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Chidamide triggers BTG1-mediated autophagy and reverses
the chemotherapy resistance in the relapsed/refractory B-cell
lymphoma
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Rituximab/chemotherapy relapsed and refractory B cell lymphoma patients have a poor overall prognosis, and it is urgent to develop
novel drugs for improving the therapy outcomes. Here, we examined the therapeutic effects of chidamide, a new histone deacetylase
(HDAC) inhibitor, on the cell and mouse models of rituximab/chemotherapy resistant B-cell lymphoma. In Raji-4RH/RL-4RH cells, the
rituximab/chemotherapy resistant B-cell lymphoma cell lines (RRCL), chidamide treatment induced growth inhibition and G0/G1 cell
cycle arrest. The primary B-cell lymphoma cells from Rituximab/chemotherapy relapsed patients were sensitive to chidamide.
Interestingly, chidamide triggered the cell death with the activation of autophagy in RRCLs, likely due to the lack of the pro-apoptotic
proteins. Based on the RNA-seq and chromatin immunoprecipitation (ChIP) analysis, we identified BTG1 and FOXO1 as chidamide target
genes, which control the autophagy and the cell cycle, respectively. Moreover, the combination of chidamide with the chemotherapy
drug cisplatin increased growth inhibition on the RRCL in a synergistic manner, and significantly reduced the tumor burden of a mouse
lymphoma model established with engraftment of RRCL. Taken together, these results provide a theoretic and mechanistic basis for
further evaluation of the chidamide-based treatment in rituximab/chemotherapy relapsed and refractory B-cell lymphoma patients.
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INTRODUCTION
Currently, the standard first-line treatment for patients with diffuse
large B-cell lymphoma (DLBCL) is rituximab combined with
chemotherapy, which leads to an around 60% complete remission
rate. Despite overall improvements in the clinical outcomes of DLBCL,
approximately one-third of patients still develop relapsed/refractory
disease. The clinical approach to relapsed/refractory DLBCL include
high-dose chemotherapy and autologous stem cell transplantation
(HD-ASCT). However, the patients refractory to rituximab have poor
outcomes with HD-ASCT [1]. Thus, there is an urgent need for new
drugs to improve the outcomes of the salvage therapies [2, 3].
The rituximab resistance cell lines (Raji-4RH and RL-4RH) were

developed by repeated exposure to rituximab, and these rituximab/
chemotherapy resistant B-cell lymphoma cell lines (RRCLs) also
displayed significant resistance to a variety of chemotherapy drugs.
RRCL has been used as an excellent pre-clinical model to evaluate
the biological activity of newly developed drug. The RRCLs show
decreased CD20 cell surface marker, which is the target of rituximab.
This decrease of CD20 is because of a reduction of positive regulatory
proteins binding to CD20 promoter and a defect in CD20 transport to
the cell surface [4]. Furthermore, RRCLs carry many defects in the

BCL-2 family members, such as silence of the pro-apoptotic proteins
Bak and Bax [5, 6], which makes RRCLs not undergo rituximab/
chemotherapy-induced apoptosis. Given the deficiencies of the pro-
apoptotic proteins, the therapeutic strategy targeting the autophagy
pathway could be effective in the rituximab/chemotherapy relapsed
and refractory B-cell lymphoma. Thus, it is worth testing the
therapeutic efficacy of a novel histone deacetylase (HDAC) inhibitor,
chidamide, in the RRCL-derived cell/mouse model, which will be
helpful for the future clinical application of HDAC inhibitor in the
treatment of relapsed/refractory B-cell lymphoma.
Chidamide is a selective HDAC inhibitor of benzamide class

developed in China, and it is able to promote histone H3
acetylation [7, 8]. Recently, it has been reported that chidamide
could block the differentiation and resorption of osteoclast [9].
Clinical studies showed that low-dose chidamide administration
restores immune tolerance in immune thrombocytopenia, which
suggests that chidamide is low-toxic and safe in clinic [10].
Chidamide inhibits cell proliferation and induces cell apoptosis in
different types of hematological malignancies [11], [12], [13–15].
The combination of chidamide and decitabine, a hypomethylating
agent inhibited the growth of p300- or KMT2D-mutated
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T-lymphoma cells [16]. Moreover, clinical studies showed that
chidamide had a favorable efficacy for angioimmunoblastic T-cell
lymphoma [17] and relapsed/refractory peripheral T-cell lym-
phoma patients [18, 19]. However, it has not been determined
whether chidamide, either as a single agent or as a component of
combined therapy, could induce autophagy in the rituximab/
chemotherapy relapsed and refractory B-cell lymphoma cells.

