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The MYEOV-MYC association promotes oncogenic miR-17/93-
5p expression in pancreatic ductal adenocarcinoma
Hongzhang Shen1,5, Fuqiang Ye 2,5, Dongchao Xu1, Liangliang Fang3, Xiaofeng Zhang 1✉ and Juanjuan Zhu 4✉
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Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are
primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying
molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV
expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels
of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that
MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the
expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as
observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the
transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV
and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest
that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal
malignancy originating in the human pancreas, with fewer than
7% of patients surviving past 5 years [1]. PDAC is a major clinical
problem because it has the worst prognosis among all cancers [2].
This poor prognosis is largely due to a delayed diagnosis owing to
the lack of any symptoms in its early stages of development, with
a PDAC diagnosis often considered to be a “death sentence” to
patients [3, 4]. Due to the highly advanced stage and the extent of
metastasis to distant sites at the time of diagnosis, PDAC is
clinically challenging to treat [5]. Despite substantial advance-
ments in understanding the molecular progression of PDAC, the
pathogenesis and mechanisms of PDAC remain unclear, high-
lighting the need to identify novel targets that may contribute to
the highly malignant phenotype of this cancer.
Myeloma overexpressed gene (MYEOV) is a candidate proto-

oncogene [6] that is closely associated with gene recombination in
many malignant tumors [7–9]. MYEOV is predominantly over-
expressed and promotes tumorigenesis in various human cancers,
including breast cancer, gastric cancer, colon cancer and non-
small cell lung cancer (NSCLC) [10–14]. Similarly, for the first time,
we demonstrated herein that MYEOV expression is significantly
upregulated in PDAC. Although the dysregulated expression of
MYEOV in cancer patients has been associated with its tumori-
genic properties, the molecular mechanisms underlying MYEOV-
mediated tumorigenesis, particularly in PDAC, remain largely
unknown.

MicroRNAs (miRNAs) are involved in PDAC pathobiology [15].
Accumulating data have shown that abnormally expressed
miRNAs in PDAC are closely associated with tumor occurrence.
Many of these miRNAs have been identified as tumor suppressors
or onco-miRNAs that modulate PDAC cell initiation, promotion,
metastasis and chemoresistance [16, 17]. Castellano et al. showed
that miR-100 and miR-125b synergize with TGF-β to control PDAC
tumorigenesis [18]. In another study, the tumor suppressor gene
miR-489 inhibited migration and metastasis by targeting the
extracellular matrix factors ADAM9 and MMP7 in PDAC [19].
However, the potential interaction between MYEOV and PDAC-
related miRNAs requires further investigation.
The oncogene c-MYC (hereafter MYC) governs many crucial

cellular functions, including proliferation, apoptosis and metabo-
lism [20, 21]. Dysregulation of MYC expression is associated with
the pathogenesis of many human cancers [22, 23]. As a
transcription factor, MYC triggers the expression of specific genes,
including a broad repertoire of miRNAs, to promote cell growth
and proliferation [22, 24]. In B-cell lymphomas, MYC can directly
regulate expression of the miR-17-92 gene cluster and inhibit
apoptosis [25]. MYC can also regulate tumor progression by
inhibiting the expression of other miRNAs, such as the let-7 miRNA
family, miR-15a/16-1, miR-26a and miR-34a [26, 27]. Therefore,
miRNA expression profiles induced by MYC could play an
important role in tumor progression.
MYC is predicted to be the most affected transcriptional factor

in response to MYEOV knockdown [28]. Therefore, we speculated
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that, by regulating MYC activity, an MYEOV-mediated regulatory
effect on the expression of specific miRNAs might occur, thus
mediating PDAC oncogenesis. The present study revealed that
MYEOV expression is significantly upregulated in PDAC cells and
patients and associated with poor patient survival. MYEOV
depletion restricted the growth of PDAC cells. Importantly, we
showed that MYC-induced upregulation of miR-17-5p and miR-93-
5p is involved in MYEOV-mediated PDAC oncogenesis. Moreover,
MYC enrichment at miR-17/93 gene promoter regions was
regulated by MYEOV via the MYEOV-MYC association. In summary,
we discovered a novel regulatory role of MYEOV in PDAC
progression

MATERIALS AND METHODS
Tissues and cell lines
Nineteen pairs of formalin-fixed paraffin-embedded (FFPE) pancreatic
carcinoma tissues and adjacent normal tissues were obtained from the
Affiliated Hangzhou First People’s Hospital, Zhejiang University School of
Medicine (Hangzhou, China). Informed consent was obtained from each
participant, and the sampling protocols were performed in accordance
with the operational guidelines. The clinical characteristics of the patients
included in this study are listed in Table S1. This study was approved by
the Ethics Committee of Hangzhou First People’s Hospital. The human
PDAC cell lines MIAPaCa-2, BxPC-3, PANC-1 and AsPC-1, as well as normal
human pancreatic duct epithelial (HPDE) cells, were obtained from ATCC
(Manassas, VA, USA) and cultured according to the manufacturer’s
instructions.

