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Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop
metastases. Following the disruption of cell–extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical
and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM,
altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation.
Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling
pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
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FACTS

1. There are four different forms of anchorage-independent
survival, such as anoikis, autophagy, entosis, and cell cycle
arrest, reported in the literature.

2. After detaching from the extracellular matrix (ECM), both the
nonmalignant and malignant cells will be exposed to
multiple stresses, including loss of growth stimuli from
ECM, altered mechanical force, cytoskeletal reorganization,
reduced nutrient uptake, and increased reactive oxygen
species (ROS) generation.

3. Multiple signaling pathways, including integrin transduction
and its downstream signaling pathways, such as paxillin/
p130CAS, Ras-ERK, PI3K/AKT, Rho/ROCK, and YAP/TAZ
pathway, are activated during detachment and contribute
to anchorage-independent survival.

4. As the initial step of cancer metastasis, anchorage-
independent survival shares many similarities with cancer
metastasis, especially in regulation and activation of integrin
transduction and its downstream signaling pathways.

5. Blocking integrin transduction and its downstream signaling
pathways suppresses cancer metastasis; however, there
emerges clinical treatment resistance.

OPEN QUESTIONS

1. Is there any other form of anchorage-independent survival
for detached cells? What is the regulation and mechanism in
cancer metastasis?

2. How to establish in vitro models to mimic anchorage-
independent survival, in vivo, and to study the regulation
and mechanism of anchorage-independent survival?

3. How can we overcome treatment resistance of targeting
therapy in cancer metastasis?

INTRODUCTION
Attachment, which mainly depends on cell–ECM interactions, is
one of the most important factors regulating cellular morphology,
dynamic, behavior, and finally, cell fate in both normal and
malignant cells. In normal cells and tissues, there is a dynamic
balance between attachment and detachment in maintaining cell
survival and homeostasis [1], and disruption of this balance could
contribute to malignant transformation [2]. In malignant cells and
tissues, both attachment and detachment contribute to cancer
progress. Attachment promotes the growth of cancer cells;
however, detachment initiates cancer metastasis, which causes
90% of human cancer deaths [3]. Once detached from the ECM,
both the normal and transformed cells present a round cell shape
and are exposed to a completely different chemical and
mechanical environment. In turn, the environmental chemical
and mechanical stresses will challenge the cell fate. Regarding
that, we first review different forms of anchorage-independent
survival reported in the literature. Then we discuss the impact of
environmental stresses on anchorage-independent survival during
detachment. The underlying molecular signaling pathways
involved in anchorage-independent survival are also reviewed.
Given their critical role in metastasis, we finally discuss the
implications of anchorage-independent survival in cancer metas-
tasis and treatment.
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DIFFERENT FORMS OF ANCHORAGE-INDEPENDENT SURVIVAL
The correlation of cell adherence and growth was first unveiled by
MacPherson and Montagnier in 1964 [4]. In 1975, Folkman and
Greenspan demonstrated the importance of anchorage for cell
growth control [5]. The following researchers proved the
importance of anchorage-independent survival in normal tissue
dynamics and cancer progress. Four different forms of anchorage-
independent survival, including apoptotic cell death (anoikis),
nonapoptotic cell death (including autophagy and entosis), and
cell cycle arrest, are reported in the literature (Fig. 1).

Apoptotic cell death: anoikis
In 1993, Meredith and colleagues found that loss of attachment to
ECM could induce cell death in several cell types [6]. Once
detached, the endothelial cells and gut epithelial cells presented
the typical apoptotic morphology indicated by cell morphological
changes and nuclear fragmentation; however, ureteral epithelial
cells exhibited a distinct morphology [6]. The apoptotic phenotype
in suspended epithelial cells was also observed by Frisch and
Francis, and they termed this phenomenon “anoikis”–the ancient

Greek word for “homelessness” [7]. The following studies proved
its critical role in the homeostasis of skin [8], digestive tract [9],
and mammary gland [10], as well as in physiological processes,
such as fibrinolysis [11], aortic valves [12, 13], and vascular
remodeling [14]. Intrinsic cell death molecules such as Bcl-2 family
molecules and cytochrome c, extrinsic cell death molecules such
as TNFR, DR5, or Fas, and other signaling molecules such as
integrins and EGF reportedly modulate anoikis, see reviews for
further information [15, 16].

Nonapoptotic cell death
The results that ureteral epithelial cells exhibited a nonapoptotic
morphology from Meredith’s study [6] and that blocking
proapoptotic signaling pathway conferred partial but not com-
plete resistance to anoikis [7] imply the presence of nonapoptotic
cell death in detached cells.