MATERIALS AND METHODS
Cell lines
A panel of RSCL (the rituximab sensitive cell lines) and RRCL were used in
this experiment. The RSCL Raji [Burkitt’s lymphoma (BL)], RL [germinal
center B cell (GCB) DLBCL], and the RRCL (Raji-4RH and RL-4RH) were kind
gifts given from Czuczman. RRCL were created and characterized from
RSCL as previously described [20]. All cell lines were maintained in RPMI
1640 with Glutamax-1 (Gibco, C11875500CP) supplemented with 10%
heat-inactivated fetal bovine serum (FBS), HEPES (5 mmol/L), penicillin and
streptomycin (100 IU/mL), and sodium pyruvate (1 mmol/L).

Primary patient samples
Primary relapsed patient cells were obtained from puncture samples from
consenting patients with rituximab or chemotherapy treatment failure.
Patient #1 was a 57-year-old man who had become resistant from 6 times
rituximab plus CHOP treatment; patient #2 was a 63-year-old man who was
diagnosed as non-hodgkin’s lymphoma; patient #3 was a DLBCL patient
who had relapsed from 3 times rituximab plus CHOP treatment. All primary
patient cells were cultured at 37 °C in RPMI 1640 supplemented with 20%
FBS and penicillin/streptomycin (100 IU/mL). Informed consent was
obtained from all subjects for the collection and use of samples.

Mouse model and drugs administration
2.5 × 106 Raji-4RH cells were suspended in RPMI medium and mixed with
35 µL matrigel to 100 µL. The cells were injected subcutaneously into both
flanks of nude mice (5 or 6-week-old). Treatment started when tumor became
about 5 × 5mm in surface (day 0). Animals were randomly divided into 4

groups (6 mice/group) to receive control, chidamide (25mg/kg), cisplatin
(1mg/kg), and chidmaide+ cisplatin treatment, respectively, for 16 days.
Chidamide was given intragastric administration in the morning and cisplatin
was given by intraperitoneal injection in the afternoon. Tumor volumes were
calculated as 0.5 × a× b2, where ‘a’ is the length and ‘b’ is the width. Approval
number of committees for ethical review is SINH-2021-WL-3.

Methods used
Measurement of cell viability assay, isobolographic analysis, lentivirus
production and infection, shRNA-mediated gene knockdown, RT-PCR and
RT-qPCR, ChIP-qPCR, RNA-seq, flow cytometry, and statistical analyses are
provided in the supplementary method section.

RESULTS
Chidamide induced growth inhibition and cell cycle arrest in
RRCL
Raji, Raji-4RH, RL, and RL-4RH cells were treated with chidamide at
various dosages for 72 h, and the cell viability were examined at
different time points. Chidamide inhibited the growth of both
Rituximab sensitive cells (Raji and RL) and Rituximab resistant cells
(Raji-4RH and RL-4RH) in a dose- and time-dependent manner. The
IC50 of chidamide in Raji, Raji-4RH, RL, and RL-4RH cells are 1.327,
1.906, 5.527, and 2.123 μM, respectively (Fig. 1a). As an HDAC
inhibitor, chidamide significantly increased the acetylation level of
Histone H3 lysine (H3K9) in these rituximab-resistant and -sensitive
cells (Fig. 1b and Fig. S1). Moreover, the primary B-cell lymphoma
cells from relapsed patients were also sensitive to chidamide
treatment (Fig. 1c). Next, we performed flow cytometric analysis of
cell cycle and cell apoptosis in these cells treated with chidamide or
the vehicle control. We found that 1, 3, or 6 μM chidamide treatment
resulted in the significant G0/G1 phase cell cycle arrest in both RRCL
and RSCL (Fig. 2a, b and Fig. S2a, b). The Annexin V/PI staining
analysis showed that chidamide induced apoptosis in Raji and RL
cells (Fig. 2c, d). However, chidamide could not induce apoptosis in
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Fig. 1 Chidamide treatment reduced cell viability of RSCL, RRCL, and primary relapsed B-cell lymphoma cells. a Raji, Raji-4RH, RL, and RL-
4RH were treated with chidamide at different time points and concentrations. Cell viability were measured by using MTT assay, and IC50 of
chidamide were calculated (N= 3). b Acetylation of histone H3 lysine 9 (H3K9) was examined by using Western blot assay 24, 48 or 72 h after
chidamide (3 μM) treatment (N= 3). c The primary relapsed B-cell lymphoma cells were treated with chidamide at different concentrations for
24 h (#1) or 72 h (#2 and #3). Cell viability was measured by using MTT assay (N= 3). For all graphs, data are presented as mean ± SD.
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Raji-4RH and RL-4RH cells (Fig. S2c, S2d). Next, we evaluated the level
of apoptosis-related proteins and found that chidamide could not
trigger the cleavage of Caspase-3, PARP, and Caspase-8 (Fig. 2e), in
Raji-4RH and RL-4RH cells, which was possibly due to the lack of pro-
apoptotic proteins in the RRCL [5, 6]. Therefore, these results
suggested that the cell cycle arrest but not apoptosis was involved in
chidamide-induced cell growth inhibition in RRCL.

