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Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a
specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal
with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively
dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through
mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells
facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local
microenvironment, differentiation into functional cells, cell “empowerment” via paracrine secretion, immunoregulation, and
intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived
adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional
properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer
capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and
aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between
different source-derived stem cells and potential associations between stem cell aging and mitochondria–endoplasmic reticulum
(ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
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FACTS

● Stem cell niche is essential for cell-fate decisions via regulation
of stem cell homeostasis and mitochondrial dynamics of
fusion and fission through balancing self-renewal and lineage-
specific differentiation, as well as stem cell quiescence and
activation.

● Circulating cell-free mitochondria exist within the peripheral
blood, which may be involved in various pathophysiological
processes.

● Mitochondria are highly dynamic organelles that change their
morphology in response to cellular signals and differentiation
states.

● Mitochondria–endoplasmic reticulum crosstalk is implicated in
aging progression.

● Asymmetrically sort and distribution of aged and young
mitochondria are critically involved in stemness regulation of
stem cells.

OPEN QUESTIONS

● Is mitochondrial functional decline involved in aging progres-
sion of stem cells through age-dependent subcellular
localization and redistribution of the mitochondria, thereby
causing loss of stem cell properties?

● Are mitochondrial connections and transfer implicated in cell-
based therapies via sharing and receiving of energetic and
young mitochondria of cells of damaged tissues from
functional stem cells?

● Is the coupling of endoplasmic reticulum (ER) stress and cell
differentiation associated with the interplay between
mitochondrial–ER crosstalk?

● Is it possible to alleviate stem cell aging or achieve
rejuvenation of aging stem cells through switching pro-
longed or excessive endoplasmic reticulum (ER) stress to
adaptive ER stress via regulation of mitochondrial function
and stem cell niche?
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INTRODUCTION
Stem cell-based therapies exert profound therapeutic potential for
curing a broad spectrum of diseases [1, 2]. Adult stem cells reside
in a specified dynamic niche that is essential for continuous tissue
homeostatic maintenance through balancing self-renewal with
lineage selection [3, 4]. Meanwhile, adult stem cells may be
multipotent or unipotent, and are present in both quiescent and
actively dividing states in vivo of the mammalians, which may
switch to each other state in response to various intrinsic or
extrinsic signals through mitochondria-mediated mechanisms,
such as alterations in mitochondrial respiration and metabolism
[4–9]. In addition, the co-incidence of endoplasmic reticulum (ER)
and mitochondria, and their dynamic interconnections and
crosstalk are involved in a series of cellular processes, including
mitochondrial homeostasis in fusion and fission, autophagy, and
inflammasome formation [10, 11].
Emerging novel techniques during recent years, such as single-

cell transcriptomics for analysis of spatial and temporal turnover of
certain cellular processes, may enable advancing our under-
standing of dynamic gene regulation in stem cell maintenance
within stem cell niche, stem cell activation and mobilization,
lineage specification, tissue-specific molecular phenotypes in adult
stem cells, identification of major cell types and their localization,
as well as cellular and spatial sources of key growth factors and
cytokines [12–18].

Diversity and heterogeneity of mitochondria
Mitochondria are complex organelles existing in a network
undergoing continuous morphological dynamic changes through
fission and fusion, which is crucial for the maintenance of
pluripotency and differentiation capacity of stem cells [19–24].
Mitochondria usually undergo continuous morphologic dynamic
changes through fission and fusion events controlled by the large
GTPases Drp1, Mfn1, Mfn2, and Opa1 (fusion), which are important
for mitochondrial function, and their imbalance would cause cell
dysfunction and various diseases [25–28]. Metabolic changes are
essential for cell-lineage commitment during mesenchymal stem
cell differentiation, accompanied with alterations in mitochondrial
morphology and dynamics [21, 22, 29]. Distinct morphological
characteristics of mesenchymal stem cells mitochondria occur
during different lineage-specification state (Fig. 1).
In general, stem cells facilitate tissue repair after tissue-specific

