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Single-cell transcriptomics reveal the heterogeneity and
dynamic of cancer stem-like cells during breast tumor
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Breast cancer stem-like cells (BCSCs) play vital roles in tumorigenesis and progression. However, the origin and dynamic changes of
BCSCs are still to be elucidated. Using the breast cancer mouse model MMTV-PyMT, we constructed a single-cell atlas of 31,778 cells
from four distinct stages of tumor progression (hyperplasia, adenoma/MIN, early carcinoma and late carcinoma), during which
malignant transition occurs. We identified that the precise cell type of ERlow epithelial cell lineage gave rise to the tumors, and the
differentiation of ERhigh epithelial cell lineage was blocked. Furthermore, we discovered a specific signature with a continuum of
gene expression profiles along the tumor progression and significantly correlated with clinical outcomes, and we also found a stem-
like cell cluster existed among ERlow epithelial cells. Further clustering on this stem-like cluster showed several sub-clusters
indicating heterogeneity of stem-like epithelial cells. Moreover, we distinguished normal and cancer stem-like cells in this stem-like
epithelial cell cluster and profiled the molecular portraits from normal stem-like cell to cancer stem-like cells during the malignant
transition. Finally, we found the diverse immune cell infiltration displayed immunosuppressive characteristics along tumor
progression. We also found the specific expression pattern of cytokines and their corresponding cytokine receptors in BCSCs and
immune cells, suggesting the possible cross-talk between BCSCs and the immune cells. These data provide a useful resource for
illuminating BCSC heterogeneity and the immune cell remodeling during breast tumor progression, and shed new light on
transcriptomic dynamics during the progression at the single-cell level.
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INTRODUCTION
Breast cancer is one of the most malignant cancers that seriously
threat women’s health and cause casualties [1] and a malignancy
with a multistep pathological processes starting with the
premalignant atypical ductal hyperplasia (ADH), followed by
ductal carcinoma in situ (DCIS) and subsequent malignant invasive
ductal carcinoma (IDC) [2]. The full spectrum of distinct cell types
and their molecular characteristics during the breast cancer
tumorigenesis remain to be well studied, especially at the single-
cell level. The mammary tumors developed in MMTV-PyMT
breast cancer mice mainly go through four stereotypical stages,
including hyperplasia at 4 to 6 weeks of age, adenoma/mammary
intraepithelial neoplasia at 8–9 weeks of age, early malignant
between 8–12 weeks of age and late-malignant at 13 weeks later,
respectively [3]. This progress in mouse model mirrors the
pathological procession of human breast cancer patients, and is
comparable to human breast diseases classified as benign or
in situ proliferative lesions to invasive carcinomas [3].

Breast cancer stem-like cells (BCSCs) are a rare subpopulation of
tumor cells characterized with strong tumorigenic capacity. A
serial of evidence supported BCSCs as the origin of breast cancer
[4–6]. Recent investigations revealed that BCSCs are clinically,
molecularly, and biologically heterogeneous [7–9]. However,
accumulating evidence has shown that the heterogeneity of
BCSCs based on the limited known markers is underestimated,
suggesting the existence of more subsets of BCSCs [7]. The single-
cell RNA-sequencing technology (scRNA-seq), which emerged in
recent years, has played an increasingly important role in
biological research [10–12]. Nowadays, scRNA-seq has been widely
used in the research of tumor heterogeneity, immune micro-
environment, neuroscience, embryonic development, cell differ-
entiation, and others [13,14]. Furthermore, scRNA-seq has proved
its power in revealing rare subpopulations [15–17].
Here, we provided the transcriptome analysis of 31,778 single

cells including epithelial and immune cells from four different tumor
progression stages of MMTV-PyMT breast cancer mouse model.
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We identified that the precise cell type of ERlow epithelial cell
lineage gave rise to the tumors. We also characterized the
stem-like cell cluster, and further clustering on this stem-like
cell cluster showed several sub-clusters, indicating heterogeneity
of stem cells. These results provided evidence that BCSCs are
transcriptionally and functionally heterogeneous at the single-
cell level.

RESULTS
Single-cell transcriptome charted cell heterogeneity in MMTV-
PyMT mouse mammary glands
To characterize the single-cell transcriptome dynamics of MMTV-
PyMT breast cancer mouse model during tumorigenesis, a total of
31,778 isolated single cells were obtained from mouse mammary
glands or tumors, which spanned the cascade from hyperplasia to
late breast carcinoma including premalignant, early malignant,
and malignant stages. Then we obtained bulk transcriptomics
from W07 (Week 7), W09 (Week 9), W11 (Week 11), and W17

(Week 17) mammary glands or tumors of MMTV-PyMT mouse
model (Fig. 1a; Fig. S1a).
A total of 14 clearly separated cell clusters were finally identified

(Fig. 1b, c). Based on the expression of known markers, we found
that the cells are comprised mainly of clusters of epithelial cells,
immune cells, and fibroblasts (Fig. 1d, e). As expected, the
epithelial cells were largely basal epithelial cells and luminal
epithelial cells, consistent with the cellular characteristics of
mammary glands [18, 19]. In total, 19,599 luminal cells were
clustered into six separate subsets (Lu1, Lu2, Lu3, Lu4, Lu5, and
Lu6) (Fig. 1b). Lu2 and Lu4 were cancer cells, since they emerged
almost uniquely in the late carcinoma of week 17, which were
consistent with the previous reports that the PyMT mouse model
has been characterized as most similar to the luminal B molecular
subtype [20] (Fig. 1c). The immune cells comprised subsets of
T cells including T1 and T2, B cells and myeloid cells including
Mye1 and Mye2 (Fig. 1e). We also noticed that the number of
expressed genes (nFeature_RNA), library size (nCount_RNA) and
percentage of mitochondrial genes (percent.mt), the three

