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Spatial transcriptomics reveals gene expression characteristics
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Invasive micropapillary carcinoma (IMPC) is a special histological subtype of breast cancer, featured with extremely high rates of
lymphovascular invasion and lymph node metastasis. Based on a previous series of studies, our team proposed the hypothesis of
“clustered metastasis of IMPC tumor cells”. However, the transcriptomics characteristics underlying its metastasis are unknown,
especially in spatial transcriptomics (ST). In this paper, we perform ST sequencing on four freshly frozen IMPC samples. We draw the
transcriptomic maps of IMPC for the first time and reveal its extensive heterogeneity, associated with metabolic reprogramming.
We also find that IMPC subpopulations with abnormal metabolism are arranged in different spatial areas, and higher levels of lipid
metabolism are observed in all IMPC hierarchical clusters. Moreover, we find that the stromal regions show varieties of gene
expression programs, and this difference depends on their distance from IMPC regions. Furthermore, a total of seven IMPC
hierarchical clusters of four samples share a common higher expression level of the SREBF1 gene. Immunohistochemistry results
further show that high SREBF1 protein expression is associated with lymph node metastasis and poor survival in IMPC patients.
Together, these findings provide a valuable resource for exploring the inter- and intra-tumoral heterogeneity of IMPC and identify a
new marker, SREBF1, which may facilitate accurate diagnosis and treatment of this disease.
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INTRODUCTION
Invasive micropapillary carcinoma (IMPC) is a morphologically
distinctive form of breast cancer that has a special inverted growth
pattern [1]. It has been reported in multiple organs, including the
breast [2], lung [3], colon [4], pancreas [5] and bladder [6], etc.
Breast IMPC was first identified by Siriaunkgul and Tavassolil in
1993 [2], and is composed of small, hollow or morula-like clusters
of tumor cells without fibrovascular cores, surrounded by clear
stromal spaces [7]. Compared with invasive ductal carcinoma-not
otherwise specified type (IDC-NOS), IMPC is associated with a
higher incidence of lymphovascular invasion and lymph node
metastasis and a poorer prognosis [8, 9]. The unique clustered
growth pattern and aggressive biological behaviors render IMPC a
good model for studying tumor invasion and metastasis. Fu et al.
[8] further noted that even if an IMPC tumor was small in diameter
or consisted of only a few IMPC proportions, tumor cells were more
likely to invade and metastasize. Later, a series of studies proposed
the hypothesis of “clustered metastasis of IMPC tumor cells” [10–
18]. However, spatial transcriptomics (ST) characteristics have not
yet been reported.
ST technology has been designated as the method of 2020 [19].

Spatially resolved transcriptomics [20] combined with microscopic

imaging and mRNA sequencing can provide transcriptome data
for every spot from different locations in a tissue section. Spatial
visualization exploration was realized by analyzing gene expres-
sion levels in corresponding tissue regions. Here, we investigated
the gene expression characteristics of IMPC cells at the
morphological and transcriptomic scales simultaneously using
this popular method for the first time.
Therefore, based on a previous series of studies, we employed a

spatial transcriptomics sequencing (ST-seq) approach to assess the
transcriptome features of IMPC and dissect IMPC tumor hetero-
geneity in a relatively homogenous population, thus providing in-
depth transcriptional information. Our research identifies a
potential biomarker of IMPC and explores key genes associated
with the progression of IMPC tumors. Thus, this study provides a
further basis for precise diagnosis and treatment of IMPC.

MATERIALS AND METHODS
Freshly frozen IMPC samples
We collected four freshly frozen IMPC samples, all from breast cancer
patients undergoing modified radical mastectomy. Another tissue was
collected for the permeabilization optimization. All patients were
diagnosed as breast IMPC or IDC-NOS with IMPC components using
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preoperative core needle biopsy and intraoperative cryosection methods.
These patients were diagnosed and treated by the Breast Center of Tianjin
Medical University Cancer Institute and Hospital.
We collected the five tissues under the supervision of senior

pathologists, slowly washed the tissue blocks with 4 °C PBS, and cut out
small pieces of about 6.5 × 6.5 × 5mm3 containing IMPC components.
Next, they were embedded in OCT embedding solution (Sakura, #4532,
USA), and frozen in isopentane pre-cooled with liquid nitrogen. Cryosec-
tions were cut at 4 μm thickness, respectively. Hematoxylin-eosin staining
(H&E) (Eosin, Dako CS701, Hematoxylin Dako S3309, bluing buffer CS702)
was used to confirm that these tissues contained IMPC once again.

ST barcoded microarray information
The ST library preparation microarray (Visium Gene Expression Slide)
used in this study was purchased from 10X Genomics (https://
www.10xgenomics.com/). A slide includes four capture areas (the size of
each area is 6.5 × 6.5 mm), and a total of four tissue sections can be placed.
An optimization slide includes eight capture areas, the same size as the
gene expression slide. The diameter of each spot on the ST slide is 55 μm.
The distance between the centers of the two spots is 100 μm, and a total of
4992 spots cover an area of 6.5 × 6.5 mm2 (Fig. 1). Each spot with primers
that includes: Illumina TruSeq Read 1 (partial read 1 sequencing primer),
16 nt Spatial Barcode (all primers in a specific spot share the same Spatial
Barcode), 12 nt unique molecular identifier (UMI), and 30 nt poly(dT)
sequence captures poly-adenylated mRNA for cDNA synthesis. In strict
accordance with the ST-seq protocol [21], we used a gene expression slide
to perform spatial transcriptome sequencing on four cryosections.

Tissue Optimization
Cryosections were cut at 10 μm thickness, and placed on the six capture
areas on the slide. The other two areas are used for positive and negative
controls. The six cryosections on the slide were subjected to permeabiliza-
tion at different times to capture mRNA, and the reverse transcription was
performed to generate fluorescently labeled cDNA. Cheese the permea-
bilization time that resulted in maximum fluorescence signal with the
lowest signal diffusion. Our result found that the best permeabilization
time for this experiment was 18min.

