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Exosomal miR-1260b derived from non-small cell lung cancer
promotes tumor metastasis through the inhibition of HIPK2
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Tumor-derived exosomes (TEXs) contain enriched miRNAs, and exosomal miRNAs can affect tumor growth, including cell proliferation,
metastasis, and drug resistance through cell-to-cell communication. We investigated the role of exosomal miR-1260b derived from non-
small cell lung cancer (NSCLC) in tumor progression. Exosomal miR-1260b induced angiogenesis by targeting homeodomain-interacting
protein kinase-2 (HIPK2) in human umbilical vein endothelial cells (HUVECs). Furthermore, exosomal miR-1260b or suppression of HIPK2
led to enhanced cellular mobility and cisplatin resistance in NSCLC cells. In patients with NSCLC, the level of HIPK2 was significantly lower
in tumor tissues than in normal lung tissues, while that of miR-1260b was higher in tumor tissues. HIPK2 and miR-1260b expression
showed an inverse correlation, and this correlation was strong in distant metastasis. Finally, the expression level of exosomal miR-1260b
in plasma was higher in patients with NSCLC than in healthy individuals, and higher levels of exosomal miR-1260b were associated with
high-grade disease, metastasis, and poor survival. In conclusion, exosomal miR-1260b can promote angiogenesis in HUVECs and
metastasis of NSCLC by regulating HIPK2 and may serve as a prognostic marker for lung cancers.
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INTRODUCTION
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that are
secreted by almost all cell types of mammalian organisms. These
vesicles are broadly classified into apoptotic bodies, microvesicles,
and exosomes according to their size and cellular origin. EVs contain
intracellular DNA, mRNA, miRNA, and proteins, which can be
transported to other cells [1–3]. Although EVs were initially regarded
as “garbage bags” in eliminating unwanted substances from cells,
many studies have revealed their function as tools for cell-to-cell
communication. To date, several studies have identified the role of
tumor-derived exosomes or EVs in various stages of tumor
progression, including development [4], angiogenesis [5, 6], evasion
of immune surveillance [7–9], metastasis [10, 11], and acquisition of
aggressive phenotypes and multidrug resistance [12, 13].
miRNAs represent an extensive class of small, noncoding RNAs

that play important roles in regulating mRNA by degrading it and
adjusting protein levels. miRNAs are enriched in exsosomes, as
confirmed in our previous study [14–17]. Many studies have shown
that exosomal miRNAs can get transferred to neighboring and
distant cells [18–20] and play functional roles in tumor growth.
Recently, some reports have demonstrated that miR-1260b is
associated with chemosensitivity [21], lymph node metastasis [22],
cell proliferation and apoptosis [23], and cellular mobility in various
tumor cells [24]. Xia et al. reported that the transfer of exosomal miR-
1260b can promote cell invasion in lung adenocarcinoma [25] and

suggested the role of miR-1260b as a diagnostic or prognostic
marker in various tumor types. However, further validation is required
for the application of miR-1260b as a clinical biomarker.
Homeodomain-interacting protein kinase-2 (HIPK2) is a serine/

threonine kinase belonging to the dual-specificity tyrosine
phosphorylation-regulated kinase family of protein kinases [26].
HIPK2 is considered a tumor suppressor that modulates growth
and apoptotic cellular responses. HIPK2 can also promote
apoptosis by targeting multiple proteins, including p53, p73,
antiapoptotic trans-repressor C-terminal binding protein, mouse
double minute 2, and scaffold Axin [27–32]. In addition, HIPK2
plays an important roles in the inhibition of angiogenesis by
regulating vascular endothelial growth factor (VEGF), Siah-1, Siah-
2, WD repeat and SOCS box-containing protein 1, and hypoxia-
inducible factor 1 in hypoxic environment [33–38]. Thus, HIPK2 is a
promising target for anticancer therapies.
Our previous study identified that some miRNAs, including miR-