Fig. 1 Single-cell analysis of mammary glands and tumors from MMTV-PyMT mice. a A schematic diagram highlighting the workflow
including isolation and sequencing of single cells for this study. Single cells were prepared from the 4th pair of mammary glands of MMTV-
PyMT mice at different tumor progression stages including hyperplasia, adenoma/mammary intraepithelial neoplasia (MIN, early carcinoma)
and malignant tumors (late carcinoma). The transcriptome of single cells was sequenced using the 10x Chromium system. b The t-SNE plot of
31,778 single cells to visualize cell-type clusters based on the expression of known markers, Lu1, 2, 3, 4, 5, and 6: luminal epithelial cell cluster
1, 2, 3, 4, 5, and 6; Basal: basal epithelial cell cluster; Fibro: fibroblast cluster; T1 and 2: T cell cluster 1 and 2; B: B cell cluster; NK: natural killer
cell cluster; Mye1 and 2: myeloid cell cluster 1 and 2. c The t-SNE plot of single-cell transcriptomes from the isolated cells at indicated tumor
progression stages including week 7, week 9, week 11, and week 17. d The individual gene t-SNE plots showing the expression levels and
distribution of representative markers of known cell types, which distinctly separates epithelial cells, immune cells and fibroblasts in the PyMT
mouse mammary glands. e A table showed the markers used to annotate the known cell types, including epithelial cells, immune cells and
fibroblasts in the PyMT mouse mammary glands. f The number of expressed genes (nFeature_RNA), the distribution of library size
(nCount_RNA) and percentage of mitochondrial genes (percent.mt).
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commonly used quality controls in single-cell RNA sequencing,
were also clearly distinguished between immune cells and
epithelial cells (Fig. 1f). Since the sequencing quality of immune
and epithelial cells was different, we determined to filter out low-
quality cells by different criteria (Fig. S1b). After filtration, 12,039
epithelial cells and 8,954 immune cells were used for further
analysis (Fig. S1c, d).

ERlow luminal epithelial cells gave rise to the tumor cells
during breast tumorigenesis
Breast cancer cells originate from epithelium in MMTV-PyMT
mouse model, however, which subset of epithelial cells they
originate from and the dynamic changes during tumorigenesis
are still unknown. Thus, we re-clustered the filtrated 12,039
epithelial cells and obtained 8 clusters mainly comprised 7
luminal cell clusters termed LuE1, 2, 3, 4, 5, 6, and 7 (LuE, Luminal
Epithelial cells) and one basal cell cluster termed BaE (BaE, Basal
Epithelial cells) (Fig. 2a). 87.9% cells from 17 weeks were
clustered together to form cluster LuE2, LuE3, LuE4, and LuE6.
On the other hand, 69.7%, 62.3%, and 62.8% cells corresponding
from 7, 9, and 11 weeks were clustered together to form cluster
LuE1, LuE5, BaE, and LuE7, respectively (Fig. 2a–c). Cells were
clearly separated between these two groups of clusters,
indicating the unique transcriptional profile for the late
carcinoma stage.
Previous studies have shown that luminal progenitor cells can

develop into either ERlow or ERhigh luminal progenitor cells, and
subsequently differentiate into alveolar and ductal luminal cells
[18]. We identified the cluster LuE7 as ERhigh luminal cell cluster
by the expression of Esr1 (Fig. 2b; Fig. S2a). We witnessed the
percentage of ERhigh luminal cells (LuE7) was decreased along the
tumor progression (Fig. 2d) and there was a huge imbalanced
percentage distribution of ERlow and ERhigh luminal cells (Fig. 2e).
99.2% luminal cells were belonged to ERlow luminal cells. In order
to distinguish the possibility of imbalanced distribution of ERlow

and ERhigh luminal cells due to the natural development, we
compared the percentage of ERlow cells between MMTV-PyMT
and wild-type FVB mice using the published dataset [21]. We
identified ERlow and ERhigh luminal cells (Fig. S2b, c) and counted
the cell number in luminal epithelial cell clusters (Fig. S2d). ERlow

cells were significantly enriched in our data while ERhigh cells
were depleted from MMTV-PyMT mouse when comparing to the
FVB mouse data (Fig. 2e). Hence, the developmental process from
luminal progenitor to ERhigh luminal cells was blocked during
tumorigenesis. Since the ERlow subpopulation are the major
luminal cells, we proposed that the cancer cells in MMTV-PyMT
mouse were mainly ERlow cells and derived from ERlow luminal
progenitor cells. It is clear that the tumors are originated from the
site of alveolar cells, which are reported as ERlow cells prepared
for milk secretion once corresponding conditions and hormone
stimulation exist (Fig. 2f). We compared the differentially
expressed genes between the ERhigh and ERlow luminal cells
and defined the genes upregulated in ERhigh luminal cell
population as ERhigh signature and the genes upregulated in
ERlow luminal cell population as ERlow signature, respectively.
Besides, we included several genes reported as marker genes for
ERhigh luminal cell by previous studies into the ERhigh signature
such as Esr1, Foxa1, Gata3, Pgr, ect [22] (Table S1). Then we
investigated the expression profile of these two signatures in
bulk RNA-seq from matched MMTV-PyMT and wild-type FVB
mice. Most of ERlow signatures were highly expressed in MMTV-
PyMT mammary tissues, while most of ERhigh signatures were
highly expressed in FVB counterparts (Fig. 2g, h). It was consistent
with the imbalanced percentage distribution of ERlow and ERhigh