Cryosection, H&E staining, and brightfield imaging for ST
A −20 °C microtome cryostat (Leica, CM1950) was used to cut tissue
cryosections at 10 μm thickness. These sections were mounted onto the
gene expression slide. Then the slide was placed on Thermocycler Adaptor
with the active surface facing up and incubated 1min at 37 °C, and fixed
for 30min with methyl alcohol in −20 °C followed by staining with H&E.
The brightfield images were taken on a Leica DMI8 whole-slide scanner at
10X resolution. H&E staining cryosections were histologically annotated by
three different senior pathologists.

Permeabilization and reverse transcription
Spatial gene expression was processed using Visum Spatial Gene
Expression Slide and Reagent Kit (10x Genomics, PN-1000184). Put the
slide on the slide cassette to create leakproof wells for adding reagents. For
each well, added 70 µl permeabilization enzyme to make it completely
cover every tissue for 18min. Incubated in the Thermocycler Adaptor at
37 °C for 15min. Finally, aspirated the tissue permeabilization enzyme with
a pipette, and 100 µl 0.1X SSC buffer was added to wash for each well. The
poly(dT) sequence of each spot will capture the mRNA released from the
cells. Then, 75 μl reverse transcription Master Mix was added for cDNA
synthesis. RT Master Mix is usually comprised of Nuclease-free Water, RT
Reagent, Template Switch Oligo, Reducing Agent B and RT Enzyme D. After
incubating at 53 °C for 45min, reverse transcription was initiated to
generate cDNA with spatial barcode information. Removed the Master Mix
reagent, added 75 μl 0.08 M KOH to each tissue section, and incubated at
room temperature for 5 min. Removed KOH, added 100 µl Qiagen Buffer
EB, then added 75 μl Second Strand Mix (including Second Strand Reagent,
Second Strand Primer and Second Strand Enzyme) at 65 °C for 15min.
Finally, removed the above-mentioned reaction reagents, and added
100 μl EB Buffer. After removing the EB Buffer, added 35 μl 0.08 M KOH and
incubated at room temperature for 10min. Transferred 35 µl of cDNA from
slide to a tube containing 5 μl Tris (1 M, pH 7.0) for amplification and cDNA
library construction.

cDNA amplification
Used qPCR to confirm the cycle number, according to the following
protocol (Supplementary Table S1). Then added 65 μl cDNA Amplification
Mix (including Amp Mix and cDNA Primers) to the cDNA sample and put it
in the Thermo Fisher Scientific (#4375786). Performed cDNA amplification
according to the protocol in Supplementary Table S2. The number of
amplification cycles was determined according to the Cq value of qPCR, as
follows: 12.2 corresponds to 12 cycles, 13.5 corresponds to 14 cycles, and
15.7 corresponds to 16 cycles. The amplified cDNA was cleaned up, and
finally the results were checked for the size of the amplified fragment
and the yield of the amplified product. cDNA amplification was performed
on an S1000TM Touch Thermal Cycler (Bio Rad).

Spatial gene expression library construction and sequencing
The spatial gene libraries were constructed using Visum Spatial Library
Construction Kit (10X Genomics, PN-1000184). Used chemical methods
to break the cDNA into fragments of about 200–300 bp, repaired the
ends, added poly(A) tails, and screened the cDNA fragments. Then
connected the P7 adapter to the cDNA, introduced the double-ended
Index (sample Index) of the sample through PCR amplification, and
finally performed fragment screening to obtain the cDNA library. After
the library was qualified, 3’ end sequencing was performed using
Illumina Novaseq6000 sequencer with a sequencing depth of at least

Fig. 1 The workflow for spatial transcriptomics (ST) and hierarchical clustering results. Attached a 10 µm thick tissue to the slide for ST
sequencing, performed bioinformatics analysis on the sequencing data, and displayed the hierarchical clustering results with t-SNE, heatmap,
and spatial graphs.
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100,000 reads per spot with pair-end 150 bp (PE150) reading strategy
(sequence libraries were generated and sequenced by CapitalBio
Technology, Beijing, China).

Reads alignment
The Spaceranger software was obtained from the 10X Genomics website
(https://support.10xgenomics.com/spatial-gene-expression/software/
downloads/latest). Reads alignment, filtering, barcode counting, and UMI
counting were performed with the Spaceranger count module to generate
a feature-barcode matrix using the default and recommended parameters.
After the library was constructed, the effective length of Read1 was 28 bp,
including 16 bp Barcode and 12 bp UMI. The effective length of Read2 was
91 bp. Read2 contained RNA sequences. Space Ranger uses the STAR
algorithm (version 2.5.1b) [22] to map Read2 to Genome Reference
Consortium Human Build 38.98 (GRCh38.98).

Basic ST data analysis
The Spaceranger software was used to perform effective barcode and UMI
counts, and generated a gene-barcode expression matrix for each sample,
including barcode-labeled spots and gene expression counts. Through the
visualized gene number distribution and UMI number distribution figure,
all the spots and expressed genes of the sample were evaluated. Imported
these data into Seurat 3.2 (R package) for quality control and downstream
analysis. Except for certain situations, default parameters were used in all
operations. Removed spots with transcripts less than 1000 and mitochon-
drial transcripts greater than 20%. Sctransform in Seurat was used to
normalize UMI count in each spot.

Hierarchical clustering for each sample
Dimensionality reduction was performed using principal component
analysis (PCA) and the first 30 principle components were used to
generate clusters by Seurat. Inspired by a graph-based algorithm, we
performed Seurat on embedding the spots in the K-nearest neighbor
(KNN) [23] graph structure and drew the edges between the spots with
similar gene expression patterns. Then tried to decompose the graph into
highly interconnected quasi clusters. It first constructed a KNN graph
based on Euclidean distance in PCA space. And according to the shared
overlap in the Jaccard distance, the edge weight between any two spots
was optimized. Two nonlinear dimensionality reduction techniques t-SNE
and UMAP were used to visualize the hierarchical clustering results,
respectively. The resolution of clustering is 0.8. Next, we used barcodes to
generate spatial hierarchical plots. Further, we selected the highly
expressed genes with avg_logFC > 0.1 and p_val_adj < 0.05 of every IMPC
hierarchical cluster in four samples, and displayed the common highly
expressed genes by Venn plot.