Plasmid construction and siRNA construction, transfection
and infection
To overexpress MYEOV, we cloned full-length Homo sapiens MYEOV
sequences (NM_001293291.2) into the vector pcDNA3.0. To inhibit MYEOV,
an siRNA against human MYEOV (Stealth RNAi: siMYEOV-1, HSS120166;
siMYEOV-2, HSS120167) and negative control siRNA (Stealth RNAi: siNC,
#12935-300) were purchased from Life Technologies (Invitrogen, Carlsbad,
CA). To overexpress and inhibit miR-17-5p and miR-93-5p, miRNA mimics
and inhibitors were purchased from Ribobio (Guangzhou, China). Plasmids,
siRNAs, mimics and inhibitors were transfected into PDAC cells using
Lipofectamine 3000 (Invitrogen) according to the manufacturer’s protocol.
To obtain cell lines stably overexpressing MYEOV, MYEOV was cloned

into the lentivirus plasmid Pez-Lv105. For stable knockdown cells, the
shRNA sequence targeting MYEOV was ligated into the psi-LVRU6MP
lentivirus plasmid. Recombinant lentivirus infection and screening were
performed according to the manufacturer’s protocol (GeneCopoeiaTM,
Rockville, MD).

RNA isolation and quantitative reverse transcription PCR
Total RNA was extracted from cells using TRIzol reagent as previously
described [29]. For mRNA detection, cDNA was synthesized from 1 μg of
total RNA using an Oligo (dT) reverse transcription primer and a HiScript®
III 1st Strand cDNA Synthesis kit (Vazyme, Nanjing, China). For miRNA
detection, cDNA was generated using 1 μg of total RNA and a specific
Bulge-LoopTM miRNA RT primer (Ribobio). Quantitative polymerase chain
reaction (qPCR) was performed using ChamQ SYBR qPCR Master Mix
(Vazyme). Quantitation of the relative expression levels of the target genes
was performed in triplicate and calculated using the 2−ΔΔCT method.
GAPDH and U6 [29–31] were used as endogenous controls to normalize
mRNA and miRNA expression, respectively.

Immunoprecipitation and Western blot assays
For the immunoprecipitation (IP) assay, cells were lysed in lysis buffer
(50mM Tris-Cl [pH 7.4], 150mM NaCl, 0.5% Triton X-100, and 1mM EDTA)
supplemented with protease inhibitor cocktail (Roche, Switzerland). The
lysates were incubated with the appropriate antibodies for 4 h overnight at
4 °C before protein A/G agarose beads were added and incubated with the
samples for 2 h. The beads were then washed four times with lysis buffer
and eluted for 5 min with SDS loading buffer. Subsequently, the
immunoprecipitated proteins were then subjected to Western blot analysis
as described previously [32]. Anti-c-MYC (#5605; Cell Signaling Technology,
USA), anti-β-actin (A5441; Sigma-Aldrich, USA) and anti-MYEOV (ab121387;
Abcam, England) antibodies were used for Western blotting.

Immunohistochemistry
All the samples were fixed in 4% paraformaldehyde, embedded in paraffin,
sliced into sections, and placed on adhesion microscope slides. The
sections were then subjected to immunohistochemical (IHC) staining
according to standard procedures, with anti-MYEOV (HPA012949; Sigma)
used as the primary antibody.

Immunofluorescence and confocal microscopy
Confocal microscopy was performed as previously described [33].
Briefly, cells seeded onto glass coverslips were fixed with 4%
paraformaldehyde in PBS for 20 min, permeabilized with 0.25% Triton
X-100 and blocked with 5% bovine serum albumin at room
temperature. The cells were subsequently incubated with the indicated
primary antibodies, followed by staining with AlexaFluor488- and
Cyanin3-conjugated secondary antibodies (both from ThermoFisher,
USA) for immunofluorescence detection. Nuclei were counterstained
with DAPI (Sigma-Aldrich), and the slides were mounted with
fluorescence mounting medium (Dako, Denmark). Images of the cells
were captured using a Carl Zeiss LSM700 laser scanning confocal
microscope under a 64× oil objective.

Colony formation and cell proliferation assays
For colony formation assays, transfected cells were plated in six-well
plates in triplicate at a density of 500 cells per well. The cells were
allowed to grow for two weeks at 37 °C until colonies were visible. To
visualize the colonies, they were fixed in 4% paraformaldehyde for
15 min and then stained with a 0.1% crystal violet solution (Sigma-
Aldrich). The cell proliferation rate was determined using the Cell
Counting Kit-8 (CCK-8) assay (MedChemExpress, China) according to
the manufacturer’s protocol. After 48 h of transfection, AsPC-1 and
PANC-1 cells (2 × 103) were seeded in 96-well plates (100 μL).
Subsequently, 10 μL of CCK-8 solution was added to each well, and
the plates were incubated at 37 °C for an additional 2 h. An automatic
microplate reader (Tecan, Austria) was used to measure the absorbance
of each well at a wavelength of 450 nm. Additionally, a standard curve
was established to calculate the cell numbers. Each experiment was
repeated at least three times.

