a
reliable predictor of paclitaxel sensitivity.
Similarly, the expression of BCL2 proteins among our BC cell

lines did not allow predictions on their sensitivity against BH3-
mimetics, best seen in MCF-7 cells when comparing BCL2
expression with sensitivity to ABT-199. Still, those cells were
susceptible to inhibition of MCL1. This indicates that, despite
frequent BCL2 upregulation, BCL2 is not a major survival protein
for these tumour cells. However, an earlier study using ER+ PDX
models could show that treating luminal BC with ABT-199 was as
effective as ABT-737 combined with chemotherapy [25]. This
suggests that BCL2 can become a critical survival factor when its
co-expressed pro-survival partners are neutralised.
In a genome-wide siRNA screen, MCL1 was shown to be a

critical survival factor in TNBC cells [50]. We used one of the latest
MCL1 inhibitors in clinical development, S63845 [29]. However, it
showed limited potency against TNBC cell lines when used as a
single agent. Yet, the HER2+ SKBR3 were highly sensitive to
S63845 alone, which correlates with the finding that these cells
rely on MCL1 for survival [51]. While combining MCL1 inhibition
with paclitaxel may be beneficial in some settings [30], our data
show that BCLX seems to be generally more critical than MCL1 for
BC survival (Fig. 4, Suppl. Fig. 2), in line with earlier observations
[52]. BH3-profiling in MDA-MB-231 cells revealed its dependency
on BCLX to antagonise pro-apoptotic function [53]. However, as a
single agent, Wehi-539 was shown to have only a minor effect on
the metabolic activity of TNBC, including the MDA-MB-231 [54],
fitting our data. Nonetheless, combining Wehi-539 with MTAs in
TNBC cell lines reveals a BCLX dependence (Fig. 5), suggesting
higher therapy efficacy [55], probably triggered by IFN/IRF3-driven
upregulation of NOXA [56]. P53 regulated expression of NOXA
seems to play a minor role in this setting, as MDA-MB231 and HS-
578-T cells express only mutant p53. In line with these results,
elevated levels of BCL2 and MCL1 can lead to resistance against
Wehi-539 [26]. An improved version of Wehi-539, with oral activity,
might allow the use of lower doses to avoid thrombocytopenia
while still maintaining its anti-cancer efficacy [28]. In vivo studies
of the BCLX inhibitor, A-1331852, already showed an enhance-
ment of the effectiveness of paclitaxel [57], and new PROTAC-
based concepts may facilitate clinical application avoiding
thrombocytopenia [58, 59].
We could show that deleting NOXA leads to stabilisation of

MCL1, giving TNBC a survival benefit during extended M-arrest
(Fig. 5), in line with our previous studies in HeLa and A549 cells
[18]. Stabilised MCL1 can bind BAK and/or sequester BIM, which
otherwise would be free to activate the intrinsic apoptotic
pathway [46, 60]. Upon NOXA dependent degradation of MCL1,
more BIM is released from MCL1 sequestration and can execute
apoptosis; this can be best seen in Cal-51 NOXA-KO cells (Fig. 5C),
which show less protection against M-arrest when compared to
MDA-MB-231 NOXA-KO cells. This might rely on the low NOXA
expression per se, indicating that the NOXA/MCL1 axis might not
be that prominent in this cell line or that these cells escape
M-arrest by slippage [61]. The HS-578-T and MDA-MB-231 cell lines
both showed a survival benefit upon NOXA deletion, as evident by
the reduced PARP1 cleavage in the NOXA-KO cells (Fig. 6, Suppl.
Fig. 6).
In summary, the NOXA/MCL1 axis plays a crucial role in TNBC

