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Inhibition of DTYMK significantly restrains the growth of HCC
and increases sensitivity to oxaliplatin
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Most patients with hepatocellular carcinoma (HCC) are in the middle or advanced stage at the time of diagnosis, and the
therapeutic effect is limited. Therefore, this study aimed to verify whether deoxythymidylate kinase (DTYMK) increased in HCC and
was an effective therapeutic target in HCC. The findings revealed that the DTYMK level significantly increased and correlated with
poor prognosis in HCC. However, nothing else is known, except that DTYMK could catalyze the phosphorylation of deoxythymidine
monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). A number of experiments were performed to study the
function of DTYMK in vitro and in vivo to resolve this knowledge gap. The knockdown of DTYMK was found to significantly inhibit
the growth of HCC and increase the sensitivity to oxaliplatin, which is commonly used in HCC treatment. Moreover, DTYMK was
found to competitively combine with miR-378a-3p to maintain the expression of MAPK activated protein kinase 2 (MAPKAPK2) and
thus activate the phospho-heat shock protein 27 (phospho-HSP27)/nuclear factor NF-kappaB (NF-κB) axis, which mediated the drug
resistance, proliferation of tumor cells, and infiltration of tumor-associated macrophages by inducing the expression of C-C motif
chemokine ligand 5 (CCL5). Thus, this study demonstrated a new mechanism and provided a new insight into the role of mRNA in
not only encoding proteins to regulate the process of life but also regulating the expression of other genes and tumor
microenvironment through the competing endogenous RNA (ceRNA) mechanism.
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INTRODUCTION
The 5‐year relative survival rate of liver cancer is only 20%, and
the incidence rate is rising annually [1]. Hepatocellular carcinoma
(HCC) is the most common type of all liver cancers (comprising
80% of cases). Infection with hepatitis B virus (HBV) and hepatitis
C virus, alcoholic liver disease, and most probably nonalcoholic
fatty liver disease are major risk factors for HCC. Among them,
chronic HBV infection accounts for ~50% of all cases of HCC [2].
Most patients with HCC are in the middle or advanced stage at
the time of diagnosis, with a high degree of malignancy, easy
recurrence, and poor prognosis, which seriously threatens their
health and life [3, 4]. The treatment of HCC often requires
multidisciplinary knowledge, including surgery, hepatology,
interventional radiology, oncology, and so forth [5, 6]. Orthotopic
liver transplantation or surgical resection is considered the most
effective treatment; alternative nonsurgical treatments include
microwave coagulation therapy, percutaneous acetic acid injec-
tion, laser interstitial thermal ablation therapy, radiofrequency
ablation, and cryoablation therapy [7, 8]. However, the long-term
therapeutic effect of HCC remains unsatisfactory, especially in
patients with advanced unresectable disease. Oxaliplatin is one
of the most commonly used chemotherapeutic drugs in

transcatheter arterial chemoembolization, hepatic arterial infusion,
and systemic administration of HCC [9–11], although oxaliplatin
resistance is also an important reason for poor therapeutic effect
and recurrence of HCC [12, 13]. Hence, finding effective markers
and targets of HCC and increasing the sensitivity to drugs are
critical to improving the prognosis of patients with HCC.
DNA synthesis is an essential prerequisite for cell replication,

especially in tumor cells. Therapeutic agents that target
deoxyribonucleoside triphosphate synthesis and metabolism
are commonly used in the clinical treatment of several cancer
types [14]. The deoxythymidine-5′-monophosphate (dTMP) is
synthesized from the methylation of deoxyuridine-5′-monopho-
sphat by thymidylate synthase in the de novo pathway [15]. In
the salvage pathway, dTMP is produced from the phosphoryla-
tion of thymidine by thymidine kinase. Deoxythymidylate kinase
(DTYMK) can catalyze the phosphorylation of dTMP to form
dTDP. Besides, it is the first merged step of both salvage and de
novo pathways in the production of dTTP, which is an important
material for DNA synthesis [16, 17]. Previous studies reported
that the knockdown of DTYMK inhibited this pathway, leading to
a decrease in the product dTDP and the accumulation of the
substrate dTMP [18]. However, nothing else is known, except that
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DTYMK could catalyze the phosphorylation of dTMP to form
dTDP. Few studies have reported on the role of DTYMK,
particularly in cancer occurrence and progression. According to
the results of The Cancer Genome Atlas (TCGA), the expression of
DTYMK increased and associated with a poor prognosis in several
cancers. Thus, this study aimed to verify whether DTYMK
expression increased in HCC and was an effective therapeutic
target in HCC.