619-5p, were associated with angiogenesis and metastasis and
some, including miR-1260b, were enriched in non-small cell lung
cancer (NSCLC)-derived exosomes [17]. Thus, this study was
designed to investigate the function of exosomal miR-1260b by
investigating how exosomal miR-1260b induced angiogenesis in
endothelial cells and cellular mobility in NSCLC cells by targeting
HIPK2 to determine whether exosomal miR-1260b could serve as a
predictive indicator for metastasis in NSCLC.
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MATERIALS AND METHODS
Cell culture
The human NSCLC cell lines A549 and Calu-1 were purchased from
American Type Culture Collection (ATCC; Rockville, MD), and PC-9 cell line
was provided by Dr Kazuto Nishio (National Cancer Center Hospital, Tokyo,
Japan). NSCLC cell lines were maintained in RPMI1640 with 100 U/mL
penicillin, 100mg/mL streptomycin, and 10% fetal bovine serum (FBS).
Human umbilical vein endothelial cells (HUVECs) were purchased from
ATCC and cultured between passages 1 and 5 in Medium 200 (Gibco, ON,
Canada) supplemented with low serum growth supplement, 5% FBS,
100 U/mL penicillin, and 100mg/mL streptomycin (Gibco). All cell lines
were cultured in a 95% humidified incubator at 37 °C with 5% CO2 and
tested to be mycoplasma-free using the MycoProbe Mycoplasma
Detection Kit (R&D Systems, Minneapolis, MN) before freezing.

Tube formation assay
An endothelial tube formation assay was performed as described
previously [17]. Briefly, HUVECs (0.5 × 105 cells/well) were seeded into 12-
well plates, which were precoated with Matrigel (Corning Life Science,
Corning, NY), and transfected with miRNA or treated with exosomes at
37 °C with 95% humidified air and 5% CO2. After 3–6 h, the cells were
stained with Calcein AM dye and visualized on the Invitrogen EVOS M5000
Imaging System (Thermo Fisher Scientific, CA). The total tube lengths were
calculated using Angiogenesis Analyzer for Image J software.

Generation of stable cell lines
To generate a lentiviral vector expressing miR-1260b (MI0014197), the miR-
1260b (Genecopoeia, HmiR0803-MR03, Rockville, MD) and miR-1260b
inhibitor (Genecopoeia, HmiR-AN1496-AM03) sequences were cloned into a
lentiviral vector. The HIPK2 expression vector (Origene, RC220278, Rockville,
MD) and HIPK2 shRNA constructs (Origene, TR304106) were cloned into a
retroviral vector. Cells were incubated with culture medium-diluted virus
supernatant in the presence of 8 μg/mL polybrene (Sigma-Aldrich, St. Louis,
MO). For stable infection experiments, G418 (Sigma-Aldrich) or Puromycin
(Thermo Fisher, Waltham, MA) was added for stable clone selection.

Exosome isolation
The A549 cell line and its stable cell lines (miR-1260b-O/E and anti-miR-
1260b-O/E) were washed with PBS and grown in serum-free RPMI1640. For
exosome isolation, the conditioned medium was collected from cells
cultured in dishes for 48 h. In the first step, cellular debris were removed
from the conditioned medium at 300 × g for 10min, 2000 × g for 10 min,
and 10,000 × g for 30 min at 4 °C. The supernatants were collected without
disturbing at 100,000 × g for 70 min at 4 °C. The pellets were washed with
PBS, ultracentrifuged, and resuspended in PBS. Thawed plasma samples
were isolated using the same method. Exosome isolations were performed
as described previously [39].

Negative staining electron microscopy
Negative staining analysis of exosome was performed as described
previously [39]. Briefly, purified exosomes were fixed in 2% paraformalde-
hyde. Nickel transmission electron microscopy (TEM) grids, 200 mesh with
a formvar/carbon film, were floated on a drop of the fractions of exosomes.
The grids were stained with 2% uranyl acetate and imaged using TEM
(Hitachi H7600, Japan) at 80 kV.