Transwell invasion assay
The treated cells were cultured in serum-free medium for 24 h. Next, 5 ×
104 serum-starved cells were added to the top of a 24-well Millipore
Transwell chamber (Millipore, USA) coated with diluted Matrigel (BD
Biosciences, Germany), and 600 μL of culture medium containing 20% FBS
was added to the lower chamber. After 24 h, the cells located in the lower
chamber were stained with a 0.1% crystal violet solution for microscopic
analysis.

Wound scratch assay
A scratch was made with a sterile P200 pipette tip in the center of each
well of a six-well plate cultured with transfected cells. The medium was
replaced with serum-free medium, and the transfected cells were
incubated for 24 h. The ability of the cells to migrate across the wound
was determined by comparing the 0- and 24-h phase contrast
micrographs of three marked positions. The wound area was measured,
and the percentage of wound healing was estimated using ImageJ (v
1.8.0).

Flow cytometry assay
For apoptosis analysis, AsPC-1 and PANC-1 cells transfected with siRNA
after serum starvation for 24 h were harvested by trypsinization. After they
were double stained with FITC-Annexin V and propidium iodide (PI; BD
Biosciences), the cells were subjected to flow cytometry using the Attune
NxT flow cytometer (Life Technologies) and analyzed using FlowJo
software (v10.0.7). The cells were divided into four categories: viable,
dead, early apoptotic and apoptotic cells. All assays were independently
performed at least three times.

Tumor xenograft assay
The animal experiments and care were approved by the Animal Ethical and
Welfare Committee (IACUC-20181015-05) of Zhejiang Chinese Medical
University. All animal studies were conducted in strict accordance with the
guidelines of the Animal Care and Use Committee of Animal Ethical and
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Welfare Committee of Zhejiang Chinese Medical University. Twenty-four 6-
week-old NOD/SCID mice (SHANGHAI SLAC, Shanghai) were purchased
and randomly divided into four groups. The mice were raised under
specific pathogen-free (SPF), 12-hour light and dark cycle conditions, with
a room temperature of 22 ± 0.5 °C, a relative humidity of 40%–70%, and
freely access to feed and water. PANC-1 cells were infected with
lentiviruses harboring an MYEOV overexpression vector [PANC-1 (MYEOV)]
or its negative control blank vector (PANC-1 (NEG)] or with an MYEOV
shRNA knockdown vector [PANC-1 (shMYEOV)] or its negative control
blank vector [PANC-1 (shNEG)]. Stable cell lines were obtained by
screening with puromycin. To evaluate cell proliferation in vivo, the four
stable cell lines described above were subcutaneously injected into the
four groups of mice (8 × 106 per mouse). The mice were monitored weekly
for tumor growth and size and were sacrificed 8 weeks post-injection.
Before the mice were sacrificed, they were euthanized with carbon dioxide
inhalation to alleviate pain. All the tumors were harvested and weighed for
analysis. Tumor growth was measured weekly with a caliper from weeks 1
to 8. Tumor volume analyses were based on the following equation: V=
(length × width2)/2.