homing through various mechanisms, such as immunomodulation
of local microenvironment, differentiation into functional cells
[30, 31], cell “empowerment” via paracrine secretion [32–34],
immunomodulation [35, 36], and intercellular mitochondrial
transfer [37–40]. Recent studies have demonstrated intercellular
mitochondrial transfer within osteocyte-dendritic network [41].
Intriguingly, potential mitochondrial connections and commu-
nications were also observed between co-cultured mature
chondrocytes and stem cells ex vivo (Fig. 2A). Meanwhile, cell-
source-specific features have been reported between different
tissue-derived adult stem cells with distinct functional properties
[5, 42], as well as differential functional properties in different
tissue-derived stem cell-derived extracellular vehicles [43, 44],
mitochondrial metabolism [45], and mitochondrial transfer
capacity [46]. Strikingly, recent studies have reported the presence
of circulating cell-free mitochondria within the peripheral blood,
suggesting the diversity of existing forms of mitochondria [47, 48].
Therefore, it is highly possible that distinct mitochondrial gene
expression patterns may exist between different tissue-derived
stem cells, owing to the heterogeneity of stem cells and diverse
populations of mitochondrial DNA (mt-DNA) [48–55]. Simulta-
neously, visualization of replicating mt-DNA nucleoids has
suggested the physical linkage between the ER and mitochondria
(Fig. 2B) [56–58]. Therefore, manipulation of mt-DNA within cells
may represent a powerful approach for the development of
therapeutic interventions to treat mitochondrial diseases.

Mitochondrial metabolic regulation on stem cell fates
It is generally believed that stem cells fuel tissue development and
tissue repair, and these activities are controlled by the local stem
cell microenvironment or niche. Highly heterogeneous popula-
tions of resident stem/progenitor cells have been demonstrated
residing within adult organs and tissues [55, 59–62]. An
appropriate balance between self-renewal and differentiation is
essential for stem cell function during both development and
tissue homeostasis throughout life [63]. At steady state, adult stem
cells are quiescent cells within niche. Both cell-intrinsic and
-extrinsic signaling networks, such as mitochondrial dynamic-
associated signaling, have been reported to fine-tune the self-
renewal and differentiation of stem cells, and are involved in
tissue homeostasis and tissue repair [64, 65].
Notably, mitochondrial plasticity, such as mitochondrial meta-

bolism and mitochondrial respiratory chain, is vital for cell-fate
decisions and function of stem cells [66–69]. The metabolic switch
of mitochondria is required for stem cell activation and cell cycle
activity [70]. Meanwhile, accumulating evidence has suggested a
causative association between mitochondrial dysfunction and
major phenotypes associated with aging. The self-renewal of
tissues and organs in aging organisms requires stem cells, which
have the unusual ability to divide asymmetrically into one
daughter cell that retains stem cell properties and another that
differentiates into a particular tissue type. Further, mitochondria
have been reported to distribute passively during mitosis upon
their release from microtubules [71]. Importantly, subcellular
localization and distribution of young and old mitochondria
determine stemness properties in the progeny stem cells during
asymmetric cell divisions. Subsequently, the daughter cells that

Fig. 1 Representative images of mitochondrial morphology.
Observation of mitochondria of murine peripheral blood-derived
mesenchymal stem cells (mPB-MSCs) under confocal microscope
through Mito-Tracker Green staining. a, b Representative images of
mitochondria of undifferentiated mPB-MSCs. c, d Representative
images of mitochondria during osteogenic differentiation. Scale bar:
10 µm.
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retains a stem cell nature inherits young mitochondria, whereas
older mitochondria are inherited by the more differentiated cells
[72]. Accumulation of aged mitochondria would lead to cell aging
and cellular functional decline [70, 73]. Mohrin et al. [74] further
elucidated a regulatory branch of mitochondrial unfolded protein
response (UPRmt) that is coupled to cellular energy metabolism
and proliferation in stem cells. Mitochondrial protein-folding stress
triggered a metabolic checkpoint regulating cell cycle, whereas
deregulation of this pathway interfered with stem cell quiescence
and compromised regenerative potential [74]. Therefore, mito-
chondrial function may represent an important determinant of the
regenerative potential of stem cells.
Stem cells possess multi-differentiation potential into various