Integrated analysis of multiple samples
Integrated analysis of four samples was carried out by Seurat. Seurat could
integrate the gene-barcode expression matrix from multiple runs,
normalize those counts into the same sequencing depth and get a new
integrated matrix. The steps of hierarchical clustering and visualization
were detailed in hierarchical clustering for a single sample.

Gene functional enrichment analysis
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Reactome functional enrichment analyses on the top 50 differentially
expressed genes of each hierarchical cluster were performed by
ClusterProfiler [24], ReactomePA [25], and DOSE [26], using EnrichProfiler
R-packages with Benjamini-Hochberg multiple testing adjustment. The
results were visualized using the R package.

Protein–protein interaction analysis
Protein–protein interaction (PPI) was obtained from human protein
interaction data of STRING database [27] with combine_score ≥ 400.
The interaction of the top 50 genes of every cluster was extracted from
the database. The PPI results were visualized by Cytoscape software,
respectively.

Transcription factor analysis
The transcription factors were predicted within 2000 bp upstream and
500 bp downstream of the transcription start sites for the top 20 genes of

each cluster using JASPAR database [28] and the TFBSTools [29]. The gene
and TF network for each cluster was visualized using Cytoscape software,
respectively. In the figures, we arranged the genes in descending order of
degree, and mapped the first 100 combined transcription factors of
the gene.

Gene set enrichment
We considered enrichment in four gene set collections, including GO and
KEGG. GSEA was performed by using GSEA software (version 4.0.3) (https://
www.gsea-msigdb.org/gsea/index.jsp), which used predefined gene sets
from the Molecular Signatures Database (MSigDB v7.1). Gene expression
data was calculated by the mean UMI count of gene in one cluster and the
rest cluster, respectively. The minimum and maximum criteria for the
selection of gene sets from the collection were 0 and 500 genes,
respectively. Next, calculated the enrichment score (ES), normalized
enrichment score (NES), and false discovery rate (FDR). The FDR value of
25% was selected to determine whether the enriched functional gene set
was appropriate.

Immunohistochemistry staining of FFPE tissue
A total of 132 IMPC and 121 IDC-NOS formalin-fixed and paraffin-
embedded (FFPE) tumor tissues were continuously sectioned into 4 μm
thickness. Primary antibodies against SREBF1(1:200 dilution, ab191857,
Abcam), and FASN (1:3000 dilution, ab128870, Abcam) were used to
evaluate protein expression and were reviewed by at least three
pathologists. SREBF1 and FASN were graded according to the percentage
of positive tumor cells (0= 0%; 1 < 25%; 2= 25–50%; 3 > 50%) and the
intensity of staining in the tumor (0= no staining; 1=weak; 2=moderate;
3= high); the two scores were multiplied to obtain an overall score. If the
product of the two scores was > 4, they were considered positively stained.
And primary antibodies against CD45 (ZM-0183, ZSGB-BIO), CD3 (ZA-0503,
ZSGB-BIO), CD8(ZA-0508, ZSGB-BIO), and CD20 (TA800394, ZSGB-BIO) and
were also used to independently evaluate protein expression by three
pathologists. The immunoreaction was graded as follows: (−)= no positive
cells, (+)= 1–25% of the cells stained, (++)= 26–50% of the cells stained
and (+++)= 51–100% of the cells stained. The brightfield images were
taken on a Leica DMI8 whole-slide scanner at 40X resolution.

RT-qPCR
Another ten IMPC and nine IDC-NOS tumor samples were collected, and
RNA was extracted and reversed, respectively. RT-qPCR was used to detect
the expression of SREBF1 in the IMPC compared with IDC-NOS tumor
tissues. SREBF1 primer is
Forward primer: CGGCGCTGCTGACCGACATC
Reverse primer: CCCTGCCCCACTCCCAGCAT.
FASN primer is:
Forward primer: CCATCTACAACATCGACACCA
Reverse primer: CTTCCACACTATGCTCAGGTAG
RT-qPCR was conducted as follows: 95 °C for 30 s, 40 cycles of 95 °C for

5 s and 60 °C for 30 s, then 95 °C for 10 s, 60 °C for 5 s, 95 °C for 5 s. Reaction
volume is 10 μl.

TCGA data analysis
The correlation analysis result was obtained from GEPIA2 website (http://
gepia2.cancer-pku.cn/#index). The Pearson test was used for the compar-
ison and P value < 0.05 was considered statistically different.

Statistical analysis
All statistical analyses were performed using R (http://www.r-project.org)
and SPSS version 25.0 (SPSS Inc., Chicago, IL, USA). The clinicopathological
characteristics were compared using the Pearson χ2, Fisher’s exact test and
Mann–Whitney U-test. Correlations were analyzed using the Spearman or
Pearson rank test. Survival analysis (overall survival and disease-free
survival) of 82 IMPC and 80 IDC-NOS patients was performed using
Kaplan–Meier analysis. Log-rank test, two-sided. P < 0.05 was considered to
indicate statistical significance.

RESULTS
Basic data analysis of transcriptomes
To generate an unbiased hierarchical spatial map of the
transcriptome, we collected four freshly frozen samples from
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IMPC patients (Fig. 1). The clinicopathological information of the
four IMPC patients is provided in Supplementary Table S3. The
RNA integrity numbers (RIN) of all samples were in the range of
6.67–7.80 and met our requirements (Supplementary Table S4).
We acquired transcriptome data for a total of 7242 spots from the
four samples. In addition, 10,000 UMIs (median) and 5000 genes
(median) per spot were ascertained (Supplementary Table S5).
These sequencing data results were consistent with those of other
published papers using ST-seq [21, 30, 31]. The numbers of genes
and UMIs and the mitochondrial ratio are shown in Supplemen-
tary Fig. S1. The spots with a high proportion of mitochondrial
genes were filtered out. Next, we demultiplexed the reads and
identified their spatial locations in the four tissue samples using
location-specific barcodes.