Autophagy
Autophagy is an adaptive response to a variety of integrated
cellular and microenvironmental stresses, such as deprivation of

Fig. 1 The anchorage-independent survival and cellular and environmental changes during detachment. After losing anchorage to ECM,
the cells are exposed to a totally different environment and present multiple cellular changes, including disruption of extracellular matrix
(ECM)–cell interaction, altered mechanical force, cytoskeleton reorganization, ATP deficiency, reduced nutrient uptake, and increased reactive
oxygen species (ROS) production. A Disruption of extracellular matrix (ECM)–cell interaction. Integrins lose the binding of ligands and
stimulation from the ECM. B Altered mechanical force. The main mechanical force shifts from ECM stiffness to fluid shear stress.
C Cytoskeleton reorganization. The cells present a round cell morphology and the membrane proteins undergo structure deformation and
activation. D ATP deficiency. ATP deficiency is a result of reduced ATP production, increased ATP release, and enhanced ATP consumption.
E Reduced nutrient uptake. The uptake of glucose, glutamine, and pyruvate is reduced in detached cells due to various reasons. F Increased
ROS production. The ROS generation is increased during detachment. As a result, the detached cells undergo anoikis, autophagy, entosis, and
cell cycle arrest.

Z. Deng et al.

2

Cell Death and Disease          (2021) 12:629 

1
2
3
4
5
6
7
8
9
0
()
;,:



nutrients, oxygen, and growth factor [17, 18]. The presence of
autophagy in detached normal human mammary epithelial cells
(hMECs) was proved by the observation of cytoplasmic vacuoles in
the dying central cells in 3D suspension culture in vitro [1].
Induction of autophagy promoted cell survival in detached
nontransformed epithelial cells and primary fibroblasts [19, 20].
Researchers also identified the protective role of autophagy in
suspension or spheroid-cultured malignant cells, such as breast
cancer, fibrosarcoma, glioma, ovarian cancer, and lung cancer
[21–25]. Molecules and signaling pathways regulating redox
metabolism and cell growth are critical regulators in autophagy
during detachment, so are those involved in cell detachment and
cytoskeleton organization, such as ERK/AMPK, mTOR, integrins,
and GTPase [17, 26, 27].

Entosis
Entosis is a process involving cell engulfment first observed in
detached cells [28]. Overholtzer and colleagues documented cell-
in-cell structure and termed as “entosis” in several suspension-
cultured nontumorigenic cells and tumor cells. Cell internalization
increased with the elongation of cell detachment independent of
apoptosis. Moreover, the internalized cells might undergo cell
death by lysosomal digestion, division, or release [28]. Once
documented, entosis was found in multiple malignant disease,
including breast cancer, colon carcinoma, stomach carcinoma,
cervical carcinoma, liver carcinoma, melanoma, lung small cell
carcinoma, prostate cancer, and pancreatic cancer, in vivo and
in vitro [28–34]. Interestingly, the cell-in-cell structure is much
more common in fluid-derived cancer samples, in vivo [35–37]. By
now, E-cadherin, α-catenin, and RhoA GTPase are necessary and
sufficient to induce the formation of cell-in-cell structure, and
autophagy pathway proteins are required for entotic cell death
[38]. In addition, recent report finds that genetic features are
significantly associated with entosis, such as TP53 mutation, KRAS
amplification, and c-myc amplification [38, 39].

Cell cycle arrest
Cell cycle arrest with the cease of cell growth and DNA synthesis
was also observed in normal and transformed epithelial cells during
detachment, which could be reversed by cell reattachment [40].
Similarly, fibroblast cells underwent reversible cell growth with-
drawal and arrest of mRNA production and protein synthesis when
exposed to suspension condition [41, 42]. Further studies confirmed
its presence in normal and transformed epithelial and endothelial
cells, fibroblasts, and smooth muscle cells under suspension
condition, and it is noteworthy that cells are arrested in G1 phase
during detachment [7, 43–46]. It is also worth mentioning that
some groups propose cell cycle arrest as one of the mechanisms to
acquire anoikis resistance [44, 46, 47]. These studies proved that
integrins and cell cycle inhibitors, such as p27 and p57, could
induce cell cycle arrest in suspended cells [43–46, 48].

THE ENVIRONMENTAL AND CELLULAR STRESSES DURING
DETACHMENT
Disruption of cell–ECM interactions
Cell–ECM interactions mainly depend on the architecture of focal
adhesions (FAs) and cytoskeletal proteins. FAs are integrin-based
multiprotein complexes composed of ~160 distinct components
including activation and inhibition molecules of integrins, signal-
ing molecules (kinase, phosphatases, and G proteins and their
regulators), and actin filaments. Cytoskeletal proteins are actin-
based structures and regulate cell shape and motility by changing
cytoskeleton organization. Physically, FAs interconnect with
cytoskeletal proteins via the ends of actin filaments. Functionally,
there are feedback networks between cytoskeleton reorganization
and integrin activation. For further information, see reviews
[49, 50] and Box 1.