luminal cells.
Taken together, our data suggested that the specific cell-type

ERlow luminal cells gave rise to tumors, and the differentiation of
the ERhigh cell lineage was blocked. The accumulation of

proliferative ERlow was the fundamental origin of the cancer cells
in MMTV-PyMT mouse.

A continuum of gene expression profiles revealed the
malignant transition of ERlow luminal cells in the mammary
glands
Since we determined that the cancer cells originated from ERlow

luminal cells, we then focused on the dynamic changes of these
epithelial cells along the transitions from hyperplasia to late
carcinoma. To this end, we constructed the single-cell trajectories
to trace the ERlow luminal epithelial hierarchy during tumor
progression (Fig. 3a). The genes used to construct single-cell
trajectories was listed in Table S2. The location of each cell cluster
showed a unique pattern on single-cell trajectories. The majority
of cells from cluster LuE3 and LuE6 were located on one side of
single-cell trajectories, while the cells from cluster LuE1 and LuE5
were mainly located on the other side. Moreover, cells from
cluster LuE2 and LuE4 showed an intermediate state (Fig. 3b),
suggesting the trajectories of the tumor progression along cluster
LuE1, LuE5, LuE2, LuE4, LuE3, and LuE6. Indeed, the cluster of the
trajectories was positively correlated with the percentage of cells
from week 17, which are mainly cancer cells (Fig. 3c). To gain a
more detailed view of gene expression pattern changes over the
critical tumor progression and malignant transition, we per-
formed weighted correlation network analysis among the
different clusters to explore the specific gene expression pattern
and we identified panels of specific signatures on the chronologic
tumor progression, which matched the pattern derived from
t-SNE plot and single-cell trajectories [23]. The expression of the
genes in the modules was gradually increased from left to right
along the clusters, composing elevated proportion of cells from
week 17 (Fig. 3d). The genes in these two modules were listed in
Table S3. Next, we found the significant correlation between
genes from these two modules and the clinical outcome of
Luminal B breast cancer patients in survival analysis, and patients
with these highly expressed genes showed worse prognosis
(Fig. 3e). Among these genes, we identified several related to
tumor progression as reported in previous studies were also
consistent with this pattern (Fig. S3a). Since these genes in both
signatures were upregulated along the tumor progression with
the similar pattern, we merged these two gene signatures and
termed the combined signature as the malignant signature. We
also explored the expression profile of malignant signature
among different tumor grades in luminal B patient samples from
The Cancer Genome Atlas (TCGA) [24]. The results showed that
the malignant score was significantly increased in the higher
tumor grades (P= 0.027) (Fig. 3f).

Identification of BCSCs in ERlow luminal cells
There is increasing evidence to suggest that diverse solid tumors
are hierarchically organized and may be sustained by distinct
subpopulations of cancer stem-like cells (CSCs) [25, 26]. Here, we
first characterized the heterogeneity of BCSCs at the single-cell
level and then characterized the feature of these cells.
We searched the BCSC-related genes published previously, such

as Cd24a, Itgb1, Itga6, Procr, etc in the literature and incorporated
these genes into the BCSC signature (Fig. S3b). We scored each
ERlow epithelial cell based on the BCSC signature by Gene Set
Variation Analysis (GSVA) algorithm [27]. The expression profile of
BCSC signature clearly showed a higher expression level on cluster
LuE2 (Fig. 4a). Indeed, the score from GSVA algorithm was
consistent with the expression profile (Fig. 4b). Since the cluster
LuE2 was a mixture of cells from all four tumor progression stages,
it is reasonable to assume that cluster LuE2 might include both
normal and cancer cells. Next, we investigated the stemness score
at different tumor progression stages and found no significant
difference among these stages (Fig. S3c, d), suggesting the
similarity of stemness in cluster LuE2 among tumor progression
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stages and the gene expression shared by both normal breast
stem-like cells and BCSCs.
In order to distinguish between the normal and cancer cells, we

extracted the up-/down-regulated genes comparing between bulk
RNA-seq of PyMT and wild-type FVB mouse at week 17 as cancer
signature genes to identify normal and cancer cells and the cancer

signature genes can be found in Table S4. The results clearly
showed a spatial pattern of normal and cancer cells on the t-SNE
plot (Fig. 4c, d). The percentage of BCSCs among cancer cells was
increased along the tumor progression which is consistent with
previous studies (Fig. 4e) [28]. In order to confirm our analysis of
the BCSC cluster, we identified the upregulated genes in the BCSC
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cluster compared to the non-BCSC cluster and picked four of these
genes for the verification by qPCR. The genes upregulated in the
BCSC cluster can be viewed in Table S5. The results showed that
these four genes were significantly upregulated in CD24+CD29+