Spatial genes expression visualization
We applied PCA on highly variable expressed genes across all
spots of each sample. Two methods, t-SNE [32] and UMAP [33],
were used to visualize the hierarchical clustering results. Next,
the clusters were classified into regions using specific barcodes
to generate ST maps of IMPC (Fig. 2A–F, samples 1 and 4). The
maps of samples 2 and 3 are shown in Supplementary Fig. S2A–
F. Different hierarchical clusters were assigned different colors,

and the cluster identity was interpolated across the morphology
to visualize major spatial patterns within each IMPC sample. The
tissue regions were pathologically identified by three senior
pathologists. The spatial maps were consistent with the
pathological annotations, reflecting the feasibility of distin-
guishing different spatial regions within a section based on
gene expression.

IMPC clusters were anatomically separate in spatial maps
In sample 1, we identified six main clusters, including cluster 0 and
2 (stromal region), cluster 1 (IDC-NOS region), cluster 3 (IMPC-like
region [34], the same as IMPC in morphology), and clusters 4 and 5
(IMPC region) (Fig. 2A, B). The top 20 differentially expressed
genes in every cluster are shown in heatmap plots (Fig. 2G).
A total of seven clusters were identified in sample 4 (Fig. 2E).

Heatmap plots of the top 20 highly expressed genes are shown in
Fig. 2H. Clusters 2, 4, and 5 were located at the IMPC region.
Clusters 0 and 3 were identified in the IDC-NOS region. The
heatmap plots of samples 2 and 3 are shown in Supplementary
Fig. S2G, H. In addition to cancer regions, sample 2 could also
distinguish regions of breast ductal epithelial cells (cluster 6) with
high expression levels of PTN, RGS2, CLU, and KRT15 (Supplemen-
tary Fig. S2G).

Fig. 2 Tumor morphology and hierarchical clustering results. A H&E-stained tissue images of sample 1 with marked IMPC (red), IDC-NOS
and IMPC-like (black), and stroma (yellow) tissue regions. B Hierarchical clustering of the spatial features in sample 1. Each cluster was assigned
a color. The cluster 0 (red) and cluster 2 (green) represent interstitial regions. The cluster 1 (yellow) represents IDC-NOS region. The cluster 3
(wathet) is IMPC-like region. Clusters 4 (blue) and 5 (pink) are the IMPC area. C t-SNE color visualization of hierarchical clustering profile in
sample 1. D H&E-stained tissue images of sample 4 with marked IMPC (red), IDC-NOS (black), and stroma (yellow) tissue regions. E Hierarchical
clustering of the spatial features in sample 4. Each cluster was assigned a color. The cluster 0 (red) and cluster 3 (cyan) represent IDC-NOS
regions. The cluster 1 (brown) and cluster 6 (pink) are stromal regions. The cluster 2 (green), 4 (blue), and 5 (purple) are the IMPC area. F t-SNE
color visualization of hierarchical clustering profile in sample 4. G, H Heatmap plots of sample 1 and sample 4. t-SNE, t-distributed statistical
neighbor embedding.
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Furthermore, we used the JASPAR databases and TFBSTools
to predict transcription factors. Several highly expressed genes
in IMPC regions were regulated by ZNF354C, SOX10, and MZF1
(Fig. 3A). These three transcription factors have been reported
to be related to tumorigenesis and progression [35–37] and may
be the key factors in the progression of IMPC.
IMPC tumor regions in samples 1 and 4 were composed of

multiple hierarchical clusters. Different IMPC clusters exhibited
the characteristics of anatomical separation, and were grouped
together rather than intermixed (Fig. 2B, E and Supplementary
Fig. S2B, E). In contrast, IMPC regions in samples 2 and 3 were
composed of only one cluster. Subsequently, we integrated the
sequencing data of four samples to generate a merged gene-
barcode expression matrix for PCA and visualization (Fig. 3B).
The four samples were also clearly separated in the t-SNE plot,
further demonstrating extensive heterogeneity between differ-
ent samples.
This study first delineated the spatial transcriptome of IMPC,

visually displaying the gene expression diversity in IMPC
regions, and also revealed inter- and intra-tumoral heterogene-
ity and uncovered the unexplored landscape of the IMPC tumor
region, where multiple tumor subclones converge in different
spatial regions.

Genetic heterogeneity was related to metabolic
reprogramming in IMPC
Two clusters represented two different metabolic states in the
IMPC region of sample 1. Sample 1 has six hierarchical clusters,
two of which are IMPC clusters (i.e., clusters 4 and 5). The
enrichment analyses showed that the top 50 up-regulated genes
in cluster 4 of sample 1 were mainly enriched for lipid metabolism,
such as unsaturated fatty acid metabolic, and long-chain fatty acid
metabolic (Fig. 3A-a). GSEA showed a strong association with fatty
acid beta oxidation and cilium assembly, etc (Supplementary Fig.
S3A). We observed higher expression of SCP2 in cluster 4 than in
the other clusters, which was associated with lipid metabolism
(Fig. 2G). Cluster 4 was an enhanced lipid metabolism group.
The functional enrichment results also showed that cluster 5 was

associated with lipid metabolism and carbohydrate metabolism,
including biosynthesis of unsaturated fatty acids, and glycolysis/
gluconeogenesis (Fig. 3A-b). High levels of lipid metabolism-related
genes (e.g., APOD, ALOX15B, SCD, LTF, and FASN) and carbohydrate
metabolism-related genes (e.g., TFF3 and PGK1) were found in
cluster 5 (Fig. 2G). Among the top 50 differentially expressed genes
of cluster 5 in sample 1 and cluster 2 in sample 4, a protein
interaction relationship was identified among SREBF1, FASN, and
SCD (Fig. 3C, D).
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Porphyrin and chlorophyll metabolism | hsa00860

mTOR signaling pathway | hsa04150
Taste transduction | hsa04742

Starch and sucrose metabolism | hsa00500
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Pathogenic Escherichia coli infection | hsa05130
Caffeine metabolism | hsa00232
Nitrogen metabolism | hsa00910