Nanoparticle tracking analysis
Nanoparticle tracking analysis (NanoSight NS300, Malvern Instruments Ltd,
Malvern, UK) was used to measure the number and size distribution of
exosomes. Purified exosomes were diluted 100- to 500-fold in PBS, and
readings were imaged thrice for 60 s at room temperature. Data were
analyzed using the nanoparticle tracking analysis software (NTA version 2.3
build 0017).

3′-UTR luciferase reporter constructs and luciferase assays
The 3′-UTR sequence or the mutant sequence of HIPK2 (NM_022740) was
cloned into the predicted miR-1260b binding sites using the pEZX-MT06
Renilla/firefly dual-luciferase reporter plasmid (GeneCopoeia, HmiT067235,
Rockville, MD). Mutant constructs were generated by single (Mut-
1:267–274, Mut-2:4535–4541, and Mut-3:8803–8809) or triple (Mut-1/2/3:
267–274, 4535–4541, and 8803–8809) site-specific mutations in the seed
target sites (Fig. 1). The Dual-Luciferase Reporter Assay System (Promega,

Madison, WI) was used to perform luciferase assays. Firefly luciferase
activity was normalized by Renilla luciferase activity, and both activities
were measured using the 2030 multilabel reader VICTOR™ X3 (Perkin
Elmer, Waltham, MA, USA).

Migration and invasion assays
Transwell migration and invasion assays (Corning Life Science) were
performed using 24-well plates with polycarbonate membrane inserts with
an 8 μm pore size. Briefly, the cells supplemented with serum-free medium
were seeded into the Matrigel-coated chambers (for invasion) or Type I
collagen-coated chambers (for migration). The lower chambers contained
RPMI1640 with 10% FBS. After incubation for 24 h, the migrated or invaded
cells were fixed and stained using the Hemacolor® rapid staining kit (Merck,
Darmstadt, Germany). The cells at the bottom of the membrane were
counted under a light microscope.

Tail vein metastasis model
To verify that miR-1260b affects lung metastasis, A549 cells were infected
with lentiviruses carrying the luciferase reporter gene and then transfected
with miR-1260b. A total of 1 × 106 cells were resuspended in 100 μl PBS
and injected into the tail veins of severe combined immunodeficiency
mice (6 weeks of age) using 31-gauge insulin syringes. Mice were injected
with 150mg/kg D-luciferin potassium salt (Caliper Life Sciences, Hopkin-
ton, MA) and monitored weekly using the IVIS system (Xenogen, Alameda,
CA). Metastasis in vivo was measured via bioluminescence imaging.

Western blotting
The total proteins from cells or exosomes were extracted using EBC lysis
buffer and quantified using the Bradford method. Approximately 20mg of
protein was separated by SDS-PAGE and transferred to PVDF membranes
(Invitrogen) for western blotting. Membranes were probed using
antibodies against HIPK2 (#5091, 1:1000, Cell Signaling Technologies,
Danvers, MA), HSP70 (BD610607, 1:4000, BD Biosciences, San Diego, CA),
CD9 (ab92726, 1:1000, Abcam, Cambridge, UK), TSG101 (ab125011, 1:1000,
Abcam), calnexin (ab22595, 1:1000, Abcam), and β-actin (SC47778,1:2000,
Santa Cruz Biotechnology, Santa Cruz, CA) as the primary antibodies.

Cell apoptosis assay
The FITC Annexin V Apoptosis Detection Kit (BD Biosciences) was used to
quantitatively determine cell apoptosis according to the manufacturer’s
instructions. Cells were transfected with miR-1260b or treated with
exosomes and grown in 5% FBS RPMI medium containing a final
concentration of 5 or 10 μM cisplatin (Sigma-Aldrich, St. Louis, MO, USA)
for 48 h. Cells were stained with FITC-conjugated Annexin V and PI for
20min at 37 °C in the dark. Flow cytometry of samples was performed
using the BD Canto II cytometer (BD Biosciences). Experiments were
performed in triplicate.