tumor cells from MMTV-PyMT mice, which was compared with
non-CD24+CD29+ tumor cells (Fig. 4f). The upregulated genes
identified from our analysis were also upregulated in traditionally
defined BCSCs, indicating the similarity of these two groups
of BCSCs.
Our studies showed that the BCSCs among all stem-like cells

were also enriched in the last stage during tumor progression
(Fig. 4g). We identified genes showing specific expression
pattern between normal and cancer stem-like cells, providing
as novel potential biomarkers to mark cancer stem-like cells
(Fig. 4h and Table S6). The functional enrichment analysis
revealed that these differentially expressed genes were enriched
in the various important pathways including TP53, EMT and
apoptosis pathways (Fig. 4i, j). In summary, our data revealed
both the similarity and dissimilarity of gene expression between
normal and cancer stem-like cells.

BCSCs were heterogeneous with different biological function
and transcription regulation
It’s well known that tumors are highly heterogeneous [5, 29, 30].
Recent studies reported that the plasticity and heterogeneity are
features of CSCs [31–36], but the specific heterogeneous BCSC
populations and related markers are still unclear. In order to
reveal the heterogeneity of BCSCs, we re-clustered the stem-like
cell cluster LuE2 in a more fine-scale into five sub-clusters C1–C5
(Fig. 5a, b). We also checked the composition of cells from each
tumor progression stage in the t-SNE plot and found that sub-
clusters C1 and C2 existed across week 7, 9, and 11, and were
mainly consisted of normal stem-like cells. However, sub-cluster
C3, C4 and C5 existed almost mainly at week 17 and were mainly
consisted of BCSCs (Fig. 5b, c). There was a clear separation
between normal stem-like cells and BCSCs. To illuminate the
possible evolution from the normal stem-like cell clusters to
BCSC clusters, we also checked the single-cell trajectories and
the inferred cell trajectory suggested a branched structure with
sub-clusters from week 7, 9, and 11 positioned at the opposite
end of the sub-clusters from week 17 (Fig. 5d). Next, we
explored marker genes that were uniquely expressed in each
sub-cluster (Fig. 5e), and performed functional enrichment
analysis by Enrichr [37, 38] and the results showed specific
functions were enriched in each sub-cluster, suggesting the
functional heterogeneity in BCSCs. For example, genes uniquely
expressed in C3 sub-cluster were enriched in cell migration and
angiogenesis pathways (Fig. 5f). Then we investigated the
transcriptional regulons based on cis-regulatory motif over the
different clusters utilizing SCENIC analysis [39] and identified
serials of transcription factors (TFs) correlated with each sub-
cluster (Fig. 5g). Among these TFs, we found various TFs
functioned in cancer/normal stem-like cells such as Sox4, Foxo3
and Myc, indicating their potential regulation on BCSC hetero-
geneity [40–42].

The heterogeneity of BCSCs was confirmed in breast cancer
patients
In order to verify the heterogeneity of BCSCs observed in mouse
scRNA-seq data, we collected tumor samples from six breast
cancer patients which were classified as luminal A, luminal B,
TNBC and Her2+ subtypes and performed the scRNA-seq analysis
(Table S7). Totally, we obtained 8,990 cells after quality control
and performed clustering to define the population structure. 13
clusters were identified including epithelium, immune, stroma,
endothelial and other cell clusters (Fig. S4a) [43]. We extracted
epithelium cells and scored each epithelial cell cluster based on
the BCSC gene signature. The EP8, EP11 and EP12 were identified
as BCSC clusters (Fig. S4b, c). The cells from these three clusters
were extracted and re-clustered (Fig. 6a), and the t-SNE plot
showed the cells were clearly separated into four groups which
we named as BCSC1, BCSC2, BCSC3, and BCSC4 (Fig. 6b). Almost
all cells in BCSC1 and BCSC4 were from B2T (TNBC) and B19T
(Luminal B), respectively. On the other hand, the BCSC2 and
BCSC3 were heterogenous clusters comprising the cells from all
six patients (Fig. 6c). Furthermore, the cells in each BCSC cluster
express a set of specific genes, reflecting the diversity of BCSCs
(Fig. 6d).
Finally, we extracted the epithelium cells from three luminal B

patients and evaluated the BCSC and malignant level by scoring
based on the BCSC and malignant gene signature (Fig. S4d, e). We
selected the clusters with high BCSC and malignant scores and
summarized the percentage of cells within the BCSC and
malignant clusters. The percentage of BCSC and malignant cells
were very low/moderate in B4T/B11T patients. In contrast, both
the percentage of BCSCs and malignant cells was high in B19T
patient (Fig. 6e). Patient with higher percentage of BCSCs and
malignant cells got higher score for histological grade which
indicated worse clinical outcome [44].