cell types, making them medically relevant for the treatment of a
variety of diseases and injuries. However, there remains a major
hurdle of stem cell therapy into the clinics, namely the limited
efficiency to create fully functional and specialized terminally
differentiated cells. Mitochondrial dynamics is crucial for cell-fate
determination of stem cells [75, 76]. Importantly, different cell
states require specific metabolic demands to support specialized
functions [77]. Thus, efficient mitochondrial oxidative metabolism
and dynamics are required for efficient specific lineage commit-
ment [21, 78–83].
Strikingly, recent studies report that chaperone-mediated

autophagy and a related metabolite in embryonic stem cells, also
known as the self-eating process, have emerged as promising
novel therapeutics for regeneration of damaged tissues and
organs [84]. Simultaneously, accumulating evidence has indicated
tight associations between mitochondrial metabolism and stem
cell differentiation [85, 86]. Studies have demonstrated that mouse
embryonic stem cells sorted for low- and high-resting mitochon-
drial membrane potential (ΔΨmL and ΔΨmH) are indistinguishable
in terms of morphology and expression levels of pluripotency
markers, whereas differing markedly in metabolic rates, suggest-
ing that a coupling between intrinsic metabolic parameters and
stem cell fate may provide clues for novel enrichment strategies
and therapeutic approaches of stem cell therapy [87, 88].
Furthermore, a recent study demonstrated lactate mobilization

of intracellular Mg2+, indicating potential links between mito-
chondrial Mg2+ transportation with major metabolic feedback
circuits and mitochondrial bioenergetics (Fig. 3) [89].

Correlations between mitochondrial functions and aging
Adult stem cells are essential for tissue homeostasis and regenera-
tion, yet are susceptible to senescence during aging [90–92],
accompanied with aging microenvironments around adult stem
cells [93, 94]. The main hallmarks of aging in mammalian organisms

Fig. 3 Mitochondrial regulation of stem cell homeostasis and
aging. Regulation of stem cell homeostasis in response to
environmental cues and epigenetic factors. Upon exposure to
various extrinsic or intrinsic signals, mitochondria respond through
modulation of morphological network and bioenergetics, the redox
and calcium balance, and epigenetic modifications and chromatin
remodeling within stem cells. Cell-fate decisions occur following
mitochondria-based cellular response, mainly including self-
renewal, rejuvenation/cell reprogrammed, differentiation/dediffer-
entiation, and senescence, cell death, or apoptosis [65, 134–142].
Created with BioRender.com.

Fig. 2 Endoplasmic reticulum-mitochondrial localization. A Representative live mitochondrial images of tdTomato-labeled joint progenitor
cells co-cultured with mature chondrocytes through Mito-Tracker Green staining under confocal microscope. a Representative live-cell
imaging of mitochondria through Mito-Tracker Green staining; b representative live-cell imaging of tdTomato fluorescence; c merged images.
Scale bar: 8 µm. B Structural features of mitochondria (M) and endoplasmic reticulum (ER) within cells. a Representative immunocytochemical
images of M (green) and ER (red); scale bar: 10 µm. b Representative electron micrographs of M and ER; scale bar: 500 nm. c Representative
images of ultrastructure of M and ER. Scale bar: 500 nm (adapted from netterimages.com and chegg.com).
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include genomic instability, telomere attrition, epigenetic altera-
tions, loss of proteostasis, deregulated nutrient sensing, mitochon-
drial dysfunction, cellular senescence, stem cell exhaustion, and
altered intercellular communication [95]. The degeneration or
dysfunction of aging tissues and organs is attributed to the
deterioration of adult stem cells [95–97], which may result from
disordered mitochondrial dynamics and declined mitochondrial
functions [98–100]. Mitochondrial activity and metabolism are
important determinants for specification of stem cell fate [87, 101].
Studies have demonstrated the importance of oxidized form of