Clinical specimens
Human NSCLC cells and their matched adjacent noncancerous lung tissues
were collected from 124 paired patients at Asan Medical Center between
2009 and 2016. Clinicopathological characteristics, including TNM stage,
are listed in Table S1. Forty-eight patients with and 48 healthy volunteers
plasma samples were acquired through collection of whole blood in
ethylenediaminetetraacetic acid after obtaining prior consent from each
individual. These analyses were approved by the Institutional Review Board
of Asan Medical Center (2016-0752, 2018-0462).

Quantitative real-time reverse transcription polymerase chain
reaction (qRT-PCR)
Total RNA was isolated with the RNeasy Miniprep kit (Qiagen) according to
the manufacturer’s instructions. Extracted RNA was reverse-transcribed to
cDNA using polyadenylated with a poly(A) tailing kit (Ambion, Austin, TX)
and poly(T) adaptor before reverse transcription.
The ABI 7900 Real-Time PCR System enabled SYBR-green-based

detection. The primers used are listed in Table S2.

Statistical analysis
Data are presented as mean ± standard deviation. p values were
determined using unpaired t-tests between groups using GraphPad Prism
software.
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RESULTS
Exosomal miR-1260b promotes angiogenesis in HUVECs by
directly targeting HIPK2
To confirm the effect of miR-1260b on angiogenesis in HUVECs, we
performed transfection with human miR-1260b or its complementary

antagonist anti-miR-1260b. We confirmed that these oligonucleo-
tides were taken up by HUVECs (Fig. S1A) and evaluated their effects
on tube formation. miR-1260b treatment increased tube formation,
whereas anti-miR-1260b treatment showed no effect (Fig. 1A). These
results supported the angiogenic effect of miR-1260b in HUVECs.
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We predicted 40 potential target genes of miR-1260b using five
algorithms (Fig. S2). Among the potential target genes, HIPK2 was
selected for further validation because of its well-known role in
tumor angiogenesis. HIPK2 was found to have three binding sites
for miR-1260b in its 3′ UTR (Fig. 1B). To determine whether HIPK2
was a direct target of miR-1260b, we designed luciferase
expression plasmids that included sequences of the wild-type
(WT) and mutants (MUT1-3) in three predicted binding sites of
miR-1260b on the 3′ UTR of HIPK2. Dual-luciferase reporter
analysis showed that the relative luciferase activity of HUVECs and
A549 cells was decreased significantly with WT treatments, but
these reductions recovered with MUT1 and MUT2 treatments.
Furthermore, triple mutation (MUT1/2/3) completely abrogated
the effect of miR-1260b (Fig. 1B). These results indicate that miR-
1260b directly targets HIPK2.
To further validate the angiogenic effects of exosomal miR-

1260b in HUVECs, we isolated exosomes from A549 cells and their
stable cell lines (miR-1260b- and anti-miR-1260b-overexpressing
A549 cells). Exosomes derived from each cell line were classically
confirmed by their size, morphology, and protein markers (Fig. S3).
When HUVECs were treated with each exosome, induction of miR-
1260b and reduction of HIPK2 were confirmed (Figs. S1B and 1C).
In these conditions, treatment with exosomes derived from A549
cells showed increased tube formation; exosomes derived from
miR-1260b-overexpressing A549 cells (miR-1260b-O/E) stimulated
more tube formation than those derived from A549 cells.
Furthermore, exosomes derived from anti-miR-1260b-
overexpressing A549 cells or anti-miR-1260b treatment attenuated
tube formation by A549 cell-derived exosomes (Figs. 1D and S4).
To further validate the role of HIPK2 in angiogenesis, HUVECs were
treated with shRNA HIPK2 or an expression vector for HIPK2.
Under conditions of HIPK2 suppression or overexpression (Fig. 1E),
HIPK2 suppression significantly enhanced tube formation,
whereas HIPK2 overexpression showed no effect (Fig. 1F). Thus,
exosomal miR-1260b led to enhanced tube formation capacity by
reducing HIPK2 protein levels in HUVECs.