BCSCs cross-talked with the immune cells through cytokine
signals to promote tumor progression
BCSCs are critically regulated by the surrounding microenviron-
ment, especially immune cells [45]. In order to explore the possible
cross-talk between the BCSCs and the immune cells, we firstly
identified and annotated various immune cell types and the
dynamic changes along breast tumor progression in MMTV-PyMT
mice. By re-clustering the immune cells, we obtained 11 clusters
(Fig. 7a, b), which came from four categories including T cells, B
cells, macrophages and natural killer cells (NK cells) (Fig. 7c; Fig
S5a–d). We observed that the proportion of the immune cells
including B cells, T cells, NK cells, decreased along the tumor
progression (Fig. 7d). On the other hand, in clusters 6 and 8,
macrophages were almost specifically shown in week 17. To
systematically study the interactions between cancer stem-like
cells and immune cells, we used the known repository of cytokine
and cytokine-receptor interacting pairs that account for the
interactions and considered the expression levels of ligands and
receptors within each cell type. We found that cancer stem-like
cell cluster LuE2 highly expressed Cxcl1, while the immune
cells from cluster 8 defined as macrophages specifically highly

Fig. 2 Tumor cells originated from ERlow luminal cells during tumorigenesis. a The t-SNE plot of 12,039 epithelial cells from the MMTV-
PyMT mammary glands colored by cell types (left panel) and stages (right panel), week 7 (hyperplasia), 1,930 cells; week 9 (Adenoma/MIN),
2,886 cells; week 11 (early carcinoma), 2,038 cells; week 17 (late carcinoma), 5,185 cells. LuE1, 2, 3, 4, 5, 6, and 7: luminal epithelial cluster 1, 2, 3,
4, 5, 6, and 7; BaE: basal epithelial cluster. b Summary of cell counts and markers used for the identification of epithelial cell subsets from the
mouse mammary glands and tumors. c The proportion of epithelial cell sub-clusters in different stages of tumor progression. d The number of
ERhigh epithelial cells across different stages of tumor progression dramatically decreased. e The ratio of ERlow and ERhigh luminal epithelial
cells in the mammary glands of MMTV-PyMT mice increased when compared to wild-type mice (WT), which suggests that the normal
differentiation of ERhigh cell lineage was blocked, resulting in the accumulation of ERlow cancer cells. fWhole mounts of mammary glands from
wild-type (WT) and MMTV-PyMT mice indicated that cancer cells mainly exist in location of alveolar cells. g Gene expression profile of ERhigh

luminal signature was upregulated in epithelial cells from WT mice when comparing with epithelial cells from MMTV-PyMT mice. h ERlow

luminal signature was highly expressed in MMTV-PyMT mouse epithelial cells relative to WT mice.
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Fig. 3 A continuous change of specific gene signature in ERlow luminal cells was correlated with the tumor progression and clinical
outcome. a Pseudo-time trajectory analysis of the six sub-clusters of luminal epithelial cells annotated by clusters (left) and tumor progression
stages (right). b Pseudo-time trajectory of cells in each luminal epithelial cell cluster. c The heatmap showed the sample composition of each
cluster, indicating that the composition of week 17 was gradually increased along cluster LuE1, LuE5, LuE2, LuE4, LuE3, and LuE6. d Heatmap
of expression profile of signature genes in indicated modules identified by WGCNA (Weighted Gene Co-expression Network Analysis). A
summary list of genes associated with corresponding WGCNA module were shown in supplementary Table 3. e The Kaplan–Meier relapse free
survival curves of patients were grouped by the gene signatures in WGCNA modules. The left corresponded to the module 1 and the right
corresponded to the module 2. f Boxplot depicted the distribution of malignant score derived from luminal B patient samples in TCGA. Mann-
Kendall trend test was performed using the median value of each stage by “trend” package in R.
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expressed the corresponding receptor, Cxcr2 (Fig. 7e–f). Further-
more, LuE2 highly expressed Cxcl16 and T cell cluster 5 specifically
highly expressed its receptor, Cxcr6 (Fig. 7e, f). Notably, when
investigating the expression of the cytokine Cxcl16 and Cxcl1 in
LuE2, we found that Cxcl16 showed relatively high expression in
C1 (Fig. 7g). The vast majority of cells in C1 were from weeks 7, 9

and 11, indicating a strong immune response in the early stage of
tumor development. This result was consistent with significant
enrichment of immune functions such as activation of immune
response, cytokine-mediated signaling pathway and cytokine
production pathways in sub-cluster C1 of LuE2 shown in Fig. 5f.
These studies indicated that BCSCs secreted different levels of

G. Jiang et al.

7

Cell Death and Disease          (2021) 12:979 



cytokines among five sub-clusters and functioned through
corresponding receptors on immune cells to promote tumor
progression.

DISCUSSION
Taking advantage of scRNA-seq, we depicted the dynamic
changes of transcriptional profile for epithelial and immune cells
isolated from the mammary glands or tumors of MMTV-PyMT
mouse model. To our knowledge, this is the first study to define a
single-cell atlas of epithelial and immune cells during tumor
progression in MMTV-PyMT mouse model.
The traditional method to isolate BCSCs is sorting by FACS

based on cell-surface markers, but these BCSCs are usually a
mixture of BCSC populations [6, 36]. Taking advantage of scRNA-
seq combined with GSVA scoring, we identified the subpopula-
tions of BCSCs and revealed the heterogeneity of BCSCs along the
tumor progression. Re-clustering of cells from stem-like cell cluster
LuE2 also confirmed the heterogeneity of stem-like cells.
Functional analysis showed that different stem-like cell sub-

clusters enriched some unique functions such as the functions
related to immune response for these sub-clusters, which may
reflect the functional heterogeneity of cancer stem-like cells along
tumor progression. These functions were uniquely enriched in the
sub-cluster with late developmental stage reflected unique
requirement for cancer stem-like cells. It will be helpful to gain
insight into the functional requirement for cancer stem-like cells.
Evidence showed that BCSCs contribute to educate and