RESULTS
Increased expression of DTYMK in HCC
After analyzing HCC data from the TCGA, the top 100 mRNAs
were upregulated most significantly (fold change > 2), and the
top 100 genes with the most significant survival differences were
intersected to obtain the critical genes in HCC genesis and
development (Fig. 1A). Eight genes fitted the inclusion criteria:
FAM189B, DTYMK, CDC20, CDKN2C, KIFC1, PTTG1, KIF2C, and
UCK2 (Fig. 1B). Among these genes, this study focused on DTYMK.
No in-depth studies on DTYMK have been reported to date.
DTYMK was found to be highly expressed in Pan-Cancer Atlas,
especially in HCC (Fig. 1C). Besides, the expression of DTYMK was
related to tumor stages and grades in HCC according to the
results of TCGA (Figs. 1D and E). Whether DTYMK expression
increased in HCC was verified by examining 20 HCC tissues and
paired adjacent nontumor tissues and HCC cell lines using
quantitative polymerase chain reaction (qPCR) and Western blot
assays. DTYMK was found to increase in HepG2, Hun7, and Hep3B
HCC cell lines compared with LO2 hepatic epithelial cells and in
most HCC tissues (Fig. 1F–H).

Decreased expression of DTYMK inhibited HCC growth and
increased sensitivity to oxaliplatin
Figure 2A shows how DTYMK was involved in DNA synthesis. After
the knockdown of DTYMK, the proliferation of Hep3B and Huh7
HCC cells was significantly inhibited (Fig. 2B and C), while the
growth of the tumor cells was partially restored after the addition
of dTDP, which was the product of DTYMK. The cell cycle
experiment showed that the G0/G1 phase was prolonged and the

S phase was shortened after DTYMK knockdown in Huh7 and
Hep3B cell lines (Fig. 2D and E). In addition, the levels of cell cycle
proteins CDK2, CDK4, Cyclin A2, and Cyclin D1, which were
involved in the G0/G1 and S phases, were significantly reduced
after DTYMK knockdown (Fig. 2F). Besides, Huh7 and Hep3B cells
became more sensitive to oxaliplatin, which was a commonly used
chemotherapeutic drug for HCC, after DTYMK knockdown (Fig. 2G
and H). The cleavage of Poly ADP-Ribose Polymerase (PARP)
during apoptosis has been reported to facilitate cellular disas-
sembly and ensure the completion and irreversibility of the
process [19]. Bcl-2/Bax is widely reported as a rheostat that
regulates cell death [20]. In this study, cleaved-PARP and Bax
increased and Bcl-2 decreased in the sh-DTYMK group than in the
other groups (Fig. 2I). The sensitivity to sorafenib also increased
after DTYMK knockdown (Supplementary Fig. 1).

DTYMK acted as ceRNA to affect the function of MAPKAPK2
To find out how DTYMK affected the growth of HCC and sensitivity
to oxaliplatin, data from TCGA were analyzed using starBASE v2.0
[21]. The results revealed that DTYMK could act as an endogenous
competitive RNA (ceRNA) to affect the function of several genes,
including MAPKAPK2, AKT1, CART, and NRF1, by binding to
microRNA-378a-3p (miR-378a-3p). It was reported that miR-378a-
3p could play important roles in cancer development [22]. The
results of TCGA, GSE74618, and GSE153089 showed that miR-
378a-3p significantly decreased in HCC than in normal tissues
[23, 24] (Fig. 3A). Similarly, RNA sequencing (RNA-seq) of six paired
HCC and normal liver tissues and qPCR results of 20 paired HCC
and normal liver tissues from Sun Yat-sen University Cancer Center
showed that miR-378a-3p significantly decreased in HCC (Fig. 3B
and C). MAPKAPK2, AKT1, CART, and NRF1 could be inhibited by
miR-378a-3p, and their expression decreased after DTYMK knock-
down (Fig. 3D and E). According to the clustering analysis
of RNA-seq, MAPKAPK2 showed quite similar expression trends
with DTYMK (r= 0.585, p= 0.046) (Fig. 3F and G). Besides, miR-
378a-3p with an opposite expression trend of DTYMK (r=−0.377,
p= 0.228) and MAPKAPK2 (r=−0.546, p= 0.066), although the
difference was not significant due to the insufficient number of
samples (Fig. 3H and I). Highly relevant expression of DTYMK and