Chromatin immunoprecipitation (ChIP)
ChIP was conducted in PANC-1 cells using a SimpleChIP Enzymatic
Chromatin IP kit (#9002; Cell Signaling Technology, USA) according to the
manufacturer’s protocol. Cells were fixed with 1% formaldehyde for 10min
at room temperature, and fixation was stopped by adding glycine followed
by an additional incubation at room temperature for 5 min. Subsequently,
the cells were scraped, pelleted and then lysed in 1mL of Buffer A
supplemented with a protease inhibitors cocktail (PIC) and DTT for 10min
on ice. After centrifugation at 2,000 × g for 5 min at 4 °C, the pelleted nuclei
were resuspended in 1mL of Buffer B supplemented with DTT and
incubated for 10min at 4 °C. After repeating the centrifugation step, the
pelleted nuclei were resuspended in 100 μl of Buffer B, mixed with 0.5 μl of
micrococcal nuclease, and then incubated for 20min at 37 °C with frequent
mixing to digest the DNA into approximately 150- to 900-bp fragments.
Next, 10 μl of 0.5 M EDTA was added to stop the digestion. After
centrifugation at 16,000 × g for 1 min at 4 °C, the pelleted nuclei were
resuspended in 500 μl of ChIP buffer and sonicated for 20min. After
centrifugation at 9,400 × g for 10min at 4 °C, the supernatant was
obtained as the cross-linked chromatin preparation. For optimal ChIP
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Fig. 1 MYEOV is correlated with the poor prognosis of PDAC patients and is highly expressed in PDAC cells. a, b Kaplan–Meier curves of
overall survival (a) and disease-free survival (b) of patients with PDAC based on MYEOV expression in the GEPIA database using the log-rank
test. The dotted lines indicate the 95% confidence intervals for survival percentage at each time point as obtained by survival analysis.
c MYEOV expression levels in PDAC (n= 178) and NCP tissues (n= 171) based on the expression levels in GEPIA database. Gene expression
profiles of MYEOV from all available samples classified as PDAC tissue (n= 178) in TCGA and NCP tissue (n= 171) in TCGA and GTEx were
chosen to perform differential analysis in GEPIA. The data are presented as the means ± SEM. *P < 0.05 (one-way ANOVA). d ROC curves based
on the gene expression profiles of MYEOV in PDAC and normal tissue samples. The AUC value with a 95% CI is indicated. e Representative
images of the IHC staining analyses of 19 FFPE PDAC and NCP tissues using an anti-MYEOV antibody (400× magnification). f Comparison of
MYEOV expression levels in PDAC cell lines and normal pancreatic epithelial cells by qPCR. All n ≥ 3; bar, SEM; ***P < 0.001; Student’s t-test.
ANOVA, analysis of variance; PDAC, Pancreatic ductal adenocarcinoma; NCP, non-cancerous pancreas; TPM, transcripts per kilobase million;
ROC, receiver operating characteristic.
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results, we used approximately 5-10 µg of digested, cross-linked chromatin
per IP reaction. For each IP, we added the immunoprecipitating antibodies
to 500 µl of the diluted chromatin. After incubating the IP samples 4 h to
overnight at 4 °C with rotation, ChIP-Grade Protein G Agarose Beads were
added to each IP reaction. After a 2-h incubation at 4 °C with rotation, the
beads were washed three times with 1mL of low-salt wash buffer and then
once with 1 mL of high-salt wash buffer. The DNA was eluted in elution
buffer, and crosslinks were reversed by incubation overnight at 65 °C. The
RNA and protein were digested using RNase A and Proteinase K, and the
DNA was purified by phenol-chloroform extraction and isopropanol
precipitation. The target DNA abundance in ChIP eluates was assayed by
qPCR with primer pairs designed to generate 100- to 200-bp products. An
isotype-matched IgG antibody was used as a control. The antibodies used
for ChIP assays were as follows: anti-MYC (#9402; Cell Signaling
Technology), anti-Histone H3 (D2B12) XP® Rabbit mAb (#4620; Cell
Signaling Technology), and normal rabbit IgG (#2729; Cell Signaling
Technology). The sequences of the primers used for ChIP assays were as
follows: positive B23 gene forward primer: 5’-GCTACATCCGGGACTCACC-3’;
positive B23 gene reverse primer: 5’-GCTGCCATCACAGTACATGC-3’; miR-17
gene cluster promoter forward primer: 5’-AAAGGCAGGCTCGTCGTTG-3’;
miR-17 gene cluster promoter reverse primer: 5’-CGGGATAAAGAGTTGT
TTCTCCAA-3’; miR-93 gene promoter forward primer: 5’-ATTGGCCATCA-
CACCCAGAG-3’; and miR-93 gene promoter reverse primer: 5’-GTGTAAA-
CAGTGTCCTTCCGC-3’.

Bioinformatics analysis
The GEPIA (Gene Expression Profiling Interactive Analysis) webserver [34],
which integrates TCGA and GTEx data, was accessed to perform MYEOV-
related differential gene and survival analyses using the “Differential Genes
Analysis” and “Most Significant Survival Genes” modules, respectively. All
available samples classified as PDAC (n= 178) in TCGA and non-cancerous
pancreatic (NCP) tissue samples (n= 171) in TCGA and GTEx were used to
perform differential analysis based on the MYEOV expression profiles. The
clinicopathological features and MYEOV gene expression values (measured
as fragments per kilobase million, FPKM) corresponding to these samples
were extracted from the TCGA and GETx resource centers. The receiver
operating characteristic (ROC) curve based on MYEOV abundance was
plotted, and the area under the ROC curve (AUC) was calculated using
R (v 3.5.1).
Survival analysis in GEPIA was first conducted via the “Most Differential

Survival Genes” module to identify genes associated with PDAC patient
survival using the following parameters: Datasets Selection = PAAD,
Methods = Overall Survival, and Group Cutoff = Median. Next, the
“Survival Plots” module was used to generate survival curves correspond-
ing to specific genes based on expression levels using the following
parameters: Gene = MYEOV, Methods = Overall Survival or Disease Free
Survival, Group Cutoff = Median, Hazards Ratio (HR)= Yes, 95%
Confidence Interval = Yes, Axis Units = Months, and Datasets Selection
= PAAD.

RNA-Seq experiments
The RNA sequencing experiments and downstream data analysis were
performed as described by Hu et al. [35]. Briefly, total RNA from each
sample was extracted using TRIzol reagent (Invitrogen) and used to
prepare a cDNA library based on the standard Illumina RNA-Seq protocol.
The generated cDNA library was sequenced on an Illumina HiSeq2000
instrument in a 2 × 150 bp layout. To estimate gene expression abundance
and differentially expressed genes (DEGs) among the samples, the
obtained raw RNA-Seq datasets were filtered using Trimmomatic to
remove low-quality reads and potential adapter contamination [36]. The
quality-controlled reads were then mapped to the human genome (hg19)
using HISAT2 with default parameters [37]. Only uniquely mapped reads
were retained to quantify gene expression abundance at the count level
based on the Ensembl human gene annotation [38]. The DEGs with
significant differences and log2-transformed gene expression fold changes
(LFCs) were estimated using edgeR after TMM normalization (FDR < 0.05)
[39]. All the original RNA-Seq data were deposited in the GEO database
(GEO accession number: GSE143828).