reconstitute the immune microenvironment [46]. In our study,
we found that the cancer stem-like cell cluster LuE2 secreted the
specific cytokine Cxcl16 and Cxcl1. The cytokines can function
through affecting and cross-talking with the corresponding
immune cells. On the other hand, increasing evidence have
demonstrated the role of immune microenvironment in the
generation and maintenance of BCSCs [47]. Here, we revealed the
dynamic changes of BCSC populations, where the proportion of
immune cell types T, B, and NK cells decreased and the proportion
of macrophages increased, which provided benefits for survival of
the BCSCs.
Our findings provide unparalleled insight into the cellular

heterogeneity of breast cancer with different types of premalig-
nant lesions and malignant lesions, which may be helpful for
identifying markers for cancer prevention and facilitate our
understanding of breast cancer pathogenesis. Furthermore, our
findings on the cross-talk of BCSCs and immune cells provide
thoughts for the combination of immunotherapy and cancer stem
cell targeted therapy for precise medicine.

METHODS AND MATERIALS
Breast cancer patient tumor tissues
All the breast cancer patient tumor tissues were obtained from Shanghai
Cancer Hospital affiliated with Fudan University. An informed consent was

obtained from all the involved patients, and the study was approved by
the institution’s ethics committee (Fudan University Shanghai Cancer
Center Institutional Review Board, 050432-4-1212B) (Shanghai, China).

Mice and tissue collections
MMTV-PyMT and wild-type FVB mice were housed in standard animal
cages under specific pathogen-free conditions in the Department of
Laboratory Animal Science of Fudan University. Animal experiments were
approved according to the experimental animal guidelines of the Care and
Use of Laboratory Animals of Fudan University and approved by the Fudan
University Shanghai Cancer Center Institutional Review Board (JS-082).
Mammary glands or tumors from 7-week old, 9-week old, 11-week old

and 17-week old MMTV-PyMT FVB mice were excised, dissected and
minced into small pieces and then resuspended with collagenase-
hyaluronidase digestion reagent (Catalog #07912, STEMCELL Technologies,
USA). Mammary glands or tumors for each stage were from 5 to 7 mice
(seven mice for the first and second stages, and five mice for the third and
fourth stages). The number of mice used in each experimental group was
determined by power analysis and on the basis of prior experience with
animal models. No mouse was excluded from the analyses and No
randomization of mice was needed in this study. This study included a lot
of complicated experimental design, the researchers were limited, and the
feasibility of blinding was poor, thus blinding was not efficiently applied.
Tissue pieces were digested for approximately 1 hr at 37 °C and shaken

once every 15min. Cell aggregates were removed by filtering cell
suspension with 40 μm filter. Cell suspensions were centrifuged at
1200 rpm for 5 m and resuspended for subsequent experiments.

Fluorescent-activated cell sorting (FACS)
Dissociated cells from the mammary glands or tumors of MMTV-PyMT mice
were suspended in FACS buffer containing anti-mouse cell lineage
antibody cocktails: CD45 (1:50, 555483, BD), CD31 (1:50, 555446, BD),
CD140b (1:50, 558821, BD), anti-CD24 (1:50, 138506, BioLegend, USA) and
anti-CD29 (1:80, 102226, BioLegend). A MoFlo Astrios instrument (Beckman
Coulter, Brea, USA) was used for sorting. Data acquisition and analysis were
performed using Summit software.
Dissociated single cells were separately sorted by fluorescence-activated

cell sorting (FACS) based on specific cell-surface markers. We used antibodies
against endothelial marker CD31, b1-integrin CD29, heat-stable antigen CD24,
hematopoietic marker CD140b and CD45 antigens to gate on the
CD31−CD140b−CD45− (Lineage−, Lin−) epithelial cell population including
both normal and tumor epithelial cells and the CD31−CD140b−CD45+

immune cell population. Then, we defined four distinct Lin- epithelial cell
subpopulations based on the expression of CD29 and CD24. The rare
CD29-CD24- population was excluded from the Lin- subpopulation since it
was reported as the possible stromal population [19].

Library preparation and sequencing for mouse sample
Single-cell sequencing was constructed using the 10x Genomics Chro-
mium platform for droplet-enabled scRNA-seq according to the manu-
facturer’s instructions. Library generation was performed following the
Chromium Single Cell 3′ Reagents Kits version 2 user guide in order to
capture 5000 cells to 10000 cells/chip position (CG00052 Rev B). All the
remaining procedures including the library construction were performed
according to the standard manufacturer’s protocol. Each library was
sequenced on the Illumina HiSeq 4000 platform to achieve an average of
48,488 reads per cell.