Fig. 1 Increased expression of DTYMK in HCC. A Gene analysis of patients with HCC from TCGA. B Eight genes were upregulated and had
the most significant survival differences (C) DTYMK expression increased in multiple cancer types, especially in HCC. D Expression of DTYMK
was related to cancer stages. E Expression of DTYMK was related to cancer grades. F Increased RNA level of DTYMK in HepG2, Huh7, and
Hep3B HCC cell lines. G Increased RNA level of DTYMK in most patients with HCC. H Increased protein level of DTYMK in most patients
with HCC.
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MAPKAPK2 was also found in HCC (r= 0.229, p < 0.001), kidney
chromophobe (KICH, r= 0.468, p < 0.001), thyroid carcinoma
(THCA, r= 0.281, p < 0.001), pancreatic adenocarcinoma (r=
0.333, p < 0.001), brain lower-grade glioma (r= 0.476, p < 0.001),
and uveal melanoma (r= 0.318, p= 0.004) (Fig. 3J). MAPKAPK2
expression increased in 15 of 20 HCC tissues (Fig. 3K), which
was highly similar to the DTYMK expression (r= 0.630, p < 0.01)
(Fig. 3L). Similar to the RNA-seq, the results of qPCR from the 20
clinical samples showed miR-378a-3p had an opposite expression
trend of DTYMK (r=−0.839, p < 0.001) and MAPKAPK2 (r=
−0.565, p= 0.01) (Fig. 3M and N). In addition, the RNA of DTYMK
and MAPKAPK2 both located mainly in the cytoplasm, which was
considered as a necessary condition for working through ceRNA
(Fig. 3O). MAPKAPK2 could be significantly inhibited after DTYMK
knockdown, and thereby inhibit the phosphorylation of heat
shock protein 27 (HSP27), which could promote nuclear factor
NF-kappaB (NF-κB) in the nucleus (Fig. 3P). Potential binding sites
between DTYMK, MAPKAPK2, and miR-378a-3p are shown in
Fig. 3Q. Fluorescence intensity was evaluated using dual-luciferase
reporter assay after co-transfection with miR-378a-3p mimics to
investigate whether miR-378a-3p could inhibit DTYMK and

MAPKAPK2 (Fig. 3R). The Western blot analysis showed that
miR-378a-3p could significantly inhibit DTYMK/MAPKAPK2/p-
HSP27 and prevent NF-κB in the nucleus (Fig. 3S).

Tumor formation rate and growth speed were significantly
inhibited after DTYMK knockdown in vivo
After DTYMK knockdown, a stronger inhibitory effect on tumor
formation rate (tumors formatted in only 3 in 10 mice in the sh-
DTYMK group) and tumor growth speed (p= 0.039) was observed
in transplanted carcinoma in nude mice (Fig. 4A–C). The tumor
sizes in the negative control group decreased partially after
oxaliplatin injection, while no tumors were formatted in the sh-
DTYMK group (Fig. 4D). A schematic diagram of the tumor
xenotransplantation model is shown in Fig. 4E. The results of
immunohistochemistry showed that the expression of DTYMK and
MAPKAPK2 reduced in the sh-DTYMK group compared with the
negative control group (Fig. 4F). Besides, more CD163+ M2 tumor-
associated macrophages (TAMs) were found to infiltrate into the
tumor and adjacent stroma. This might be due to the higher
expression of C-C motif chemokine ligand 5 (CCL5), which was a
powerful chemokine to recruit monocytes and could be regulated