Thyroid cancer | hsa05216
Bladder cancer | hsa05219

Valine, leucine and ... degradation | hsa00280
Lysine degradation | hsa00310

Glutathione metabolism | hsa00480

mTOR signaling pathway | hsa04150
Endometrial cancer | hsa05213

Acute myeloid leukemia | hsa05221
Metabolism of xenobiotics ... P450 | hsa00980

RNA degradation | hsa03018
Bacterial invasion of epithelial cells | hsa05100

Melanoma | hsa05218

Adherens junction | hsa04520
B cell receptor signaling pathway | hsa04662

Cardiac muscle contraction | hsa04260
Fc epsilon RI signaling pathway | hsa04664

Protein digestion and absorption | hsa04974

ErbB signaling pathway | hsa04012

Pancreatic secretion | hsa04972
T cell receptor signaling pathway | hsa04660

Leukocyte transendothelial migration | hsa04670
Parkinson's disease | hsa05012

Oxidative phosphorylation | hsa00190
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reproductive structure development | GO:0048608
reproductive system development | GO:0061458

gland development | GO:0048732
epithelial cell development | GO:0002064

prostate gland stromal morphogenesis | GO:0060741
gland morphogenesis | GO:0022612

renal sodium ion transport | GO:0003096
bile acid secretion | GO:0032782

glial cell derived ... pathway | GO:0035860

anion homeostasis | GO:0055081
hepatocyte apoptotic process | GO:0097284

positive regulation of ... response | GO:1900103
connective tissue development | GO:0061448
cellular response to starvation | GO:0009267

response to estrogen | GO:0043627
renal absorption | GO:0070293

regulation of mammary ... proliferation | GO:0033599
response to starvation | GO:0042594

lung epithelial cell differentiation | GO:0060487
positive regulation of ... promoter | GO:0060261

regulation of plasma ... differentiation | GO:1900098
positive regulation of ... differentiation | GO:1900100

negative regulation of ... formation | GO:1905277
regulation of cell ... development | GO:2000606

negative regulation of ... development | GO:2000607
fibroblast growth factor ... formation | GO:2000699

glial cell derived ... formation | GO:2000701
regulation of fibroblast ... formation | GO:2000702
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Glycolysis / Gluconeogenesis | hsa00010
Pentose phosphate pathway | hsa00030

Fructose and mannose metabolism | hsa00051
Caffeine metabolism | hsa00232

Axon guidance | hsa04360
RNA transport | hsa03013

Galactose metabolism | hsa00052
DNA replication | hsa03030
Bladder cancer | hsa05219

Amino sugar and ... metabolism | hsa00520

mTOR signaling pathway | hsa04150
Taste transduction | hsa04742

Starch and sucrose metabolism | hsa00500
Inositol phosphate metabolism | hsa00562

p53 signaling pathway | hsa04115
Renal cell carcinoma | hsa05211

Pancreatic cancer | hsa05212
Bile secretion | hsa04976

Adherens junction | hsa04520
Gastric acid secretion | hsa04971

VEGF signaling pathway | hsa04370

Hematopoietic cell lineage | hsa04640
Salivary secretion | hsa04970

Gap junction | hsa04540
Dilated cardiomyopathy | hsa05414

Rheumatoid arthritis | hsa05323
GnRH signaling pathway | hsa04912
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pyruvate metabolic process | GO:0006090
purine ribonucleotide biosynthetic ... process | GO:0009152

ribonucleotide biosynthetic process | GO:0009260
glycolytic process | GO:0006096

purine nucleotide biosynthetic process | GO:0006164
ribose phosphate biosynthetic process | GO:0046390

ATP generation from ADP | GO:0006757
carbohydrate catabolic process | GO:0016052

purine containing compound ... process | GO:0072522
NADH regeneration | GO:0006735
canonical glycolysis | GO:0061621

glycolytic process through ... phosphate | GO:0061615
glycolytic process through ... phosphate | GO:0061620

purine ribonucleoside diphosphate ... process | GO:0009179
pyridine containing compound ... process | GO:0072524

developmental maturation | GO:0021700

lymph vessel morphogenesis | GO:0036303
organophosphate catabolic process | GO:0046434
adaxial/abaxial pattern specification | GO:0009955

mitochondria associated ubiquitin ... process | GO:0072671
regulation of RNA ... activity | GO:1900259

negative regulation of ... activity | GO:1900260
regulation of protein kinase D signaling | GO:1903570
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Parkinson's disease | hsa05012
Oxidative phosphorylation | hsa00190

Cardiac muscle contraction | hsa04260
Alzheimer's disease | hsa05010

Huntington's disease | hsa05016
Biosynthesis of unsaturated fatty acids | hsa01040

Nitrogen metabolism | hsa00910
Butanoate metabolism | hsa00650

Alanine, aspartate and ... metabolism | hsa00250
Fatty acid biosynthesis | hsa00061

Acute myeloid leukemia | hsa05221
Insulin signaling pathway | hsa04910

Synthesis and degradation ... bodies | hsa00072
Taurine and hypotaurine metabolism | hsa00430

Pancreatic cancer | hsa05212
Chronic myeloid leukemia | hsa05220

Terpenoid backbone biosynthesis | hsa00900
Small cell lung cancer | hsa05222

Apoptosis | hsa04210
Prostate cancer | hsa05215

Glyoxylate and dicarboxylate metabolism | hsa00630

Proximal tubule bicarbonate reclamation | hsa04964
Ascorbate and aldarate metabolism | hsa00053

Collecting duct acid secretion | hsa04966
Thyroid cancer | hsa05216

Pentose and glucuronate interconversions | hsa00040
Propanoate metabolism | hsa00640

Tight junction | hsa04530
Fructose and mannose metabolism | hsa00051
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purine ribonucleoside triphosphate ... process | GO:0009205
ribonucleoside triphosphate metabolic ... process | GO:0009199

purine nucleoside triphosphate ... process | GO:0009144
purine ribonucleoside monophosphate ... process | GO:0009167

purine nucleoside monophosphate ... process | GO:0009126
generation of precursor ... energy | GO:0006091

oxidative phosphorylation | GO:0006119
respiratory electron transport chain | GO:0022904

ribose phosphate biosynthetic process | GO:0046390
electron transport coupled ... transport | GO:0015990