Exosomal miR-1260b promotes migration and invasion of
NSCLC cells
Some studies have suggested that miR-1260b plays a role as a
regulator of tumor metastasis [24, 40, 41]. To further investigate
the biological consequences of miR-1260b/HIPK2-mediated
changes in NSCLC, we searched the ability to cellular mobility
by miR-1260b according to HIPK2 expression. Suppression of
HIPK2 expression by shRNA or miR-1260b was confirmed by
western blotting (Fig. 2A). Although miR-1260b treatment did not
affect cell proliferation in NSCLC cells (Fig. S5), HIPK2 suppression
by shRNA or miR-1260b significantly enhanced the migration and
invasiveness of NSCLC cells, whereas miR-1260b did not affect the
ability to cellular mobility under reduced HIPK2 expression (Figs S6
and 2B, C). These results were similar to those obtained by
HIPK2 suppression by treatment with A549-derived exosomes or
exosomes derived from miR-1260b-overexpressing A549 cells
(Fig. 2D, E). Furthermore, the introduction of miR-1260b resulted in

higher lung metastatic capacity than A549 cells following tail vein
injection (Fig. 2F). Collectively, our data demonstrate that
exosomal miR-1260b promotes the cellular mobility of NSCLC cell
lines by regulating HIPK2 expression.

Exosomal miR-1260b impairs the sensitivity of NSCLC cells to
cisplatin
Tumor-derived exosomes can transfer multidrug resistance-
associated protein, mRNA, and miRNA to recipient cells [42–44],
which leads to resistance to anticancer drugs. We investigated
whether miR-1260b affects the sensitivity of NSCLC cells to
cisplatin. Flow cytometry revealed that miR-1260b treatment
inhibited cisplatin-induced apoptosis in A549 and PC-9 cells,
whereas anti-miR-1260b treatment attenuated the inhibition of
cisplatin-induced apoptosis by miR-1260b (Fig. 3A, B). Consistent
with these results, apoptosis signaling, including PARP and
caspase-3, was confirmed by western blotting (Fig. 3C). Unlike
the results of A549 and PC-9 cells, the opposite pattern was found
in Calu-1 cells (Fig. 3D). To validate whether exosomal miR-1260b
leads to resistance to cisplatin, as shown in the aforementioned
results, we treated the cells with A549-derived exosomes,
exosomes derived from miR-1260b-overexpressing, or anti-miR-
1260b-overexpressing A549 cells and found that treatment of
exosomes containing miR-1260b inhibited cisplatin-induced
apoptosis. These effects were more significant in cells treated
with exosomes derived from miR-1260b-overexpressing A549 cells
than in A549-derived exosomes. In addition, exosomes derived
from anti-miR-1260b-overexpressing A549 cells attenuated the
inhibition of cisplatin-induced apoptosis by miR-1260b (Fig. 3E),
which were also confirmed by apoptosis signaling (Fig. 3F). These
findings suggest that exosomal miR-1260b reduces the sensitivity
of NSCLC cells to cisplatin.

Clinical implications of HIPK2 and miR-1260b in patients with
NSCLC
To verify the relationship between miR-1260b and HIPK2 and their
clinical meaning, we analyzed the expression levels of miR-1260b
and HIPK2 in 124 paired NSCLC tissues and adjacent noncancer-
ous lung tissues using qRT-PCR. HIPK2 transcripts were signifi-
cantly decreased in NSCLC tissues compared with corresponding
noncancerous lung tissues (83.1%, Fig. 4A, B), whereas miR-1260b
expression was much higher in NSCLC tissues than in noncancer-
ous lung tissues (99.1%, Fig. 4D, E). When HIPK2 and miR-1260b
were assessed according to the TNM stage (early stages I+ II vs.
late stages III+ IV), HIPK2 was decreased and miR-1260b was
enhanced, regardless of the tumor stage (Fig. 4C, F). Our clinical
association data revealed that HIPK2 downregulation was
significantly associated with distant metastasis (p= 0.04) and
miR-1260b upregulation was significantly associated with lymph
node (p= 0.001) and distant (p= 0.026) metastasis (Table S1).
Consistent with these results, scatter plots revealed a strong
inverse correlation between miR-1260b level and HIPK2 expres-
sion (Fig. 4G), which was more evident in patients with distant
metastasis (Fig. 4H). In additiona, Kaplan–Meier survival analysis