Fig. 2 Decreased expression of DTYMK inhibited proliferation and increased sensitivity to oxaliplatin in HCC cells. A DTYMK catalyzed the
phosphorylation of dTMP to form dTDP. B and C Decreased DTYMK significantly inhibited the proliferation of Huh7 and Hep3B cells, while
the supplement of dTDP partly rescued the proliferation ability. D and E Decreased expression of DTYMK could lead to cell cycle arrest and
reduce the proportion of cells entering the G1 phase. F Decreased expression of CDK2, CDK4, Cyclin A2, and Cyclin D1 after DTYMK
knockdown. G and H Increased sensitivity to oxaliplatin after DTYMK knockdown. I Reduced Bcl-2 and increased cleaved-PARP and Bax in the
sh-DTYMK group than in the other groups. DTY, DTYMK; OXA, Oxaliplatin. *p < 0.05; **p < 0.01; ***p < 0.001.
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by NF-kB, in the negative control group (Fig. 4F). The statistical
analyze of the IHC images is showen in Fig. 4G. The enzyme-linked
immunosorbent assay (ELISA) showed that the level of CCL5 in cell
supernatant decreased after DTYMK-knockdown (Fig. 4H). The
migration assay showed that CCL5 could stimulate the migration
of human monocyte cell line THP1 and CD14+ peripheral blood
monocytes (PBMC) (Fig. 4I).

Increased expression of DTYMK was associated with a poor
prognosis
A total of 105 HCC paraffin-embedded tissues obtained from the
Sun Yat-sen University Cancer Center were used to perform
immunohistochemical assays to detect protein levels of DTYMK in
HCC tissues and adjacent nontumor tissues. The results showed
that the protein level of DTYMK was significantly upregulated in

Fig. 3 DTYMK acted as ceRNA to affect the function of MAPKAPK2. A Decreased expression of miR-378a-3p in HCC from TCGA and GEO.
B and C Decreased expression of miR-378a-3p in HCC from RNA-seq of 6 paired HCC tissues and qPCR of 20 paired HCC tissues. D Expression
of DTYMK, MAPKAPK2, AKT1, CART, and NRF1 could be inhibited by miR-378a-3p. E Decreased expression of MAPKAPK2, AKT1, CART, and
NRF1 after DTYMK knockdown. F Heatmap (RNA-seq) showed a clear correlation between DTYMK and MAPKAPK2. G Positive correlation
between DTYMK and MAPKAPK2 (RNA-seq). H and I Opposite relation between miR-378a-3p, DTYMK, and MAPKAPK2 (RNA-seq). J Significant
correlation between DTYMK and MAPKAPK2 in multiple cancer types. K and L Increased expression of MAPKAPK2 in 16 of 20 patients with
HCC, which correlated with the expression of DTYMK. M An opposite expression trend existed between miR-378a-3p and DTYMK. N An
opposite expression trend existed between miR-378a-3p and MAPKAPK2. O Subcellular locations experiments showing that DTYMK and
MAPKAPK2 were enriched in the cytoplasm. P Decreased expression of MAPKAPK2 and p-hsp27, and decreased nuclear translocation of NF-κB
(p65) after DTYMK knockdown. Q Potential binding sites between DTYMK, MAPKAPK2, and miR-378a-3p. R MiR-378a-3p bound and
significantly inhibited the expression of DTYMK and MAPKAPK2. S MiR-378a-3p inhibited the expression of DTYMK, thus inhibiting
MAPKAPK2/p-hsp27/NF-κB (p65). *p < 0.05; **p < 0.01; ***p < 0.001.
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HCC tissues compared with adjacent nontumor tissues (Fig. 5A).
Higher expression of DTYMK was found to correlate with poorer
overall survival (OS) (p < 0.001) and disease-free survival (DFS)
(p= 0.047) (Fig. 5B). Similar results were obtained from the TCGA
(Fig. 5C). According to the results of the univariate and multivariate
Cox regression analyses, the relative risk of DTYMK was always
greater than 1 (p= 0.009, p= 0.019, respectively), which signified
that DTYMK was an independent risk factor for HCC (Table 1). The
chi-square test result was shown in Supplementary Table 1. In
addition, DTYMK was found to correlate with the infiltration of M2-
type macrophages in HCC (r= 0.262, p < 0.001), which could
promote the occurrence and development of tumors (Fig. 5D).
The expression of DTYMK and the infiltration of M2-type
macrophages were combined to predict the prognosis of patients
with HCC more accurately, obtained using TIMER 2.0 [25] (Fig. 5E).