The integrated gene expression profiling of RRCL following
chidamide treatment
To identify the novel target genes and pathways regulated by
chidamide to promote the death of RRCL, we treated Raji-4RH cells
with 3 μM chidamide or the control vehicle for 24 h, and the RNA
of these cells were isolated for RNA-seq analysis. The heat map
analysis showed some differentially expressed genes influenced

by chidamide in Raji-4RH cells, including those that regulate the
cell cycle pathway (Fig. 3a). We also performed KEGG pathway and
GO analysis for the RNA-Seq data, and the top molecular functions
influenced by chidamide treatment were related to cell cycle (Fig.
3b). We also analyzed the entire unfiltered expression dataset with
the Gene Set Enrichment Analysis (GSEA) tool, using the Molecular
Signatures Database. GSEA identified significant sets of genes that
were overrepresented at the top or bottom of the ranked set of
differentially expressed genes comparing the control and the
chidamide treated Raji-4RH cells. GSEA curves for enriched
pathways involving E2F targets (Fig. 3c left panel) and G2/M
checkpoint pathways (Fig. 3d left panel). To define the expression
of cell cycle regulators in the E2F and G2/M checkpoint pathways
that may be modulated by chidamide, we examined Raji, Raji-4RH,
RL, and RL-4RH cells treated with 3 μM chidamide for 24, 48, or
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Fig. 2 Chidamide treatment induced cell cycle arrest in both RSCL and RRCL, but triggered cell apoptosis only in RSCL. a, b The cell cycle
of RSCL and RRCL treated with chidamide (3 μM) for 24, 48 or 72 h were examined by flow cytometry analyses (a). The ratio of G1, S, and G2/M
phase were shown in histograph (b). c, d Apoptosis of RSCL induced by chidamide (6 μM) treatment for 24, 48, or 72 h were examined by
using flow cytometry analysis (c). The statistics of early apoptosis, late apoptosis, and cell death were shown in corresponding histograph (d).
e Changes of apoptosis related proteins were examined by using Western blot analysis in Raji and Raji-4RH treated with chidamide (6 μM) or
DMSO for 24, 48, and 72 h (N= 3). For all graphs, data are presented as mean ± SD.
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Fig. 3 Cell cycle arrest molecular signature induced by chidamide treatment. a Heatmap of differentially expressed gene in the RNA-seq
analysis of Raji-4RH treated with chidamide (3 μM) for 24 h (N= 3). b KEGG pathway and GO analysis revealed top molecular functions affected
by chidamide treatment are cell cycle related (N= 3). c, d GSEA analysis of all genes shows a downregulation in HALLMARK E2F TARGETS
genset after chidamide treatment compared with the control, and the expression of p21/p27 was detected by performing Q-PCR analysis 24,
48, or 72 h after chidamide treatment (c); downregulation in HALLMARK G2/M CHECKPOINT after chidamide treatment compared with the
control, and the expression of E2F1, E2F2, and cyclinD3 was examined by using Q-PCR analysis 24, 48, or 72 h after chidamide treatment (d).
For all graphs, data are presented as mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***, p < 0.001****. Statistical analysis was performed with a
paired t test.
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72 h. Chidamide treatment upregulated the amount of p21 and
p27 mRNA (Fig. 3c right panel and Fig. S3a), and downregulated
the mRNA level of E2F1, E2F2, and cyclin D3 in Raji-4RH and RL-
4RH cells (Fig. 4d right panel and Fig. S3b). Thus, chidamide
appeared to induce the cell cycle arrest of RRCL through these
targets within the E2F and G2/M checkpoint pathways.