cellular nicotinamide adenine dinucleotide on mitochondrial
activity as a pivotal switch to modulate muscle adult stem cell
senescence [102, 103]. SIRT3, a mammalian sirtuin that regulates
the global acetylation landscape of mitochondrial proteins and
reduces oxidative stress, is suppressed during aging. In addition,
the upregulation of SIRT3 in aged hematopoietic stem cells (HSCs)
improved the regenerative capacity of HSCs [104]. Also, main-
tenance of self-renewal of a purified Tie2+ HSC population relies
on mitochondrial clearance [105]. Further studies have identified a
regulatory branch of the UPRmt, which mediated through the

interplay between SIRT7 and NRF1, which is coupled to cellular
energy metabolism and proliferation. Deregulation of a UPRmt-
mediated metabolic checkpoint as a reversible main factor for HSC
aging [74]. Further, systemic chronic inflammation has been
reported as an important feature of aging, which is critically
implicated in the process of stem cell aging [106–108]. A recent
study has uncovered mitochondrial stress-initiated aberrant
activation of the NLRP3 inflammasome as a reversible driver of
functional decline during HSC aging [109]. In the meanwhile,
studies have documented the crucial roles of PTPMT1 (a PTEN-like
mitochondrial phosphatase) in the metabolic regulation of self-
renewal and differentiation of HSCs [110].

Mitochondria–ER crosstalk and aging
Notably, surviving ER stress has been demonstrated coupling to
altered chondrocyte differentiation and functioning, which facilitates
survival and recovery through adaptive unfolded protein response
(UPR) during pathophysiology of chondrodysplasia [111, 112]. Also,
studies have suggested the intimate linkage between stress
adaptation and aging process [113]. Stress responses and the aging

Fig. 4 Proposed working model of communication between mitochondria and endoplasmic reticulum stress. Endoplasmic reticulum (ER)
stress triggers an increase in mitochondrial metabolism, which mainly relies on organelle coupling and Ca2+ transfer. The onset of ER stress is
accompanied with redistribution of reticular and mitochondrial networks towards the perinuclear region and a microtubule-dependent
increase in connection. Physical interaction is mainly achieved by anchoring proteins, such as Mitofusin 2 (Mfn2), which allows buffering of
intracellular Ca2+ from ER to mitochondria through its endoplasmic reticulum–mitochondria tethering activity, enhancing mitochondrial
bioenergetics and ATP production consequently. The unfolded protein response (UPR) is a cellular self-defense adaptive mechanism to restore
ER homeostasis. Crosstalk between the UPR pathways could facilitate a coordinated response to conditions of ER stress. During early mild ER
stress, activated IRE1α then removes a 26-base intron from Xbp1 mRNA to generate a potent transcription factor XBP1s (Xbp1 spliced) that
translocates into the nucleus and regulates a diverse array of genes, such as ER folding chaperones and ER-associated degradation (ERAD)
process-associated genes. However, prolonged or excessive ER stress (e.g., induced by aging) would cause mitochondrial collapse and
apoptotic cell death. ER: endoplasmic reticulum; UPR: unfolded protein response; ROS: reactive oxygen species; Mfn2: mitofusin 2; mt:
mitochondrial; IRE1α: inositol-requiring kinase 1α (ER stress sensor); XBP1: X-box-binding protein 1; XBP1s: spliced form of XBP1; Krebs cycle:
also known as TCA cycle (tricarboxylic acid cycle); IP3R: inositol trisphosphate receptor (Ca2+ channels); mt ΔΨ: mitochondrial membrane
potential; ERAD: ER-associated degradation; ATP: adenosine 5´-triphosphate [74, 116117134, 142–145]. Created with BioRender.com.
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process may share common features and mechanisms initially
arising from studies in model organisms [114, 115], where various
molecular pathways have been demonstrated to implicate in the
progression of aging process, including insulin/insulin-like growth
factor, sirtuins, targets of rapamycin (TORs), and AMP-activated
kinase. Thus, intrinsic induction of stress defense programs and the
resulting adaptation may become a potential strategy to increase
life expectancy [114]. Usually, mild ER stress activates the adaptive
UPR on the one hand. Adaptive UPR is conducive to stress
alleviation in response to cellular stress, which has recently been
reported to preserve self-renewal of hematopoietic and pre-
leukemic HSCs via inositol-requiring enzyme 1α/X-box-binding
protein 1 signaling [116]. On the other hand, however, beyond a
certain degree of ER damage, namely prolonged UPR response,
would trigger apoptotic pathways (Fig. 4) [117–120]. Studies have
suggested that depletion of the proteins involved in the regulation
of mitochondrial–ER crosstalk, such as mammalian TOR, would lead
to increased apoptosis, autophagy, and cellular dysfunction
[121, 122]. In contrast, artificially increasing ER–mitochondria
contacts in cells would restore cell viability [89, 119, 123, 124].
Studies have further identified critical roles of ER–mitochondria
contacts in the biogenesis of mitochondrial-derived compartments
[125–127], which may play essential roles in cellular adaptation to
environmental stress conditions [127].
Importantly, aging is one of the main causing factors of the