DISCUSSION
With the improvement in molecular biological techniques, some risk
factors and molecular mechanisms of HCC have been revealed and
several target drugs are being used [26–31]. However, the under-
standing of HCC is still uncomprehensive and the therapeutic effect

is still unoptimistic [32, 33]. The data of HCC were analyzed from the
TCGA database for an in-depth understanding of the mechanism of
HCC. The expression level of eight genes was significantly increased
(fold change > 2) in HCC, including FAM189B, DTYMK, CDC20,
CDKN2C, KIFC1, PTTG1, KIF2C, and UCK2, and were associated with
poor prognosis. Among these genes, DTYMK was the focus of the
present study. Its role in liver cancer was unclear. Only few studies
reported on the role of DTYMK, particularly in cancer occurrence and
progression. The division and proliferation of tumors cannot be
separated from DNA replication [34]. DTYMK has been reported to
catalyze the phosphorylation of dTMP to form dTDP, which is an
important material in DNA synthesis [18]. Besides, the overexpres-
sion of DTYMK has been reported to partially reverse the inhibitory
effect of B029-2 on HCC cells, which is a novel p300 inhibitor [35]. In
this study, the growth of Huh7 and Hep3B HCC cells and the
expression of cell cycle proteins CDK2, CDK4, Cyclin A2, and Cyclin
D1, which were involved in the G0/G1 and S phases, significantly
reduced after DTYMK knockdown. Besides, Huh7 and Hep3B cells
became more sensitive to oxaliplatin and sorafenib after DTYMK
knockdown. DTYMK expression was found upregulated in 5-
fluorouracil-resistant derivatives, suggesting that DTYMK might be
related to drug resistance in colorectal cancer cells [36].

Fig. 4 Tumor formation rate and growth speed were significantly inhibited after DTYMK knockdown in vivo. A and B A stronger inhibitory
effect on tumor formation rate was exhibited in transplanted carcinoma in nude mice (n= 5 per group). C Tumor growth speed was
significantly inhibited after DTYMK knockdown (p= 0.039). D Tumor sizes in the negative control group decreased partially after oxaliplatin
treatment, while no tumors were formatted in the sh-DTYMK group (n= 5 per group). E Schematic diagram of tumor xenotransplantation
model. F The results of immunohistochemistry showed that the expression of DTYMK and MAPKAPK2 reduced in the sh-DTYMK group
compared with the negative control group. Moreover, higher CCL5 expression and more CD163+ TAMs were found in the negative control
group. Scale bar= 50 μm. G Statistical analysis of the mice IHC results. H ELISA showed an inhibited level of CCL5 after DTYMK knockdown.
I CCL5 could stimulate the chemotactic migration of monocytes. NC negative control, DTY DTYMK. *p < 0.05; **p < 0.01; ***p < 0.001.
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The bioinformatics analysis showed that the expression levels of
DTYMK and MAPKAPK2 highly correlated in various tumor types,
and they shared the same binding site on miR-378a-3p. Then, miR-
378a-3p was found to inhibit the expression of both DTYMK and
MAPKAPK2. MicroRNAs (miRNAs) are a large family of posttran-
scriptional regulators of gene expression, with ~21 nucleotides in
length and many developmental and cellular processes controlled
by miRNAs in eukaryotic organisms [37]. The discovery of miRNAs
opened new doors for the development of novel strategies to
combat diseases. Previous studies reported that miR-378a-3p was
involved in metabolism, mitochondria, and autophagy [38]. Li et al.
reported that miR-378a-3p inhibited the expression of insulin-like
growth factor 1 receptor in colorectal cancer cells and might play
an important role as a tumor suppressor gene in the initial stage of
carcinogenesis of colorectal cancer [39]. MiR-378-3p could also
limit the activation of hepatic stellate cells and liver fibrosis by
suppressing the expression of Gli3 [40]. No studies have reported
that miR-378a-3p could inhibit DTYMK or MAPKAPK2 at present.
This study was the first to verify that DTYMK and MAPKAPK2 could
combine competitively with miR-378a-3p to maintain the expres-
sion of each other, and thus affect phospho-HSP27/NF-κB [41–44].
The HSP27/NF-κB axis is increasingly recognized as a crucial player
in many steps of cancer initiation and progression, including
immune responses, chemoresistance, and radiation-induced fibro-
sis [45–48]. The present study indicated that DTYMK mediated
oxaliplatin resistance of HCC through the MAPKAPK2/p-HSP27/NF-
κB pathway. Survival analysis showed that increased expression of
DTYMK was associated with grade, stage, recurrence, and poor
prognosis in patients with HCC. Similar to the results in vitro, the
tumor formation rate and growth speed were significantly
inhibited after DTYMK knockdown in nude mice. Moreover, more
CD163+ M2-type TAMs were infiltrated in the negative control
group than in the DTYMK knockdown group, contributing to
the formation and progression of xenograft tumors [49, 50].
Multiple studies reported that CCL5 could recruit monocytes and
be regulated by NF-κB; it played essential roles in liver disease
progression, especially HCC development in humans and mice
[51–54]. DTYMK promoted the expression of CCL5 by affecting
NF-κB, which led to increased infiltration of CD163+ M2-type TAMs
in the tumor microenvironment.