NADH dehydrogenase complex assembly | GO:0010257
mitochondrial respiratory chain ... assembly | GO:0032981

cofactor biosynthetic process | GO:0051188
carboxylic acid biosynthetic process | GO:0046394

organic acid biosynthetic process | GO:0016053
regulation of small ... process | GO:0062012

fatty acid derivative ... process | GO:1901570
glutamate catabolic process | GO:0006538

regulation of cholesterol ... process | GO:0045540
regulation of sterol ... process | GO:0106118

positive regulation of ... process | GO:0062013
regulation of cholesterol ... process | GO:0090181

response to peptide hormone | GO:0043434
regulation of cofactor metabolic process | GO:0051193

gland development | GO:0048732
response to hyperoxia | GO:0055093
response to fatty acid | GO:0070542
response to metal ion | GO:0010038
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Fig. 3 Enrichment, transcription factor analysis and PPI of IMPC cluster in four samples. A Highlight spatial hierarchical plot, GO
enrichment (biological process, BP), KEGG enrichment and transcription factor analysis among top 50 gene in each IMPC cluster. GO, Gene
Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. The 30 terms with the lowest p.adjust values of the enrichment results were
selected to draw the enrichment plot. The horizontal axis is gene and the vertical axis is term. The color represents the gene’s logFC value.
p.adjust: use BH for multiple hypothesis testing, adjusted P value. p.adjust < 0.05 is a significant difference. Network diagram of highly
expressed genes and transcription factors, the blue dots represent differential genes, and the purple dots represent transcription factors. The
larger the node, the more nodes interacted to it. The arrows represent the enrichment terms related to metabolism, tumor immune response,
and some important signaling pathways. B The t-SNE diagram of the integrated sequencing data. The four samples were completely
distinguished. C, D The protein–protein interaction (PPI) plots of top 50 highly expressed genes in cluster 5 of sample 1 and cluster 2 of
sample 4. The circles are nodes, and the size represents the size of the degree.
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In contrast, the enrichment results of cluster 1(IDC-NOS
region) showed correlations in the tumor immune response
and some other signaling pathways (Supplementary Fig. S4A).
Cluster 3 (IMPC-like region) was a special histology area, and the
enrichment results of the top 50 up-regulated genes were
enriched for the tumor immune response, cell-substrate adhe-
sion and some signaling pathways (Supplementary Fig. S3B),
similar to cluster 1.
Only one IMPC cluster represented one metabolic state in

sample 2 or sample 3. Sample 2 has seven hierarchical clusters. A
total of five clusters were identified in sample 3. However, in
sample 2 or sample 3, only one cluster of metabolic enhancement
was found in the IMPC region. Notably, the top 50 differentially
expressed genes for cluster 4 in sample 2 were enriched for lipid
metabolism, amino acid metabolism, cilium, and the tumor
immune response (Fig. 3A-c and Supplementary Fig. S3C).
Specifically, highly expressed genes of cluster 4 in sample 2 were
enriched for microvillus. We observed increased expression of lipid
metabolism-related genes PLPP5, XBP1, and ESR1 and amino acid
metabolism-related gene GATA3 in cluster 4 of sample 2
(Supplementary Fig. S2G).
The differentially expressed genes for cluster 2 in sample 3

were enriched for lipid metabolism and carbohydrate metabo-
lism (Fig. 3A-d). In sample 3, the IMPC region (cluster 2) was
highly expressed in ADAMTS1, a gene related to lipid metabo-
lism, and PFKFB3, ENOSF1, and GPI, which are related to
carbohydrate metabolism (Fig. S2H). The enrichment results of
highly expressed genes in the IDC-NOS region (cluster 0 of
sample 3) were related to signaling pathways and immune
responses (Supplementary Fig. S4B).
Three IMPC clusters represented three different metabolic states

in sample 4. Sample 4 has seven hierarchical clusters, three of
which are IMPC clusters. Furthermore, sample 4 was characterized
by obvious heterogeneity within the IMPC region, including
clusters 2, 4, and 5. In cluster 2, the functional enrichment analyses
showed that the top 50 genes were correlated with lipid
metabolism, amino acid metabolism, cilium assembly and
microvillus (Fig. 3A-e and Supplementary Fig. S3D). Higher
expression levels of lipid metabolism-related genes (SREBF1 and
SCD) and amino acid metabolism-related genes (GLUL) were
observed in cluster 2 (Fig. 2H).
We performed enrichment analysis on cluster 4. Lipid metabo-

lism was found to be the main term (Fig. 3A-f and Supplementary
Fig. S3E), which was further supported by high expression of the
lipid metabolism gene LTF (Fig. 2H). Genes for cluster 5 were
enriched for lipid metabolism, carbohydrate metabolism and
immune response terms (Fig. 3A-g and Supplementary Fig. S3F).
We observed higher expression levels of some genes in cluster 5
(Fig. 2H), such as SERPINA3, LTF, PLAAT4 (lipid metabolism), and
ALDOA (carbohydrate metabolism).
IDC-NOS regions (cluster 0 and 3) were dominated by enriched

terms related to multiple metabolisms, immune response, and
other cancer signaling pathways (Supplementary Fig. S4C, D). Our
results elucidated that the immune response term was enriched in
all IDC-NOS clusters. Next, 50 IMPC and 41 IDC-NOS FFPE tumor
tissues were used for immunohistochemical staining of CD45,
CD3, CD8, and CD20. We found significantly higher expression
levels of CD45, CD3, and CD8 in the IDC-NOS group than in the
IMPC group (Mann–Whitney U-test, all P < 0.05), but no difference
in CD20 was observed (P > 0.05) (Supplementary Table S6). And T
lymphocytes were more numerous in IMPC and IDC-NOS tumors
than B lymphocytes (Mann–Whitney U-test, both P < 0.01,
Supplementary Table S7). It suggests that IDC-NOS tumors have
noticeable numbers of tumor infiltrating lymphocytes represent-
ing the immune response.
Polyclonal samples 1 and 4 originated from pN1 and pN2

patients with lymphovascular invasion, respectively. In contrast,
patients 2 and 3 had no lymph node metastasis and no

lymphovascular invasion (Supplementary Table S3). Extensive
intra-tumor heterogeneity correlates with a higher N stage and
a higher rate of lymphovascular invasion.