Fig. 4 Identification and characterization of cancer stem-like cell cluster in ERlow luminal cells. a Heatmap of stem cell marker gene
expression profile in each cell cluster (up panel) and GSVA score for each cell in each cell cluster (bottom panel). b A bar-plot showed the
average GSVA score for each cell cluster. c The t-SNE plot showed the distribution of cancer stem-like cells enriched cluster LuE2 (orange, n=
2,206 cells) within the atlas. d The enlarged t-SNE plot highlighted the cells in cluster LuE2 colored by cancer signature score. e The proportion
of BCSCs among cancer cells was defined by the median value of cancer signature score. Cancer cells were defined as the cells with cancer
signature score higher than the median value. BCSCs were the cancer cells in LuE2. f Upregulated genes identified from our analysis were
confirmed in CD24+CD29+ BCSCs from MMTV-PyMT mice by qPCR, compared to non-CD24+CD29+ BCSCs. The P was calculated by t-test.
g The proportion of cancer stem-like and normal stem-like cells defined by the median value of cancer signature score. Cancer stem-like cells
were defined as the cells with cancer signature score higher than the median value. Normal stem-like cells were defined as the cells with
cancer signature score lower than the median value. h Overlap of the genes between cluster LuE2 marker genes and the differential expressed
genes among normal cells and cancer cells in cluster LuE2 were shown by the unsupervised clustering heatmap. i Function enrichment
analysis for the genes upregulated in cancer stem-like cells in Fig. 4h. j Function enrichment analysis for the genes upregulated in normal
stem-like cells in Fig. 4h.
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The raw data was processed by the Cell Ranger Single-Cell Software
Suite (release 2.0), including using “cellranger mkfastq” to demultiplexes
raw base call files into fastq-format files and then using “cellranger count”
to perform reads alignment, filtering, barcode counting, and UMI counting.
The reads were aligned to the mm10 reference genome using a pre-built
annotation package downloaded from the 10X Genomics website. The
output from different lanes was eventually aggregated using “cellranger
aggr” with default parameters.

Library preparation and sequencing for human sample
The fresh tumor tissue was stored in the GEXSCOPETM Tissue Preservation
Solution (Singleron) and transported to the Singleron lab on ice as soon as
possible. The specimens were washed with Hanks Balanced Salt Solution
(HBSS) for 3 times and minced into 1–2mm pieces. Then the tissue pieces
were digested with 2 ml GEXSCOPETM Tissue Dissociation Solution
(Singleron) at 37 °C for 15min in 15ml centrifuge tube with sustained
agitation. After digestion, using 40-micron sterile strainers to filter the

Fig. 5 The heterogeneity of stem-like cells. a, b t-SNE plot demonstrated the separation of sub-clusters C1, C2, C3, C4, and C5 in LuE2 cluster
colored by sub-clusters (a) and by tumor progression stages (b). c A bar-plot depicted the composition of cells from different tumor
progression stages in each sub-cluster. d Pseudo-time analysis showed the single-cell trajectories for LuE2 cluster colored by sub-clusters (top
panel) and tumor progression stages (bottom panel). e A heatmap showed the expression profile of marker genes from each sub-cluster. f A
heatmap showed the function enrichment for each sub-cluster. Significant enrichment was colored by red. g A heatmap of regulon scores
from SCENIC (Single Cell rEgulatory Network Inference and Clustering) analysis. Rows, Individual regulons. Columns, cells organized according
to re-clustering of cluster LuE2.
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samples and centrifuging the samples at 1000 rpm for 5 m. Then the
supernatant was discarded, and the sediment was resuspended in 1ml
PBS (HyClone). To remove the red blood cells, 2 mL GEXSCOPETM red blood
cell lysis buffer (Singleron) was added at 25 °C for 10m. The solution was
then centrifuged at 500×g for 5 min and suspended in PBS. The sample
was stained with trypan blue (Sigma) and microscopically evaluated.
Single-cell suspensions with 1×105 cells/mL in concentration in PBS

(HyClone) were prepared. Single-cell suspensions were then loaded onto
microfluidic devices and scRNA-seq libraries were constructed according to
Singleron GEXSCOPER protocol by GEXSCOPER Single-Cell RNA Library Kit
(Singleron Biotechnologies) [48]. Individual libraries were diluted to 4 nM
and pooled for sequencing. Pools were sequenced on Illumina HiSeq X
with 150 bp paired end reads.
Raw reads were processed to generate gene expression profiles using an

internal pipeline. Briefly, after filtering read one without poly T tails, cell
barcode and UMI was extracted. Adapters and poly A tails were trimmed
(fastp V1) before aligning read two to GRCh38 with ensemble version 92
gene annotation (fastp 2.5.3a and featureCounts 1.6.2) [49]. Reads with the
same cell barcode, UMI and gene were grouped together to calculate the
number of UMIs per gene per cell. The UMI count tables of each cellular
barcode were used for further analysis.

Single-cell RNA-Seq data processing
Here, we applied Seurat package to normalize and scale the single-cell
gene expression matrix [50, 51]. It was first normalized by “Normal-
izeData” function with setting normalization method as “LogNormalize”.

The uninteresting variations were removed by implementing by
“ScaleData” function. Finally, the corrected expression matrix was used
as an input for further analysis.

Cell filtration for mouse scRNA-seq data
Due to the different QC for Immune and breast cells, we adopted two
different criteria. The quality of cells was assessed based on three metrics
step by step: [1] The number of total UMI counts per cell (library size); [2]
The number of detected genes per cell; [3] The proportion of mitochondrial
gene counts. After identification of epithelial cells and immune cells in
Fig. 1b, Low-quality epithelial cells were filtered if the quality of the cell
does not meet the following standards: “total counts: > 5,000; number of
genes: >2,000; the proportion of mitochondrial gene counts: <8%”. The
criterion for the immune cell is “total counts: >1000; number of genes:
>500; the proportion of mitochondrial gene counts: <8%”.