Small RNA sequencing experiments
Cells were harvested after 24 h, and total RNA was extracted using TRIzol
reagent (Invitrogen) to prepare a small RNA library based on the standard
Illumina small RNA sequencing protocol. The generated library was

sequenced on an Illumina HiSeq2500 instrument in a 1 × 50 bp layout. We
mapped the obtained small RNA sequencing data following the mapping
steps according to the method described by Hu [40]. To remove the
adapter sequence at the 3’ end of the raw sequence reads, all the
sequences were trimmed using a custom trimming procedure [41]. The
trimmed sequences were then mapped to the human genome (hg19)
using Bowtie [42]. Only sequences that perfectly matched the genome and
had a length ranging from 18 to 28 nucleotides were retained for miRNA
expression quantification. We quantified miRNA expression abundance
following the quantification method described by Hu [43]. First, we
collected all the sequences that mapped within three nucleotides
upstream or downstream of the 5’ end position of each mature miRNA.
Next, for each mature miRNA, the sequence with the maximal expression
count number was designated as the reference sequence. The expression
abundance of each miRNA was further estimated as the sum of the count
number of the reference sequence and sequences mapping at the same 5’
end position as the reference sequence.

Statistical analysis
All experiments were independently performed at least three times. The
values are presented as means ± standard error of the mean (SEM).
Differences between two groups and more than two groups were assessed
by two-tailed Student’s t-test and one-way analysis of variance (ANOVA),
respectively. Analysis was performed using Microsoft Excel 2017, SPSS 22.0
and GraphPad Prism (Prism 5 for Windows). A P value of less than 0.05
indicated statistical significance.

RESULTS
MYEOV overexpression is associated with poor patient
survival in PDAC
To identify the genes associated with PDAC survival, we
performed survival analysis based on TCGA [44] and GTEx
[45, 46] data integrated in GEPIA (Table S2). A higher MYEOV
level in PDAC was correlated with a worse overall survival and
disease-free survival outcomes (Fig. 1a, b). Additionally, the
expression levels of MYEOV were clearly increased in PDAC
tissues (n= 178) compared with NCP tissues (n= 171) (P < 0.05,
Fig. 1c). Based on the expression profiles of MYEOV in the PDAC
and NCP tissue samples, the AUC was determined as 0.878 (95%
confidence interval (CI): 0.839-0.918; Fig. 1d), indicating that this
aberrantly expressed gene may be of great diagnostic value to
distinguish PDAC from NCP tissues. Furthermore, we explored the
correlation between the MYEOV expression levels and clinico-
pathological features in 178 PDAC patients (Table 1). To validate

Table 1. Correlation of MYEOV expression with clinicopathological
features in PDAC samples from the TCGA database.

Clinicopathological
features

n Mean expression of
MYEOV (FPKM)

P value

Gender

Male 98 17.25 0.189

Female 80 14.14

TNM stage

I 21 9.8 0.084

II 146 17.34

III 3 14.28

IV 5 5.72

Not reported 3 4.42

Race

Asian 11 16.25 0.487

Black or African
American

6 6.02

White 157 16.21

Not reported 4 15.46
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Fig. 2 MYEOV knockdown inhibits cell proliferation, invasion and migration in PDAC in vitro. a The expression levels of MYEOV were
quantified by qPCR and Western blot. b, c Cell proliferation measured by the CCK-8 (b) and colony formation assays (c). d Apoptosis as
determined by flow cytometry. e, f Cell invasion (e) and migration (f) as determined by transwell invasion assays (200× magnification) and
scratch assays (40× magnification). All n ≥ 3; bar, SEM; *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 compared with NC; Student’s t-test.
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the results of the in silico studies, in situ hybridization (ISH)
staining was performed, the results of which confirmed higher
MYEOV expression in 19 FFPE PDAC samples than in the matched
adjacent normal tissues (Fig. 1e, S1a, b). Consistently, the
prognosis of patients with high expression of MYEOV was
significantly worse than that of patients with low expression of