Fig. 1 Effects of exosomal miR-1260b on angiogenesis via direct modulation of HIPK2. A HUVECs were treated with 40 ng/mL VEGF, a
50 nM miR-1260b mimic, and a miR-1260b inhibitor. Effect of miR-1260b on the tube formation ability was determined by tube length. Tube
lengths were measured using ImageJ software. B Schematic diagram of the putative miR-1260b-binding site within the 3′UTR of HIPK2. The
seed sequence of miR-1260b matches three predicted target sites (nucleotides 267–274, 4535–4541, and 8803–8809; red). Five nucleotides
within each target site complementary to the seed sequence (nucleotides 2–7 of miRNA) of miR-1260b were mutated in the HIPK2 3′UTR-
mutant plasmids including single (Mut-1: 267–274, Mut-2: 4535–4541, and Mut-3: 8803–8809) or triple (Mut-1/2/3: 267–274, 4535–4541, and
8803–8809) mutants. The number indicates the position of the nucleotides in the wild-type (WT) sequence of the HIPK2 3′UTR site. For the
dual-luciferase assay, luciferase activities of plasmids with WT or Mut sequence of HIPK2 were assessed in HUVECs and A549 cells co-
transfected with miR-1260b mimic, and then Renilla luciferase activity was calculated as the luciferase activity ratio of firefly to Renilla
luciferase. C–F HUVECs were treated with 40 ng/mLVEGF, 50 μg of exosomes derived from A549, and their stable cell lines (miR-1260b-O/E and
Anti-miR-1260b), lentiviral HIPK2 or shHIPK2. D, F Tube lengths were measured using ImageJ software. C, E HIPK2 expression was confirmed by
western blotting. All data are reported as the mean ± standard deviation. *P < 0.05, **P < 0.005, ***P < 0.0005 compared with the control group.
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revealed that patients with low HIPK2 expression had worse
overall survival rates than those with high expression (Fig. 4I).
However, no significant difference was observed in survival rates
among patients with different expression levels of miR-1260b
(Fig. 4J). These results suggest that HIPK2 expression is inversely
associated with miR-1260b expression and that HIPK2 is an
important prognostic indicator or predictor of metastasis in
NSCLC.

Exosomal miR-1260b is induced in patients with NSCLC
We evaluated the level of exosomal miR-1260b in the plasma of
healthy donors and patients with NSCLC. In our previous report,
we confirmed that let-7a-5p has an equivalent concentration
within the exosomes of both healthy donors and patients with
NSCLC compared with other miRNAs [17]. Based on these results,
we used let-7a-5p as a control to normalize exosomal miR-1260b
expression. Expression levels of exosomal miR-1260b were higher

Fig. 2 Effects of exosomal miR-1260b on migration and invasion of NSCLC. A–C A549 cells were transfected with 50 nM control miRNA (NC)
or miR-1260b mimic for 48 h following infection of lentiviral shcontrol or shHIPK2. A HIPK2 expression was confirmed by western blotting.
B, C Transwell assays were performed to detect changes in migration and invasion abilities. The number of migratory or invading cells was
counted for each image field. D, E PC-9 cells were treated with 50 μg of exosomes derived from A549 and their stable cell lines (miR-1260b-O/E
or anti-miR-1260b-O/E). HIPK2 expression was confirmed by western blotting, and the ability of migration and invasion was determined using
Transwell assays. Data are reported as the mean ± standard deviation of three independent experiments with five fields counted per
experiment. F IVIS luciferase in vivo images of lung metastasis. Lung metastasis models by using A549 cells were established as described in
“Materials and methods.” Luciferase activities were determined by bioluminescent imaging (BLI) at 2 weeks after injection of the indicated
cells. *P < 0.05, **P < 0.005, ***P < 0.0005 compared with the control group.
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in patients with NSCLC than in healthy donors (Fig. 5A) as well as
in later TNM stages than in earlier TNM stages (Fig. 5B, C). When
comparing patients with and without metastasis, the exosomal
miR-1260b expression was significantly increased in those with
metastasis (Fig. 5D). In addition, Kaplan–Meier survival analysis