Chidamide-induced cell growth inhibition and cell cycle arrest
can be rescued by inhibition of FOXO1 in RRCL
We have identified some cell cycle-related genes influenced by
chidamide in the above RNA-Seq analysis. To further confirm the
RNA-seq data, we performed Q-PCR and Western blot analyses in
Raji, Raji-4RH, RL, and RL-4RH cells treated with 3 μM chidamide
for 24, 48, or 72 h. Cyclin A2, CDK2, and Cyclin B1 were decreased
and p21/p27 were increased at both mRNA and protein levels
upon the chidamide treatment (Fig. 4a, b and Fig. S4a, b). We also
found that the chidamide treatment upregulated the expression
of FOXO1, the key upstream regulator of cell cycle, in Raji, Raji-
4RH, RL, and RL-4RH cells (Fig. 4c, d and Fig. S4c, d). To understand
the regulatory mechanism, we performed the ChIP assay using the
antibody to the acetylated histone H3K9 in Raji-4RH cells treated
with 3 μM chidamide or the control vehicle for 24 h. A significant

increase in acetylated H3K9 on the promoter region of FOXO1 was
detected in the Raji-4RH cells treated with chidamide compared
with levels in the controls (Fig. 5a), which could explain the
chidamide-induced upregulation of FOXO1 gene expression.
To determine whether FOXO1 mediated the effects of chidamide

on the growth inhibition and cell cycle arrest, we performed the
rescue assay with FOXO1 inhibition. As shown in Fig. 5b, the
decreased cell viability in the chidamide-treated Raji-4RH and RL-4RH
cells were attenuated by using a small-molecule inhibitor of FOXO1
(AS184). FOXO1 inhibitor also rescued the G0/G1 phase cell cycle
arrest in the Raji-4RH and RL-4RH cells treated with chidamide (Fig.
5c, d). These results suggested that chidamide might impair the
growth and cell cycle of RRCL by upregulating FOXO1.

Chidamide induced the death of RRCL and BTG1-mediated
autophagy
To explore the mechanism of chidamide-induced RRCL death, we
evaluated the protein level of p62, an autophagy biomarker, and
found increased autophagic activity manifested by decreased p62
protein levels in Raji, Raji-4RH, RL, and RL-4RH cells treated with
chidamide for 24, 48, or 72 h (Fig. 6a and Fig. S5a). LC3-postitive
double-membrane degradation cargo is also considered to be the

Fig. 4 Upregulation of FOXO1 and changes of cell cycle-related proteins induced by chidamide treatment. a, b Changes of p21, p27,
CyclinA2, CDK2, and CyclinB1 were examined by Q-PCR and Western blot analysis in RRCL treated with chidamide (3 μM) for 24, 48 or 72 h
(N= 3). c, d Changes of FOXO1 were examined by Q-PCR and Western blot in RRCL treated with chidamide (3 μM) for 24, 48, or 72 h (N= 3).
For all graphs, data are presented as mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***, p < 0.001****. Statistical analysis was performed with a
paired t test.
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hallmark of autophagy activity [21]. Therefore, we measured the
conversion of LC3-I to LC3-II and LC3 autophagic vesicles.
Increased LC3-II was observed in Raji, Raji-4RH, RL, and RL-4RH
cells upon chidamide treatment, suggesting more conversion of
LC3-I to LC3-II (Fig. 6a and Fig. S5a). We found that chidamide
treatment in Raji-4RH cells increased the number of autophagic
vesicles through electron microscope (Fig. 6b).
We treated Raji, Raji- 4RH, RL, and RL- 4RH cells with the

autophagy inhibitor, Bafilomycin A1, and performed the Western
blotting analysis, which showed that the combination of chidamide
and Bafilomycin A1 increased levels of LC3 II and p62 compared with
the chidamide single treatment controls (Fig. S5b). After transfected
with EGFP-LC3B, the Raji- 4RH and RL- 4RH cells treated with the
combination of chidamide and Bafilomycin A1 showed stronger
signals than chidamide single treatment controls (Fig. S5c), and the
Raji- 4RH and RL- 4RH cells treated with chidamide showed
dramatically increased free GFP fragments (Fig. S5d). These data
suggested that chidamide increased autophagy induction in RRCL.