MYEOV (P < 0.05) (Fig. S1c). After observing increased MYEOV
expression in PDAC, we analyzed MYEOV expression in 4 PDAC cell
lines and 1 normal HPDE cell line and confirmed the increased
MYEOV expression levels in cancer cells (Fig. 1f; P < 0.05). Overall,
these findings indicate that survival-related MYEOV is over-
expressed in PDAC.
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MYEOV deficiency leads to reduced proliferation, invasion and
migration of PDAC cells in vitro and in vivo
To assess the role of MYEOV in PDAC cell proliferation, we
depleted MYEOV in two PDAC cancer cell lines (AsPC-1 and
PANC-1) by transfecting cells with MYEOV-targeting siRNAs and
then performing CCK-8 and colony formation assays. The viability
of MYEOV-knockdown cells was significantly reduced compared
with that of the corresponding control cells (Fig. 2a, b, c).
Additionally, to validate the outcomes of MYEOV depletion assays,
we overexpressed MYEOV in PANC cells and observed increased
cell viability (Fig. S2a). Subsequently, we investigated the role of
MYEOV in cell apoptosis using flow cytometry. The apoptosis rates
were elevated after MYEOV depletion (Fig. 2d). To further examine
the influence of MYEOV on the migration and invasion of PDAC
cells, wound healing and Matrigel Transwell assays were
performed. MYEOV-depleted cells had lower recovery rates and
reduced cell invasion ability than the control cells (Fig. 2e, f). These
in vitro results demonstrate that MYEOV likely plays a pro-cancer
biological role in PDAC cells by promoting cell proliferation,
migration and invasion.
Xenograft mouse models were used to determine the in vivo

functions of MYEOV. The qPCR results validated MYEOV expression
in the four types of PANC-1 cells, with increased levels observed in
tumors derived from mice injected with MYEOV overexpression
cells and decreased levels in tumors derived from MYEOV-
knockdown cells compared with the controls (Fig. 3a). Consistent
with the in vitro findings, significant decreases in the tumor
volume and growth rates were observed in mice injected with
MYEOV-knockdown PANC-1 cells compared with those in the
negative control group, whereas mice injected with MYEOV-
overexpressing cells showed the opposite effect (Fig. 3b, c). Taken
together, our data demonstrated that MYEOV deficiency leads to
reduced proliferation of PDAC cells in vitro and in vivo.

Global effect of MYEOV depletion on the transcriptome in
PDAC cells
Having demonstrated that MYEOV can promote tumor progres-
sion, we further investigated MYEOV-mediated changes in the
global transcriptome in MYEOV-depleted PDAC cells (PANC-1 and
AsPC-1) by mRNA-Seq. MYEOV depletion resulted in the differ-
ential expression of 1005 genes (negative binomial test; FDR <
0.05), with 409 genes upregulated and 596 downregulated,
including MYEOV itself (Fig. S2b). Gene ontology (GO) analysis of
DEGs following MYEOV knockdown revealed an enrichment of
genes involved in cell-cell adhesion, G1/S transition of the mitotic
cell cycle, regulation of angiogenesis and other cellular processes
(Fig. 4a). These DEGs were primarily enriched in molecular
functions, such as cadherin binding and protein binding.
Furthermore, the DEG profile identified by GO analysis was further
cross-validated by analyzing the expression levels of these genes
via qPCR (Fig. 4b, Table S3). Except for the differential expression
of the two genes EIF5 and MAPRE1, which were not validated in
AsPC-1 cells, the remaining qPCR results were consistent with
mRNA-Seq. Collectively, these results suggest that MYEOV is a
crucial oncogene that causes global alterations in the gene
expression profiles of PDAC cells.

MYEOV-regulated miR-17/93-5p affects PDAC cell
proliferation, invasion and migration
As important gene regulators, miRNAs are involved in the
development and progression of PDAC. To identify the miRNAs
regulated by MYEOV, we performed high-throughput miRNA-Seq
in MYEOV-depleted PDAC cells (PANC-1 and AsPC-1). We
identified 54 and 39 differentially expressed (DE) miRNAs after
MYEOV depletion in PANC-1 and AsPC-1 cells, respectively (Fig.
S2c; negative binomial test; FDR < 0.05). Fifteen miRNAs displayed
differential expression in both PDAC cancer cell lines that was
significantly more than expected by chance (hypergeometric test;
P < 0.05). Moreover, the changes in expression of these 15 DE
miRNAs were positively correlated between PANC-1 and AsPC-1
cells (Fig. S2d; Pearson’s correlation coefficient α= 0.85; P <
0.0001). These results indicated that MYEOV depletion disrupted
the miRNA transcription machinery and led to aberrantly
expressed miRNAs in both PDAC cells. To further pinpoint the
most relevant DE miRNAs, we examined the regulatory effect of
each of these 15 DE miRNAs on the expression of their cognate
target genes. Because miRNAs are typically negative regulators,
we calculated whether the up-/downregulation of miRNAs led to
significantly reversed expression changes in their target genes by
considering all the expressed genes as the background. We
detected significant regulatory effects of two miRNAs, miR-17-5p
and miR-93-5p, on their cognate target genes in both PDAC cells
(Fig. 5a; Kolmogorov-Smirnov test; all P < 1e-10), whereas no
regulatory effect signal was observed for the remaining DE
miRNAs (Kolmogorov-Smirnov test; all P > 0.05), suggesting miR-
17-5p and miR-93-5p were the most relevant miRNAs associated
with MYEOV-induced gene expression changes. Subsequently, the
qPCR results verified that MYEOV knockdown resulted in miR-17-
5p and miR-93-5p downregulation in PDAC cells (Fig. 5b). To
investigate the biological functions of miR-17-5p and miR-93-5p in
PDAC cells, endogenous miR-17-5p or miR-93-5p was knocked
down in PANC-1 and AsPC-1 cells with a specific miRNA inhibitor
(Fig. 5c). We observed that the depletion of either miR-17-5p or
miR-93-5p significantly inhibited cell proliferation, invasion and
migration (Fig. 5d, e, f, g), all of which were also observed in
MYEOV-depleted PDAC cells. Additionally, miR-17-5p or miR-93-5p
inhibition did not affect MYEOV expression (Fig. S2e). These results
suggest that the inhibition of miR-17-5p or miR-93-5p negatively
affects PDAC cell growth and has a similar effect on PDAC
progression to that observed in MYEOV-depleted PDAC cells.
To investigate the functional relevance of MYEOV with miR-17-