showed that patients with high exosomal miR-1260b levels had
worse overall survival rates than those with low exosomal miR-
1260b levels (Fig. 5E). Taken together, our data suggest that
exosomal miR-1260b is highly expressed in patients with
metastasis and exosomal miR-1260b is a more powerful biological

Fig. 3 Effect of exosomal miR-1260b on cisplatin-induced apoptosis. A A549, B PC-9, and D Calu-1 cells were transfected with 50 nM control
miRNA (CT), miR-1260b mimic, or anti-miR-1260b mimic for 24 h and then treated with 10 μM cisplatin for 48 h. Apoptosis was measured by
flow cytometry. C Cleaved PARP and caspase-3 were detected by western blotting. E PC-9 cells were treated with 50 μg exosomes from A549,
miR-1260b-overexpressing A549, or anti-miR-1260b-overexpressing A549 cells and treated with the indicated doses of cisplatin for 48 h.
Apoptosis was measured by flow cytometry. F Cleaved PARP and caspase-3 were detected by western blotting. The results are reported as the
mean ± standard deviation of three independent experiments. *P < 0.05, **P < 0.005, ***P < 0.0005 compared with the control group.
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indicator than cellular miR-1260b as a prognostic indicator or
predictor of metastasis in NSCLC.

DISCUSSION
EVs including exosomes are important players in intercellular
communication. Although the definition of an exosome remains

unclear, emerging evidence suggests that exosomes are
30–150 nm EVs of endosomal origin, comprising a subset of
bioactive molecules, such as DNA, proteins, noncoding RNA
(ncRNA), and lipids [45–47]. In cancer biology, these exosomes
have recently received attention because tumor exosomes
promote disease progression both by contributing to pre-
metastatic niche formation and by promoting the evasion of

Fig. 4 Relationship between HIPK2 and miR-1260b expression in NSCLC tissues. Expression levels of miR-1260b and HIPK2 were
determined by qRT-PCR assay in 124 pairs of NSCLC and adjacent normal tissue samples. A Box plot expression of HIPK2 mRNA levels in paired
NSCLC samples. B Fold change in HIPK2 mRNA in 124 cancer tissues divided by that in paired adjacent normal tissues. C Comparisons of HIPK2
mRNA expression at different pathological stages. D Dot plot of miR-1260b expression in paired NSCLC samples. E Fold change in miR-1260b
in 124 cancer tissues divided by that in paired normal tissues. F Comparisons of miR-1260b expression at different pathological stages.
G Scatter plot showing the correlation between HIPK2 mRNA and miR-1260b expression in tumor samples and H each TNM subset.
I, J Kaplan–Meier survival curve according to the categories of low and high expression of HIPK2 mRNA and miR-1260b. ***P < 0.0005.
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immune surveillance, stimulating angiogenesis, and extracellular
matrix degradation [48]. Thus, the modulation of tumor-derived
and tumor-associated exosomes may support new therapeutic
strategies.
Although exosomes contain various molecules from their