To understand the underlying mechanism, we analyzed the RNA-
Seq data, and found that chidamide treatment upregulated the
expression of BTG1 (B-cell translocation gene 1), a key regulator of
autophagy [22, 23], in Raji-4RH cells. The Q-PCR analysis confirmed
that chidamide induced the upregulation of BTG1 in Raji-4RH and RL-
4RH cells (Fig. 6c). Then, we performed the ChIP assay, and the results
showed that the binding of acetyl histone H3K9 to BTG1 promoter to
acetyl histone H3K9 was significantly increased by chidamide
treatment (Fig. 6d), suggesting that BTG1 could be a target gene of
chidamide. To examine the role of BTG1 in chidamide-induced
autophagy, we performed the rescue assay with BTG1 inhibition. The
increased cell autophagy in the chidamide-treated Raji-4RH cells
were attenuated by using the shRNA against BTG1. Knockdown of
BTG1 rescued the conversion of LC3-I to LC3-II in the Raji-4RH cells
treated with chidamide (Fig. 6e, f). The flow analysis showed that
knockdown of BTG1 could not induce apoptosis in Raji-4RH and RL-
4RH cells (Fig. S5e). These results indicated that chidamide promoted
the autophagy of RRCL by upregulating BTG1.

Fig. 5 FOXO1 was a target gene of chidamide to mediate cell cycle arrest. a Raji-4RH was treated with chidamide (3 μM) or DMSO for 24 h
and then cells were collected for ChIP assay. DNA fragments were pulled down with Ace-H3K9 antibody or negative IgG antibody. Enrichment
of FOXO1 promoter sequences were examined by Q-PCR analysis and normalized to input chromatin DNA, and primers were designed as the
sketch indicated (N= 3). b Raji-4RH and RL-4RH cells were treated with AS184 (250 nM) and chidamide (1 or 3 μM) alone or in combinations for
48 h, and cell viability were examined by MTT assay (N= 3). c, d Raji-4RH and RL-4RH cells were treated with AS184 (250 nM) and chidamide
(1 μM) alone or in combinations for 48 h, and cell cycle were examined by flow cytometry (c) and shown in histograph (N= 3) (d). For all
graphs, data are presented as mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***, p < 0.001****. Statistical analysis was performed with a paired t test.
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Chidamide in combination with chemotherapy drugs showed
synergistic effect in RRCL and significantly inhibited the
growth of rituximab-resistant lymphoma in vivo
Raji, Raji-4RH, RL, and RL-4RH cells were treated with the
combination of chidamide and the chemotherapy drugs, includ-
ing cisplatin, etoposide, hcl-gemcitabine, and doxorubicin at

different dosages for 72 h. The combinative effects of these drugs
were examined by using MTT assay, which provided the basis for
making the synergistic curves. Chidamide at 0.3 and 0.6 μM in
combination with cisplatin, etoposide or hcl-germcitabine showed
synergistic effect in the Rituximab resistant Raji-4RH and RL-4RH
cells (Fig. 7a, b and Fig. S6a, b). However, the combination of

Fig. 6 Chidamide treatment induced robust autophagy through upregulation of BTG1. a RSCL and RRCL were treated with DMSO or
chidamide (3 μM) for 24, 48, or 72 h and autophagy-related proteins were detected by using Western blot analysis (N= 3). b More
autophagosomes of Raji-4RH were detected in Raji-4RH treated with chidamide (3 μM) compared with the DMSO control, red arrows indicates
autophagosomes observed in electron microscope (N= 1). c Expression of BTG1 in Raji-4RH and RL-4RH treated with chidamide (3 μM) for 24,
48, or 72 h were detected by Q-PCR (N= 3). d Raji-4RH was treated with chidamide (3 μM) or DMSO for 24 h and then cells were collected for
ChIP assay. DNA fragments were pulled down with Ace-H3K9 antibody or negative IgG antibody. Enrichment of BTG1 promoter sequences
were examined by Q-PCR and normalized to input chromatin DNA, and primers were designed as the sketch indicated (N= 3). e Efficiency of
BTG1 knock down with shRNA before and after chidamide treatment were examined by using Q-PCR analysis (N= 3). f ShRNA SC, shRNA#1
and #2 Raji-4RH were treated with chidamide (3 μM) for 48 h, and then autophagy-related proteins LC3-II, LC3-I, and p62 were examined by
using Western blot analysis (N= 3). SC Scramble. For all graphs, data are presented as mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***,
p < 0.001****. Statistical analysis was performed with a paired t test.