Spatial visualization characteristics of the tumor
microenvironment
In sample 1, the stromal region has two clusters, namely, cluster 0
and cluster 2. In the spatial map, cluster 0 was close to the IMPC
region, and cluster 2 was farther away from the IMPC region (Fig. 4A).
IGKC, IGHG4, IGHG3, and IGHA1 were highly expressed in cluster 0
(Fig. 4B–E). Functional enrichment analysis of cluster 0 showed that it
was associated with cellular interaction, complement pathway and
immune response (Fig. 4F, G and Supplementary Fig. S5A–H). The
complement system plays a major and complex role in the tumor
microenvironment. For one thing, the complement system was
found to be related to immune surveillance for antitumor [21, 38].
For another thing, some studies have reported that the complement
system was distinctly important for promoting tumor growth, which
has an immunosuppressive effect in tumor immunity [39, 40]. Our
study revealed that the complement pathways was enriched in the
tumor reactive stromal region (cluster 0), which played a vital role in
the growth of IMPC cells.
In contrast, genes for cluster 2 were enriched for oxidative

phosphorylation, extracelluar and intercellular transport terms
(Fig. 4H, I and Supplementary Fig. S5I). Although both are stromal
clusters, their enrichment terms are totally different. In particular,
the terms interstitial support, transduction and tumor immune
response were mainly enriched in cluster 0 (close to the IMPC
region in spatial position), while cluster 2 (far away from the IMPC
area) was not. In addition, only one metabolic enhancement
occurred when many interstitial cells were mixed in the IMPC
region (e.g., cluster 4). However, when fewer mesenchymal cells
were present (such as cluster 5), two types of metabolic
enhancement occurred simultaneously. Therefore, the difference
in spatial distribution between the stroma and the tumor may
affect the immune response of stromal region. The metabolic
mode of IMPC also changes when more mesenchymal cells are
close to the IMPC region.

High IMPC-specific SREBF1 expression was associated with
malignant biological behavior
Excitingly, SREBF1 was a common highly expressed gene in IMPC
clusters of all samples (“Methods”, Fig. 5A, B) and was the only
gene that was highly expressed in all IMPC clusters. Furthermore,
the expression level of SREBF1 in IMPC clusters was significantly
higher than that in IDC-NOS clusters (Student’s t-test, P < 0.05)
(Fig. 5C).
FASN is a target gene of SREBF1 [41], and a positive

correlation was found between them (R= 0.400, P= 0.000)
using the TCGA database (Fig. 5D). In addition, in IMPC clusters
of samples 1 and 4, the expression levels of FASN were
significantly higher than those in IDC-NOS (Student’s t-test, P <
0.05) (Supplementary Fig. S6A–G).
The RT-qPCR results revealed that SREBF1 and FASN showed

significantly high expression in ten IMPC and nine IDC-NOS tumor
tissues, respectively (Student’s t-test, P= 0.013 and 0.037) (Fig. 5E
and Supplementary Fig. S6H). In all, 82 IMPC and 80 IDC-NOS FFPE
tissues were used for immunohistochemical staining of SREBF1
and FASN. The expression of SREBF1 and FASN was significantly
high in IMPC, and the difference was statistically significant
(Pearson χ2 test, P= 0.000) (Fig. 6A and Supplementary Fig. S7A).
The expression of SREBF1 and FASN proteins was significantly
associated with a higher level of lymph node metastasis in IMPC
(SREBF1, R= 0.405, P= 0.000; FASN, R= 0.521, P= 0.000) (Supple-
mentary Fig. S7B). The high expression levels of the SREBF1 and
FASN proteins indicated a poor prognosis for overall survival and
disease-free survival time (based on the log-rank test, P < 0.05 for
both) (Fig. 6B).
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DISCUSSION
Breast cancer accounts for 24.5% of the total number of new
cancer cases in women worldwide, overtaking lung cancer as the
most common cancer in the world [42]. IMPC is classified as a
special histologic subtype of breast cancer. The unique growth
pattern and histological morphology caused by polarity reversal,
facilitate IMPC tumor cell clusters’ detachment, and these clusters
break into single cells or smaller clusters, thereby promoting
invasion and metastasis [10]. To explore the inter- and intra-
tumoral heterogeneity of IMPC and understand why IMPCs have
aggressive biological behaviors, such as very high rates of lymph
vascular invasion and lymph node metastasis [8, 11], we
conducted this study to investigate the gene expression
characteristics of IMPC at the spatial transcriptome level.
Single-cell RNA-seq can identify oncogenic drivers, explore the

heterogeneity and reconstruction of evolutionary lineages [43–
45]. Although breakthroughs in the immune treatment and
chemoresistance of various malignant tumors, such as breast
cancer [46] and hepatocellular carcinoma [47], have been
achieved, information on the spatial locations of tumor tissues is
lacking. In our study, we applied ST-seq, which quantified an array
of transcriptomes across a tissue section, to unravel gene spatial
expression characteristics in IMPC.
Some studies have reported that the tumor heterogeneity of

breast cancer is correlated with changes in chromosomes and
genes [48]. Heterogeneity affects multiple developmental stages
of tumor. Nicholas et al. [49] observed that tumor subpopulations
may be anatomically separate or intermixed. That is, a “tumor

subclone” can be separated in different areas, or scattered and
crossed in the same region. Studying the distribution character-
istics of tumors subclones enables us to determine the develop-
mental organization of tumor growth and the migratory pattern.
In our study, two of the four samples had different clusters in the
IMPC region, and “subclones” were clustered in different regions
and separated from each other. The patterns of special growth
and development characterized by IMPC subpopulations require
further research and analysis.
Several studies have found that tumor cells can re-adapt to the

environment through metabolic reprogramming to maintain
advantages in proliferation and metastasis [50, 51]. All IMPC
clusters had abnormal lipid metabolism enhancement. Fatty acids
are the main energy substances of the body in the tumor-bearing
state, and may support the growth of tumor cells by providing
metabolic substrates for energy production [52]. Under the energy
stress of tumor cells, the fatty acid β oxidation pathway can also
provide energy for tumor cells. This form may be an important
metabolic change in tumor development [53]. Abnormal carbohy-
drate metabolism enhancement is also a characteristic change in
IMPC. The Warburg effect [51] holds that glycolysis in tumor cells
is abnormally active, and is preferentially used to provide cells
with energy. The citric acid cycle (TCA) is the key means for
prostate cells to transform into malignant tumor cells [54]. Some
researchers have found that the fatty acid-β oxidation pathway is
enhanced in prostate cancer and provides ATP and acetyl-CoA,
which can also accelerate the oxidative metabolism of citric acid
[53]. Metabolic reprogramming is an important feature that