5p or miR-93-5p, we assessed whether miR-17-5p or miR-93-5p
overexpression neutralizes the inhibitory effects of MYEOV
deficiency on PANC-1 cell proliferation, migration and invasion.
qPCR was used to validate the levels of miR-17-5p or miR-93-5p in
the rescue experiment (Fig. 6a). Exogenous miR-17-5p or miR-93-
5p expression partially reversed the reduced cell proliferation,
metastasis and invasion due to MYEOV knockdown in PDAC cells
(Fig. 6b, c, d). To investigate whether miR-17/93-5p served as a
downstream molecule of MYEOV, we overexpressed MYEOV in
miR-17/93-5p-inhibitory PDAC cells and assessed the alteration in
cell proliferation. qPCR confirmed that the expression levels of
MYEOV, miR-17-5p or miR-93-5p were consistent as expected (Fig.

Fig. 5 Downregulation of miR-17-5p and miR-93-5p produces a similar effect as that observed with MYEOV depletion in PDAC cells. a
Changes in the expression of miR-17-5p and miR-93-5p target genes after MYEOV knockdown in two PDAC cell lines (AsPC-1 and PANC-1). The
x-axis represents the LFC between MYEOV-knockdown and wild-type PDAC cells. The y-axis represents the cumulative distribution function
(CDF) of LFC distribution. In each comparison, all expressed genes (excluding the target genes of cognate miRNAs) were used as the
background. The cumulative distribution difference between targets and background genes was estimated using the Kolmogorov-Smirnov
test. b The qPCR-based expression levels of miR-17-5p and miR-93-5p upon MYEOV knockdown. c The qPCR-based expression levels of miR-
17-5p and miR-93-5p upon treatment with miRNA inhibitors. d, e Cell proliferation as measured by the CCK-8 (d) and colony formation (e)
assays in AsPC-1 and PANC-1 cell lines transfected with the miR-17-5p inhibitor, miR-93-5p inhibitor or NC. f, g Cell migration (f) and invasion
(g) as determined by scratch assay (40× magnification) and transwell invasion assay (200× magnification), respectively. All n= 3; bar, SEM;
*P < 0.05, **P < 0.01 and ***P < 0.001 compared with NC; Student’s t-test.
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S3a). MYEOV overexpression could not reverse the reduction in
cell proliferation caused by miR-17/93-5p knockdown in PDAC
cells (Fig. S3b), indicating that miR-17/93-5p might serve as a
downstream target of MYEOV. Thus, MYEOV influences PDAC cells
partially by regulating miR-17/93-5p expression.

MYC is involved in the regulation of MYEOV on miR-17/93-5p
We subsequently investigated how MYEOV regulates the expres-
sion levels of miR-17-5p and miR-93-5p. According to previous
reports, the transcription factor MYC can directly upregulate miR-

17-5p expression and is associated with miR-93-5p expression
[47–49]. The promoter regions of both miR-17 and miR-93 genes
contain canonical sequences for MYC. As expected, MYC expres-
sion is high in PDAC cells compared with that in normal pancreatic
epithelial cells (Fig. S2f). After MYC knockdown, the levels of miR-
17-5p and miR-93-5p were notably decreased (Fig. 7a). Because
the oncogenic potential of MYC stems from its function as a
transcriptional regulator that binds to DNA with an active
chromatin configuration, we wondered whether MYC binds to
the gene promoter regions of miR-17/93. By conducting ChIP
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experiments using an anti-MYC antibody, we observed a
significant and specific enrichment of MYC at the promoter
regions of miR-17 and miR-93 (Fig. 7b). Subsequently, we
performed ChIP-qPCR to determine whether MYEOV silencing
interfered with MYC recruitment to the promoter regions of miR-
17 and miR-93. Notably, the recruitment of MYC to miR-17/93
promoters was markedly reduced in MYEOV-depleted cells (Fig.
7c). These results preliminarily demonstrated that MYEOV
regulates miR-17/93 expression by affecting the enrichment of
MYC at the promoter regions of these two miRNAs.
To activate gene transcription, MYC typically recruits chromatin-

modifying and chromatin-remodeling complexes to increase DNA
accessibility at the target region. Therefore, we speculated that the
association of MYEOV with MYC might mechanistically explain the
enhancement of MYC transcriptional regulation on miR-17/93-5p.
IP of FLAG-MYEOV coupled with Western blotting was performed
to detect HA-MYC from the lysates of transfected 293 T cells, with
the results revealing that both proteins were present in the same
complex (Fig. 7d) and that the interaction between them was dose
dependent (Fig. S2g). Furthermore, the association between
endogenous MYC and MYEOV was validated in PANC-1 cells
through co-IP and immunofluorescence analyses (Fig. 7e, f). Taken

together, these data indicate that MYEOV interacts with MYC in
the cell nucleus to regulate the expression of downstream miR-17/
93-5p.