K. Xue et al.

7

Cell Death and Disease          (2021) 12:900 



Fig. 7 Chidamide and chemotherapeutics were synergetic in vitro through congenerous upregulation of BTG1. a, b Raji-4RH (a) and RL-
4RH (b) were treated with the different combinations of chidamide and etoposide, cisplatin, hcl-gemcitabine for 72 h and cell viability were
examined by using MTT assay. Cooperativity of chidamide and chemotherapeutics were calculated by Compusyn software. The normalized
isobologram were shown. DRI: Dose-Reduction Index (N= 3). c The expression of BTG1 in Raji-4RH and RL-4RH treated with DMSO, chidamide
(1 μM), cisplatin (15 μM) or their combination for 48 h were examined by Q-PCR (N= 3). d Changes of autophagy-related proteins in Raji-4RH
and RL-4RH treated with DMSO, chidamide (1 μM), cisplatin (15 μM) or their combination for 48 h were examined by using Western blot
analysis (N= 3). For all graphs, data are presented as mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***, p < 0.001****. Statistical analysis was
performed with a paired t test.
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chidamide and Dox showed certain antagonistic effects at some
combinative dosages (Fig. S6c). Next, we focused on the
combination of chidamide and cisplatin, which was found to
induce more upregulation of BTG-1 compared with chidamide/
cisplation single treatment control in Raji-4RH and RL-4RH cells
(Fig.7c). In addition, the combination of chidamide and cisplatin
treatment also resulted in the increased LC3-II and pH2A.X levels
and the decreased Rad51 level compared with chidamide or
cisplation single treatment control in Raji-4RH and RL-4RH cells
(Fig. 7d and Fig. S6d). These results suggested that cisplatin could
be the suitable candidate drug for the combination treatment of
chidamide in rituximab-resistant B-cell lymphoma.
The mouse model of the xenograft tumor was established by

subcutaneous inoculation of 3 × 106 rituximab-resistant Raji-4RH
cells in nude mice. The latency of tumor formation to a volume of
5 × 5mm at the site of injection was approximately 6–7 days after
injection. The mice were randomly divided into 4 groups (Day 0)
and treated with chidamide (2.5 mg/kg) in combination with
cisplatin in the same way from Day 10 and tumor volumes were
measured daily until Day 16. The tumor weights were examined at
the endpoint of the experiment. Compared with the control group
or chidamide/cisplatin single treatment group, the combination
treatment significantly reduced the tumors sizes (p < 0.05) (Fig.
8a–c) and tumor weights (Fig. 8d). Moreover, the combination of
chidamide and cisplatin showed increased anti-tumor effects
compared with chidamide or cisplatin single treatment group.

These results suggested that chidamide in combination with
cisplatin showed synergistic therapeutic effect in the mouse
model of rituximab-resistant B-cell lymphoma.

DISCUSSION
Overexpression of HDACs in tumor cells can induce proliferation
and dedifferentiation; conversely, knockdown of HDACs can
induce a range of anti-tumor effects, including cell cycle arrest
and inhibition of proliferation, induction of apoptosis, differentia-
tion and senescence, and disruption of angiogenesis. This
provides indication that HDAC inhibitors can be effective
therapeutic drugs against cancers [24]. The patients with
rituximab/chemotherapy relapsed and refractory B-cell lymphoma
have low response rates to current available second-line
treatment. We aimed to define the activity and biological effects
of chidamide on the relapsed and refractory B-cell lymphoma. In
this study, we explored chidamide’s anti-tumor activity in the
rituximab-resistant pre-clinical models, and found that chidamide
was active in RRCL and the primary relapsed B-cell lymphoma
cells. Mechanistically, chidamide treatment increased the level of
acetylated histone H3K9, which accumulated on the promoter
regions of FOXO1/BTG1 and promoted their transcription activa-
tion in RRCL (Fig. 8e).
Chidamide-induced upregulation of FOXO1 resulted in the cell