In summary, DTYMK expression was upregulated and was involved
in the development of HCC. Increased expression of DTYMK
significantly correlated with the poor prognosis in patients with
HCC. In addition, DTYMK could competitively combine with miR-
378a-3p to maintain the expression of MAPKAPK2 and thus activate
the phospho-HSP27/NF-κB axis, which mediated drug resistance,
proliferation of tumor cells, and infiltration of CD163+ M2-type TAMs
by inducing the expression of CCL5. In previous studies, circRNAs and
lncRNAs were thought to play a role through the ceRNA mechanism.
The present study demonstrated a new mechanism and provided a
new insight into the role of mRNA in not only encoding proteins but
also participating in the ceRNA mechanism. DTYMK may be a
potential biomarker and therapeutic target against HCC.

MATERIALS AND METHODS
Patients and specimens
A total of 20 pairs of HCC tissue samples and paired adjacent nontumor
tissue samples were collected from the Sun Yat-sen University Cancer
Center from 2018 to 2019. A total of 105 paraffin-embedded tissue
sections, collected from the Sun Yat-sen University Cancer Center, were
used for the immunohistochemical experiment. PBMC were collected from
healthy volunteers. All experiments complied with the principles of the
Declaration of Helsinki and were approved by the Research Ethics
Committee of the Sun Yat-sen University Cancer Center. Informed consent
was obtained from all patients to use their tissues for research purposes.

Cell culture
Hep3B HCC cell line were obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA); Huh7 HCC cell line was obtained from the
RIKEN cell bank (Ibaraki, Japan). THP1 was provided by Tong Xiang (Sun
Yat-sen University Cancer Center). THP1 and CD14+ PBMC were cultured in
the Roswell Park Memorial Institute-1640 medium (Gibco, NY, USA). Huh7
and Hep3B cells were cultured in the Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco, NY, USA) supplemented with 10% fetal bovine serum (FBS)
(Gibco, NY, USA) at 37 °C in a humid atmosphere containing 5% CO2.

Transfection
Lipofectamine 3000 (Invitrogen; Thermo Fisher Scientific, Inc.) was used to
perform transfections following the manufacturer’s protocol. A total of
7.5 μL of Lipofectamine 3000 and final concentrations of 50 nM of siRNA

Fig. 5 DTYMK expression was significantly upregulated and associated with a poor prognosis. A Immunohistochemistry tests showing
that DTYMK expression was significantly upregulated in HCC tissues. Scale bar= 50 μm. B Increased expression of DTYMK was associated with
poor OS and DFS among 105 patients with HCC from the Sun Yat-sen University Cancer Center. C Higher expression of DTYMK was associated
with poor OS and DFS in HCC from TCGA. D and E DTYMK correlated with the infiltration of M2 macrophages and predicted the prognosis of
patients with HCC more accurately. OS overall survival, DFS disease-free survival.
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for DTYMMK (5′-CGAUGUUUAACUCGGUCAACC-3′; 5′-UUGACCGAGUUAAA
CAUCGUU-3′) were used for each transfection in a six-well plate with 2mL
of the culture medium. Knocked-down DTYMK (target sequence:
GTTTCCACCAGCTCATGAA) and negative control lentiviruses were obtained
from Shanghai OBIO Technology (Shanghai, China). Huh7 and Hep3B cells
were transfected with lentiviruses at a multiplicity of infection of 10. After
2 weeks of 2 µg/mL puromycin screening, Huh7 and Hep3B cells were used
for subsequent experiments. Overexpressed DTYMK and negative control
plasmid with a resistance of neomycin were obtained from GeneCopoeia
(Guangzhou, China).