DISCUSSION
A key finding of our study is that MYEOV can potentiate PDAC
proliferation, invasion and metastasis by regulating the expression
of miR-17/93-5p via its association with the transcription factor
MYC (Fig. 8). This finding extends our current understanding of the
molecular mechanism mediating PDAC progression.
Our results showed that MYEOV is associated with poor survival

in patients and is overexpressed in PDAC. MYEOV deficiency led to
a reduction in PDAC cell proliferation, invasion and migration.
Depletion of MYEOV significantly affected tumor formation
induced by PDAC cells in a xenograft mouse model. These
in vitro and in vivo results demonstrated that MYEOV contributes
to tumorigenesis in PDAC. This is consistent with the role of
MYEOV in NSCLC, which has been reported by Fang et al. [14].
However, according to a report by Fang, since no MYEOV protein
expression is observed in NSCLC cells and tissues, MYEOV
functions as an amplified competing endogenous RNA (ceRNA)
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to enhance NSCLC metastasis. In our study, we observed high
MYEOV protein expression in PDAC cells and tissues, which may
be due to the specific expression patterns of MYEOV in different
tissues and organs. However, we cannot exclude the possibility
that MYEOV may also play a role as a ceRNA in PDAC.
Accumulating evidence shows that miRNAs are involved in the

carcinogenesis and metastasis of various human cancers, includ-
ing PDAC [50, 51]. In this study, through high-throughput miRNA-
Seq, we showed that MYEOV affects the expression of miR-17-5p
and miR-93-5p. MiR-17-5p and miR-93-5p, the most representative
miRNAs with pro-cancer properties, have been reported to play an
oncogenic role in various cancers [31, 52, 53]. PTEN, which is the
key downstream target of miR-17-5p and miR-93-5p, is potentially
involved in the regulation of cell viability and apoptosis and it
negatively regulates the PI3K/Akt pathway [54–57]. Therefore, we
hypothesized that MYEOV might be able to regulate PI3K/Akt
signaling pathway by targeting PTEN. In our study, we observed
that downregulation of either miR-17-5p or miR-93-5p exhibited a
similar effect as that observed with MYEOV depletion in human
PDAC cells. Furthermore, miR-17-5p or miR-93-5p overexpression
could rescue the inhibitory effects of MYEOV deficiency in PDAC
cells. These data allowed us to conclude that MYEOV partially
influences the proliferation of PDAC cells by regulating the
expression of miR-17-5p and miR-93-5p. Indeed, it has been well
recognized that miR-17/93-5p can regulate a cohort of target
genes involved in various biological processes [58]. Given that the

biological functions of MYEOV-depleted PDAC cells were partially
restored after exogenous miR-17-5p and miR-93-5p expression, it
is possible that MYEOV exerts its function by targeting genes other
than miR-17/93-5p. Thus, the oncogenic role of MYEOV in PDAC
requires further investigation.
The oncogene MYC has been implicated in the pathogenesis of

various malignancies, including many PDAC cases. Characterized
as a driver of tumor biological functions, MYC overexpression
frequently predicts a poor clinical outcome and an aggressive
course of disease [59]. MYC has been reported to control the
expression of miRNAs, and MYC-regulated miRNAs affect virtually
all aspects of the hallmarks of MYC-driven pathology. In our study,
we observed that MYC associated with MYEOV by interacting in a
complex to regulate downstream miR-17/93-5p expression in
PDAC. We cannot rule out the possibility that MYC may also
regulate the target genes involved in the pro-cancer function of
MYEOV. MiR-17-5p has been reported to counterbalance MYC
expression and function to ensure optimal B cell lymphoma
growth [60]. In our results, miR-17/93-5p overexpression in PDAC
cells had a slight effect on the expression of MYEOV and MYC,
which indicated that there exists potential synergism between
MYC and miR-17/93-5p in PDAC. Additionally, the oncogenic
potential of MYC stems from its function as a transcriptional factor
that interacts with a diverse array of factors to bind DNA [23].
Mounting evidence indicates that forming complexes with
different factors leads to different regulatory modes for the
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expression of downstream genes [23, 61], and whether there are
other factors involved in the MYC and MYEOV complex needs to
be further elucidated.

CONCLUSIONS
In summary, the results of our present study demonstrated a
previously undiscovered role of MYEOV in PDAC, as we showed
that elevated MYEOV expression promotes PDAC growth. Further
molecular analysis revealed that MYEOV acts as a tumor promoter
by associating with MYC to facilitate oncogenic miR-17/93-5p
expression in PDAC progression and may provide a potential
therapeutic strategy for PDAC patients.
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