original cells, several studies have suggested that exosomal
miRNAs promote tumor progression in various model systems
[49, 50]. MiRNAs are enriched in exosomes, and we and other
authors have demonstrated that certain miRNAs are selectively
enriched in cancer-derived exosomes, compared to exosomes
derived from normal cells [17, 51–53]. Therefore, these exosomal
miRNAs may induce functional changes in various recipient cells,
suggesting a significant role of exosomes in the malignant process
of tumor development. In the context of tumor progression by
tumor-derived exosomes, our data showed that exosomal miR-
1260b play various roles in angiogenesis, cellular mobility, and
drug resistance. These multiple functions of miR-1260b are
possible because tumor-derived exosomes can be transferred to
a recipient cell located in the tumor microenvironment. These
findings indicate that the modulation of tumor-derived exosomes
may be an important factor for treating tumors due to their
multiple roles.
One miRNA can modulate the expression of various target

mRNAs in different pathways. To date, some studies have
demonstrated that miR-1260b is associated with chemosensitivity
and metastasis [21, 22]. Xia et al. showed that exosomal miR-
1260b promotes cell invasion through the Wnt/β-catenin signaling
pathway in lung adenocarcinoma [25]. Consistent with the
findings of previous studies, we found that the introduction of
miR-1260b or exosomal miR-1260b induced migration and
invasion or resistance to cisplatin in NSCLC cells. In addition,
although some studies demonstrated that miR-1260b can induce
angiogenesis via VEGF secretion in tumor cells [23, 54], our study

is the first to show that miR-1260b enhances angiogenesis by
targeting HIPK2 in endothelial cells. Thus, we speculate that the
effects of miR-1260b on tumor-associated angiogenesis are more
potent in in vivo systems. Additional studies are needed to
validate these possibilities.
Our data showed that miR-1260b can target HIPK2. HIPK2 is a

central regulator of life-and-death decisions and potential tumor
suppressor in tumor biology. Inhibition or dysfunction of HIPK2 in
tumors impairs p53 function and activates oncogenic pathways
necessary for tumor progression, angiogenesis, and resistance to
chemotherapy [55, 56]. Thus, suppression of HIPK2 by shRNA or
exosomal miR-1260b can induce angiogenesis and resistance to
cisplatin, as shown in our data. However, resistance to cisplatin
was not observed in Calu-1 cells. Several studies have suggested
that the role of HIPK2 in sensitivity or resistance to chemotherapy
is associated with p53-dependent apoptosis [57, 58]. Thus, the
results in Calu-1 cells were likely caused by p53 because they have
p53 deletion [59]. More experiments should be performed in
various cells with p53 deletion.
MiR-1260b and HIPK2 showed an inverse relationship in NSCLC

tissues, and high HIPK2 levels were associated with worse overall
survival than low HIPK2 levels. In contrast, the levels of cellular
miR-1260b were not associated with significant differences in
survival rates. However, upregulation of exosomal miR-1260b was
a poor prognostic marker, and high levels of exosomal miR-1260b
were associated with worse overall survival than low levels,
although the analysis of miR-1260b was performed in two
independent cohorts. Furthermore, upregulation of exosomal
miR-1260b was more evident in patients with late-stage NSCLC
and metastasis. Thus, exosomal miR-1260b may be crucial in
treating these tumors because patients with late-stage NSCLC
have advanced/metastatic tumors and generally undergo che-
motherapy. However, clinical significance of exosomal miR-1260b

Fig. 5 Pathological features of exosomal miR-1260b in NSCLC. A Exosomal miR-1260b expression in the plasma of healthy donors (n= 48)
and patients with NSCLC (n= 48). B Expression levels of exosomal miR-1260b were analyzed according to different stages, including C early
(I–II) and late (III–IV) stage or D metastatic and nonmetastatic stages of NSCLC. E Kaplan–Meier survival curve stratified by high and low
exosomal miR-1260b expression levels. *P < 0.05, **P < 0.005, ***P < 0.0005.
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requires further exploration in a large cohort. In conclusion,
exosomal miR-1260b induces angiogenesis, metastasis, and drug
resistance by targeting HIPK2. Levels of cellular HIPK2 and
exosomal miR-1260b may serve as prognostic biomarkers and
may be applied as attractive therapeutic targets for NSCLC.

DATA AVAILABILITY
All data generated and analyzed during the current study are available from the
corresponding author on reasonable request.
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