Cell filtration for human scRNA-seq data
Low-quality cells were filtered if the quality of the cells did not meet the
following criteria: “number of genes: >400; number of genes: <7000; the
proportion of mitochondrial gene counts: <20%”.

Dimension reduction, cell clustering, and annotation
We selected the top 3000 largest variable genes as highly variable genes
(HVGs) and performed the subsequent analysis such as PCA clustering,
WGCNA network analysis and construction of single-cell trajectories based

Fig. 6 The heterogeneity of stem-like cells in breast cancer patient tumors. a The t-SNE plot highlighted the distribution of cancer stem
cells from breast cancer patients. Cancer stem cells were highlighted in color and normal cancer cells were in gray. b Re-clustering of cancer
stem cells by Seurat. c Histogram showed the composition of cancer stem cells from each patient. d Heatmap demonstrated the genes
specifically expressed in each BCSC cluster. e Histogram showed the percentage of BCSCs and malignant cells in each patient.
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Fig. 7 The cross-talk between BCSCs and immune cells during tumor progression. a, b The t-SNE plot showed the distribution of the
immune cells from different clusters supervised by Seurat (a) and different tumor progression stages (b) in the atlas. c A table showed
the markers used to annotate immune cells and cell accounts of the corresponding cell type. d Dynamic changes of the proportion of the
immune cell types spanning from premalignant to late carcinoma. e–g Dot plots showed the expression of paired cytokine and cytokine
receptors in ERlow clusters, immune clusters and sub-clusters of LuE2, which indicated that cytokine Cxcl1 and Cxcl16 were highly expressed in
sub-clusters of LuE2 and the corresponding receptors Cxcr2 and Cxcr6 were highly expressed in macrophages and T cells.
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on this set of HVGs. The expression profile of HVGs was centered and
scaled values. It was implemented by “FindVariableGenes” function with
default parameters. We then used the “RunPCA” function to perform the
principal component analysis (PCA). The number of significant principal
components was determined by “jackstraw” function. The analysis
identified 50 significant principal components to supply to the “RunPCA”
function. We then utilized the “FindClusters” function to conduct the cell
clustering with resolution setted as 0.4. We annotated cell clusters based
on the expression of curated known cell markers on t-SNE plot.

Differential expression analysis
Differential gene expression analysis was performed by the “FindMarkers”
function. The statistical method to identify differentially expressed genes
was based on Wilcox rank sum test. The “FindMarkers” function was run
with default parameters.

Survival analysis and enrichment analysis
The survival analysis was performed on KMplot (http://kmplot.com/
analysis/index.php?p=service&cancer=breast) [52]. We supplied multiple
gene names to the KMplot by using “use mean expression of selected
genes” option. We restricted our analysis in Luminal B type patients. The
enrichment analysis was performed on MsigDB (https://www.gsea-msigdb.
org/gsea/msigdb) with default parameters [53, 54]. Gene expression profile
of breast cancer patient was downloaded from the TCGA website (https://
portal.gdc.cancer.gov/). Raw reads counts were extracted from files with
the suffix “htseq.counts”. The trimmed mean of M-values (TMM) normal-
ized expression value was generated by “edgeR” package [55]. The clinical
information was also downloaded from the TCGA website. The information
of cancer subtype was retrieved from TCGA previous study [24].

Cancer signature scoring
The signature genes were the genes differentially expressed between
MMTV-PyMT and control FVB mouse at week 17 in bulk RNA-seq. The
edgeR package in R was applied to identify differentially expressed genes
[55]. Genes with FDR < 0.05 and expression fold change >1.5 (upregulated
genes) or <0.67 (down-regulated genes) were defined as differentially
expressed genes. Cancer signature scoring was calculated by subtracting
the mean expression of the down-regulated genes from the mean
expression of the upregulated genes [14, 43]. We defined cancer and
normal cells by the median score based on cancer signature genes. Cells
with score lower than the median were defined as normal cells and cells
with score higher than the median as cancer cells.

Gene set variation analysis (GSVA)
Pathway analyses were predominantly performed on the gene sets
described in the Molecular Signatures Database (MSigDB) and exported
using the GSEABase package (version 1.36.0). To reduce pathway overlaps
and redundancies, genes associated with multiple gene sets were trimmed
from these gene sets and thus retained genes are only associated with one
gene set by following previous study [56]. Most gene sets retained >70% of
the associated genes. Next, to assign stemness of cancer stem-like cell
estimates to individual cells. We applied GSVA using standard settings, as
implemented in the GSVA package (version 1.22.4). Differences in pathway
activities scored per cell by GSVA between the different clusters.

Reconstruction of differentiation trajectories using Monocle
Using the R package Monocle (version 2.8.0), differentiation hierarchies
within different clusters were reconstructed [57]. Cell fate decisions and
differentiation trajectories were reconstructed with the Monocle 2
package, which utilized reverse graph embedding based on a user-
defined gene list to generate a pseudo-time plot that could account for
both branched and linear differentiation processes.

DATA AVAILABILITY
The scRNA-seq data for MMTV-PyMT mouse has been deposited in the NCBI under
the accession code PRJNA762594. The bulk RNA-seq data for MMTV-PyMT and wild-
type control mouse has been deposited in the NCBI under the accession code
PRJNA761912. The scRNA-seq data for breast cancer patients have been deposited in
the NCBI under the accession code PRJNA764023.
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