RNA isolation and real-time quantitative reverse
transcriptase–polymerase chain reaction
Total RNA was isolated using a TRIzol reagent (Invitrogen; Thermo Fisher
Scientific, Inc.) following the manufacturer’s protocol. The Fast All-in-One
reverse transcription (RT) Kit (cat. no. ES-RT001; Shanghai Yishan Biotechnol-
ogy, Co., Ltd) was used to perform RT following the manufacturer’s protocol.
The relative expression level of mRNAs was normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and calculated using the 2−ΔΔCt method.
The primers used were as follows: DTYMK, forward: 5′-GTCCTGTTCCTCCAGT
TAC-3′ and reverse: 5′-AGCATCCACCATCTTCCA-3′; MAPKAPK2, forward:

5′-CGCAGTTCCACGTCAAGTC-3′ and reverse: 5′-GGGCGAATTTCTCCTGGGTC-
3′; and GAPDH, forward: 5′-AGAAGGCTGGGGCTCATTTG-3′ and reverse:
5′-AGGGGCCATCCACAGTCTTC-3′.

RNA and protein isolation from the nucleus and cytoplasm
First, up to 107 fresh cultured cells were collected, washed once with
phosphate-buffered saline (PBS), and placed on ice. A PARIS Kit (AM1921,
Thermo Fisher Scientific, Inc.) was used to aspirate RNA and protein from the
nucleus and cytoplasm. Then, 300 μL of cell disruption buffer was added to
half of the cells for total RNA. The other half of cells were resuspended in
300 μL of ice-cold cell fractionation buffer and incubated on ice for 10min
for nuclear and cytoplasm RNA or protein. Then, the samples were
centrifuged for 5min at 4 °C and 500 g, and the cytoplasmic fraction was
carefully aspirated away from the nuclear pellet. The cytoplasmic lysate was
cytoplasmic protein. The nuclear pellet was washed with ice-cold cell
fractionation buffer. A cell disruption buffer was used to lyse the nuclear
pellet. The lysate was mixed with an equal volume of 2× lysis/binding
solution, and a “sample volume” of 100% ethanol was added to the mixture.
The sample mixture was drawn through a filter cartridge and washed once
with 700 μL of wash solution 1 and twice with 500 μL of wash solution 2. In
the end, RNA was eluted with 40 μL of 95 °C elution solution.

Table 1. Univariate and multivariate Cox regression analyses.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Gender 0.977

Male 1.014 (0.399, 2.578)

Female Reference

Age 0.249

<50 Reference

≥50 0.701 (0.382, 1.287)

HBsAg positive 0.645

Yes 1.305 (0.403, 4.222)

No Reference

Size (major axis) 0.009 0.068

<5 cm Reference Reference

≥5 cm 2.432 (1.193, 4.955) 2.011 (0.950, 4.259)

Intact capsule 0.560

Yes 1.199 (0.654, 2.199)

No Reference

AFP > 400 0.607

Yes 1.172 (0.642, 2.141)

No Reference

DTYMK expression 0.004 0.019

High 2.470 (1.313, 4.647) 2.157 (1.137, 4.093)

Low Reference Reference

Liver cirrhosis 0.227

Yes 1.453 (0.788, 2.680)

No Reference

Grade 0.135

1 Reference

2 1.200 (0.488, 2.950)

3 2.250 (0.861, 5.879)

TNM staging (AJCC 7th) <0.001 0.072

I–II Reference Reference

III–IV 5.032 (2.715, 9.328) 2.322 (0.927, 5.814)

Tumor number (>1) <0.001 0.092

Yes 4.241 (2.250, 7.994) 2.205 (0.880, 5.525)