cycle arrest at G0/G1 phase, which were associated with the

Fig. 8 Chidamide and chemotherapeutics are synergetic in vivo. a–d Nude mice were subcutaneously with Raji-4RH cells in both flanks,
after tumor volume is about 5 × 5 × 5mm. These mice were randomly divided into 4 groups and treated with the combination of chidamide
(25mg/kg) and cisplatin (1 mg/kg) for about 2 weeks. Volumes of each group were shown in body (a) and growth curve (b). The weights c and
sizes d of tumors were analyzed after sacrifice of mice. e Chidamide treatment caused the accumulation of histone acetylation at the promoter
regions of FoxO1 and BTG1. Upregulation of FOXO1 increased the expression of p21 and p27, and induced cell cycle arrest. Above all,
increased expression of BTG1 caused cell autophagy and decreased chemotherapeutics resistant (N= 3). For all graphs, data are presented as
mean ± SD, *p < 0.05, **p < 0.01, p < 0.005***, p < 0.001****. Statistical analysis was performed with a paired t test.
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increase of cell cycle negative regulators p21/p27 and the
decrease of cell cycle positive regulators E2F1/2, CDK2, CyclinA2,
and CyclinB1. FOXO1 inhibition diminished chidamide activity in
these cells suggesting that chidamide had FOXO1-dependent
action on cell growth and cell cycle arrest.
Since the pro-apoptotic proteins are defective in RRCL, these

cells cannot pass through apoptosis, the pro-apoptotic
proteins–mediated programmed cell death. Chidamide exposure
resulted in apoptosis in RSCL but not in RRCL, which indicated the
existence of alternative pathways of caspase-independent cell
death in RRCL. We previously demonstrated that loss of Caspase-3
increased the autophagy activation and elicited cytotoxic effects
through an apoptosis-independent manner [25]. Both apoptosis
and autophagy can be regulated by Caspase-3. RRCL is lack of
Caspase-3, which may cause increased autophagy and apoptosis-
independent cytotoxic effect upon stress condition. Autophagy
has been shown to play a vital role in cell death, and some drugs
such as arsenic trioxide, have been found to induce cell death via
activation of autophagy [26, 27]. Upon the treatment of
chidamide, RRCL chose the alternative manner of cell death, the
BTG1-regulated autophagy. It has been shown that the levels of
SQSMT1/p62 and LC3 are decreased in B-cell lymphoma
compared to the reactive B cells, which indicates that the
autophagy activity of B-cell lymphoma is increased [28–30]. Thus,
autophagy may play a key role in the pathogenesis and treatment
of B-cell lymphoma. BTG1 is a family member of anti-proliferative
genes which regulate cell growth and differentiation [31]. As a
cofactor and an adaptor molecule, BTG1 inhibits cell growth
through transcriptional or post-transcriptional regulation [32]. In
this study, we have found that chidamide-induced autophagy
could be rescued by inhibition of BTG1.
Chidamide presented functional complementation with the

chemotherapy drugs, through decreasing p62, thus promoting
cell autophagy. The combination of chidamide with cisplatin
sensitized the resistant cells to growth inhibition in a synergistic
manner. More importantly, chidamide-cisplatin combination sig-
nificantly blocked the growth of the tumor in a mouse lymphoma
model established with engraftment of the rituximab/chemother-
apy relapsed and refractory B-cell lymphoma cells. Therefore,
chidamide in conjunction with cisplatin may represent a novel
strategy in treating patients with rituximab/chemotherapy
relapsed and refractory B-cell lymphoma. Taken together,
chidamide is active in the rituximab-chemotherapy-resistant cell/
mouse models with the induction of autophagy, and potentiates
the antitumor activity of chemotherapy drugs, suggesting it has
the potential of becoming an effective therapeutic agent in the
treatment of rituximab/chemotherapy relapsed and refractory
B-cell lymphoma. Our pre-clinical data supports further evaluation
of chidamide in treating rituximab/chemotherapy relapsed and
refractory B-cell lymphoma in a clinical trial.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The raw data used for the RNA-Seq are available in
the Gene Expression Omnibus database under accession number GSE137359.
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