increased prolonged ER stress, accompanied with mitochondrial
dysfunction consequently [128]. Thus, attenuation of ER stress is
a potential approach for the improvement and restoration of
mitochondrial function in aging organisms. In addition, studies
have suggested the correlation between spatial re-organization
of mitochondria and increased ATP levels, oxygen consumption,
reductive power, and increased mitochondrial Ca2+ uptake
[129, 130]. However, uncoupling of the organelles or blocking
Ca2+ transfer impaired the metabolic response, rendering cells
more vulnerable to ER stress [129, 131]. Consequently, ER stress
induces an early increase in mitochondrial metabolism that
depends crucially upon organelle coupling and Ca2+ transfer,
which, by enhancing cellular bioenergetics, establishes the
metabolic basis for the adaptation to this response [129, 132].
As aging is one of the main factors causing increased ER stress
and mitochondrial dysfunction, attenuation of ER stress is
conducive to anti-aging [128]. Therefore, enhanced mitochon-
drial biogenesis has been reported associated with improved
efficiency of the electron-transport chain, which may become a
potential therapeutic anti-aging approach to block reactive
oxygen species accumulation and promote cell survival through
alleviation of ER stress [133].

CONCLUSIONS
All together, mitochondrial plasticity plays central roles in
regulation of activity and functions of stem cells. Intrinsic and
extrinsic signaling networks are responsible for dynamic regula-
tion in mitochondrial function and adaptation to intrinsic and
extrinsic signals for ultimate cell fate decisions. Interplay and
crosstalk among aging microenvironments, ER stress, and inter-
and intracellular mitochondrial dynamics are implicated in the
progression of stem cell aging and functionally declined tissues
and organs. Further extensive investigations on mitochondria–ER
communication-associated stem cell aging, and changes of
chromatin states and mitochondrial dynamics within the regen-
erative niche will not only boost the development of novel
pharmaceutical targets for the cure of age-related disorders
through targeting mitochondria–ER associated signaling path-
ways, but also provide novel insights into mitochondria-mediated
stem cell activation during tissue regeneration. Identification of
specific mitochondrial molecular signatures between different
source-derived stem cells may advance our understanding of stem

cell biology and shed light on novel strategies for healthy
longevity and improved therapeutic outcomes of cellular therapy.
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