No Reference Reference
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Western blot analysis
The Western blot analysis was performed as described in a previous study
[55] using anti-DTYMK antibody (15360-1-AP, Proteintech, IL, USA), anti-
MAPKAPK2 antibody (13949-1-AP, Proteintech, IL, USA), anti-GAPDH
antibody (60004-1-Ig, Proteintech, IL, USA), anti-phospho-HSP27 (Ser82)
antibody (9709 T, Cell Signaling Technology, MA, USA), anti-NF-κB p65
antibody (8242 s, Cell Signaling Technology), and anti-Histone H3 antibody
(Cell Signaling Technology).

Cell proliferation assay
The cell proliferation activity was measured using a Cell Counting Kit-8 (CCK-8,
Dojindo Chemical Laboratory, Kumamoto, Japan). Approximately 2 × 103 cells
in a 100 μL of medium were seeded into 96-well plates after transfection.
After incubation at 37 °C for 2 h, the absorbance at a wavelength of 450 nm
was measured following the addition of 10 µL of the CCK-8 solution.

Dual-luciferase reporter assay
The HEK293T cells were cultured in DMEM supplemented with 10% FBS.
Then, luciferase reporter vectors (GeneCopoeia, Guangzhou, China) were
transfected into HEK293T cells. Next, 50 nM of miRNA mimics or negative
control mimics were transfected into HEK293T cells using Lipofectamine 3000
(Invitrogen; Thermo Fisher Scientific, Inc.). The luciferase activity was detected
using the Dual-Luciferase Assay Kit (Promega, WI, USA) after 48 h. The relative
luciferase activity was normalized to Renilla luciferase activity. The bases
binding to miRNA were replaced by a complementary base for mutation.

Enzyme-linked immunosorbent assay
A Human CCL5 Quantikine ELISA Kit was purchased from R&D (DRN00B).
The ELISA measurement was carried out strictly according to the standard
protocol provided by the manufacturer.

Migration
Migration experiment was carried out using the Falcon permeable support
with a 3.0 µm transparent PET membrane. A total of 1 × 106 THP1 or CD14+

PBMC (separation by CD14 MicroBeads, Miltenyi) resuspended in 200 μL
serum-free 1640 medium were seeded into the upper chamber, and a total
of 500 μL of 1640 medium supplemented with CCL5 (10 μg/mL) was added
to the lower chamber. After incubation at 37 °C with 5% CO2 for 4 h, the
cells that passed through the membrane were fixed with 4% formaldehyde
for 30min and washed with PBS two times, and then stained with 0.1%
crystal violet for 20min and washed with water.

Animal experiments
Five-week-old female BALB/c-nu/nu mice, purchased from Guangdong
Medical Laboratory Center (China), were randomly divided into four groups
(n= 5 in each group). A total of 2 × 106 DTYMK-knockdown Hep3B or Huh7
cells in 0.15mL of PBS were subcutaneously injected into the right armpit
region of the mice, and negative control cells were subcutaneously
injected into the other side. The tumor size was measured every 3 days
from the 7th day after injection. Oxaliplatin (5 mg/kg) was injected through
the tail vein every 3 days from the 10th day after injection. After 28 days of
injection, the mice were sacrificed, and tumors were isolated and
measured. Animal experiments were approved by the animal ethics
committee of the Sun Yat-sen University Cancer Center.

Statistical analysis
Statistical analyses were performed using SPSS 20.0 (IBM Corp). Graphs were
generated using GraphPad Prism 7 (GraphPad Software, Inc). Pan-cancer
view and association analysis between DTYMK expression, stages, and
grades were performed by UALCAN [56]. Survival analysis of data from TCGA
was performed by GEPIA [57]. The unpaired-sample Student t test was used
to evaluate the differences between the two groups of independent
samples. Data were presented as mean ± standard deviation. All the results
were repeated more than three times. A p value < 0.05 from a two-tailed test
was considered to indicate a statistically significant difference. Statistical
significance was indicated as *p < 0.05, **p < 0.01, and ***p < 0.001.

DATA AVAILABILITY
All data generated during this study and datasets used and/or analyzed during the
current study are available from the corresponding author on reasonable request.
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