treated with MTAs. Therefore, it could be helpful to increase or
restore NOXA expression by inhibiting its degradation, e.g. by
targeting the E3 ligase function of MARCH5 (19). This would allow
a dosage reduction of both MTAs and BCLX inhibitors, thereby
avoiding their respective side effects of neurotoxicity and
thrombocytopenia [58, 59].
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MATERIALS AND METHODS
Study design, patients and specimens
Expression levels were quantified by reverse-transcription PCR in mRNA
isolated from freshly frozen tumour and adjacent tissue from 92 patients
with primary BC treated with chemotherapy after surgery (aged 30.3 to
86.7; median age at diagnosis, 53.0 years) and 10 patients with benign
breast diseases (aged 19.8 to 46.0; median age at diagnosis, 35.5 years)
treated at the Department of Obstetrics and Gynaecology, Medical
University of Innsbruck, Austria. Written informed consent is not available
from all patients (specimen collections before the year 2000). But in
accordance with the Austrian law, the study was reviewed and approved
by the Ethics committee of the Medical University of Innsbruck (reference
number: 1021/2017), it was conducted in accordance with the Declaration
of Helsinki and in concordance with the Reporting Recommendations for
Tumour Marker Prognostic Studies of the National Cancer Institute
(REMARK) [62]. HR status was identified by immunohistochemistry (IHC).
All samples were anonymized before analysis was performed, to guarantee
the protection of privacy.
A power calculation for survival analysis was performed for BCL2

expression based on the univariate hazard ratio for mortality described by
Dawson et al. (doi: 10.1038/sj.bjc.6605736) using the sample-size formula

for the proportional-hazards regression model. The calculated, required
total number of events was 16 (in our cohort 46 patients died, 41 had a
relapse).
We analysed the BC dataset from The Cancer Genome Atlas (TCGA)

project (n= 1060) described in [63, 64] including OS, DSS data and gene
expression data from 471 resected primary breast tumours from patients
treated with chemotherapy (aged 26.0 to 84.0 years; median age at
diagnosis, 53.0 years).

RNA isolation and reverse transcription for qRT-PCR
Total cellular RNA extraction, reverse transcription and PCR reactions were
performed as previously described [65]. Primers and probe for the TATA
box-binding protein (TBP; endogenous RNA-control) were used according
to Bieche et al. [66]. Primerlist can be found in the Suppl. Material Table 3.

Tissue culture and generation of NOXA KO lines
Cells were cultured in a humidified atmosphere containing 5% CO2 at 37 °C
with the required media (Suppl. Material Table 1) and routinely checked for
mycoplasma. Amplification of 15 STR and amelogenin loci was carried out
in the Institute of Legal Medicine, Innsbruck Medical University [67] for
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fingerprinting the cell lines in use. Synchronisation with double-thymidine-
arrest and generation of NOXA-KO (with CRISPR/Cas9 system) cells was
performed as described previously [19]; guide sequences are found in
Suppl. Material Table 3.

Metabolic activity assessment
Metabolic activity was determined using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT)-assay (Cell Proliferation Kit I, Roche
Germany, Mannheim) according to manufacturer´s protocol. Cells were
seeded in duplicates in 96-well flat-bottom plates and treated 24 h later
with paclitaxel and/or graded doses of BH3-mimetics. DMSO was used as
solvent control. Absorbance was measured at 570 nm and 650 nm using an
ELISA plate reader (Sunrise, TECAN) with Magellan software (TECAN, V6.4).
Metabolic activity was calculated in Excel, setting the OD-read of DMSO
only treated cells to 100% metabolic activity.

Cell lysis and immunoblot analysis
Cells lysis and immunoblot was performed as previously described [19],
used antibodies listed in Suppl. Material Table 2.

Statistical analysis
Mann–Whitney U test was applied to compare mRNA expression levels
between groups. Univariate Kaplan-Meier analyses and multivariate Cox
survival analyses were used to explore the association of BCL2 family
members mRNA expression levels with survival. Optimal thresholds for
survival analyses were identified using Youden’s index [68] based on a
receiver operating characteristic (ROC) curve analysis; analyses were
performed using SPSS statistical software (version 26.0; SPSS Inc.).
One-tailed paired Student t-test was calculated on Prism8 (GraphPad

Software) for Suppl. Fig. 3. Data in Suppl. Fig. 3 are represented with
standard errors of the mean (SEM). Statistical significance is shown with
symbols: *p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001.

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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