Fig. 4 The spatial distribution of stromal regions affects the gene expression of IMPC regions in sample 1. A The spatial distribution
position of two stromal clusters (cluster 0 and 2). The stroma (green cluster) is far from IMPC regions (blue and pink clusters). Another stroma
(red cluster) is near IMPC regions. B–E The expression level of IGKC, IGHG4, IGHG3, and IGHA1 genes on the spatial plots. F, G The enrichment
results of cluster 0 highly expressed top 50 genes on GO (BP) and KEGG. H, I The enrichment results of cluster 2 highly expressed top 50 genes
on GO (BP), and KEGG. The arrows represent that these terms were linked to immune response, cellular interaction, complement pathway, and
oxidative phosphorylation, etc.
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distinguishes IMPC and IDC-NOS and may also be a key
mechanism leading to the special growth mode and high rates
of invasion and metastasis.
Highly expressed genes in the IDC-NOS regions of the four

samples were mainly enriched in the immune response of the
tumor. The immunohistochemistry results also confirmed the
presence of more lymphocyte infiltration in IDC-NOS regions
than in IMPC regions. The IMPC region lacks the immune-
surveillance antitumor effect of T lymphocyte infiltration [55]. A
fierce interaction occurs between immune cells and tumor cells
in IDC-NOS regions. Tumor cells interact with the immune
microenvironment, and immune cells play an important role in
tumor immunity, indirectly or directly inhibiting the growth and
invasion of tumor cells. In addition, the highly expressed genes
of IDC-NOS were also related to the formation of extracellular
matrix and cell-cell interaction. Reports in the literature indicate
that the extracellular matrix of breast cancer stroma is
remodeled, which plays an important role in the invasion and
metastasis of tumor cells [56]. Taken together, the IDC region has
a stronger tumor immune response and more lymphocyte
infiltration than the IMPC. The lack of an antitumor effect of
lymphocyte infiltration may be one of the reasons for the
malignant biological behavior of IMPC.
In our study, a new gene expression characterization of the

stroma in the proximity of IMPC was elucidated by spatial

mapping. The stromal regions show different gene expression
characteristics, which are related to the distance between them
and IMPC. This study revealed high levels of immunoglobulin-
related genes within the stroma close to IMPC, whereas the
stroma far away from IMPC was related to oxidative phosphoryla-
tion. A high level of immunoglobulin secretion indicates that the
immune effect of lymphocytes in the cancer area is active. This
type of stroma is regarded as an emerging hallmark of tumor
invasion and metastasis [21]. The phenomenon of different
interstitial functions caused by different spatial distributions can
be clearly observed by spatial atlas gene expression.
Microvilli are abundant on the outer surfaces of the IMPC tumor

cell clusters under electron microscopy, and most of the microvilli
are gathered in the movement direction of the IMPC cell clusters
[10]. The assembly and formation of cilia can significantly promote
the invasion and metastasis of pancreatic cancer, lung cancer,
lymphoma and other tumors [57].
SREBF1 is a key transcription factor regulating FASN in lipid

metabolism [58] and is regulated by the PI3K-mTORC1-AKT
signaling pathway [59]. Phosphorylation of mTORC1-dependent
phospholipid-1 can promote SREBF1 to enter the nucleus [60].
FASN is a key enzyme for the de novo synthesis of long-chain fatty
acids. Under pathological conditions, SREBF1 and FASN have been
reported to be a pair of metabolically related oncogenes [58],
which have been confirmed to be related to prostate cancer and

Fig. 5 SREBF1 was a common highly expressed gene in the IMPC clusters of four samples. A The Venn plot showed that SREBF1 was a
common high expression gene in all IMPC clusters of the 4 samples. B SREBF1 was highly expressed in IMPC clusters of each sample in spatial
plots. C Boxplot of SREBF1 expression level in IMPC clusters versus IDC-NOS clusters. Bar represents median, and boxplot represents quartiles;
scale in log10(RPM). Student’s t-test for comparison between two groups in each sample. The difference was significant in sample 1 (P < 2e-16),
sample 3 (P= 2.1e-08) and sample 4 (P < 2e-16). D The correlation analysis between SREBF1 and FASN using TCGA database. The Pearson
correlation coefficient was used, two-sided. P < 0.05 was considered to indicate statistical significance. E SREBF1 was more highly expressed in
IMPC tumor tissues using RT-qPCR. Bar represents median, and boxplot represents quartiles. Student’s t-test for comparison. The two groups
were significantly different (P= 0.013).
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breast cancer [61–64]. In recent years, antitumor treatments
targeting enzymes or transcription factors in cell metabolism have
become a research hot spot. SREBF1/FASN may play an extremely
important role in the invasion and metastasis of IMPC. The specific
mechanism and whether they can be used as target genes for
IMPC precision therapy require further research and verification.
In summary, this study reports ST maps of IMPC for the first time

and further improves the research hypothesis of “clustered
metastasis of IMPC tumor cells” postulated in our previous
research. Furthermore, we revealed that IMPC tumor cells have
extensive heterogeneity, closely related to metabolic reprogram-
ming based on lipid metabolism. SREBF1 is associated with the
aggressive biological behavior of IMPC. These results provide a
powerful basis and targeted molecules for the precise diagnosis
and treatment of IMPC.
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