It is well established that integrins protect cells against anoikis
[15, 16], and worthy to note that the protecting role of different
integrins differs in different cell types. For example, integrin αVβ3
is required for angiogenic vascular cell survival during detachment
[51]. However, it is dispensable for the survival of suspended MG-
63 human osteosarcoma cells [52] and melanoma cells [53].
Moreover, acinar morphogenesis of human breast epithelial cells
could be blocked by anti-β1 or anti-α2 integrin antibody but not
by anti-α3 integrin antibody [54]. These studies showed that the
expression, translation, degradation, and function of integrins in
different cell types might account for these differences [54, 55].
As mentioned above, autophagy is increased during detach-

ment and protects cells against stresses from ECM detachment
[17, 26]. In suspension conditions, the function of integrin is
downregulated because of lacking ligand binding; hence, integrin
inhibition by a specific antibody or cilengitide, an αv integrin
antagonist, could induce autophagy [56, 57].
Similarly, disregulation of integrin signaling induces cell cycle

arrest of suspended cells [44, 47, 58–60]. Deletion of β4 integrin
cytoplasmic domain leads to epithelial cells detachment and cell
cycle defects, in vivo [60]. Vice versa, overexpression or activation
of downstream kinases of integrin pathway, such as protein kinase
C, ERK, and ILK, protects cells from cell cycle withdrawal
[47, 58, 59].

Altered mechanical forces and cytoskeleton reorganization
Besides reciprocal relations between integrin and cytoskeletal
organization, mechanical force is another major factor regulating
cytoskeleton dynamics and cell survival [61]. The major source of
mechanical force for the attached cells comes from the
biophysical property of ECM (e.g. stiffness) and interstitial fluid
pressure; however, the main mechanical stress for the detached
cells derives from fluid-based mechanics, such as fluid shear flow
[62]. Environmental mechanical force induces biochemical signal-
ing cascades through modulating the activation of mechanosen-
sitive proteins and cytoskeletal dynamics, which were termed as
“mechanical transduction”. Please refer the reviews for further
information [61, 63, 64]. Additionally, mechanical force and
cytoskeleton reorganization could directly modulate the protein
activity of integrin and its adaptor proteins by regulating their 3D
structure and binding affinity [61, 65, 66]. For example, force
applied to Notch-ligand bond could also expose a cleavage site of
Notch to initiate Notch and integrin signaling activation [66]. Cell
membrane deformation induces opening and activation of
mechanosensitive PANX1 channels, which permits cell recovery
from traumatic deformation [67].
A body of studies have proven that increased mechanical force,

either from contracted ECM or increased fluid shear flow, in vitro
and in vivo, promotes apoptosis [68], autophagy flux [69], and
G1–S cell cycle transition [70, 71]. Despite that the cells in these
studies are cultured in attached conditions, it is possible that
altered mechanical force and cytoskeleton organization could also
modulate anoikis, autophagy, entosis, and cell cycle in a similar
manner under detached conditions. Further efforts are needed to
establish effective models to investigate the impact of altered
fluid shear stress on cell survival in suspension culture.

ATP deficiency, reduced nutrient uptake, and increased
reactive oxygen species generation
ATP deficiency, reduced nutrient uptake, and increased reactive
oxygen species (ROS) generation are ubiquitous in cells
deprived of ECM. ATP deficiency usually results from enhanced
ATP releasing, increased ATP consumption, or reduced ATP
production. Increased ATP releasing is found in cells activated
by shear stress, which could augment mitochondrial ATP
generation [72]. Membrane deformation also induces increased
ATP releasing, and the released ATP in turn suppresses
deformation-induced apoptosis of vascular metastatic breast
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cancer cells [67]. Under the altered mechanical force, ATP
consumption is also enhanced to maintain the dynamics of actin
cytoskeleton [73].
Remarkably, ATP production is diminished as the result of

decreased nutrient uptake during detachment [74]. Enhanced
glucose uptake by ERBB2 overexpression restores ATP production
and facilitates cell survival [74]. Restricted uptake of three key
carbon sources (glucose, glutamine, and pyruvate) during detach-
ment is also recorded [48]. Thus, the flux through glycolysis, the
pentose phosphate pathway, and the TCA cycle is reduced, all of
which could be reversed by downregulation of PDK4, an important
PDH inhibitor. In addition, the authors find that PDK4 expression is
increased in detached cells and correlates with the expression of
cell cycle inhibitors (p27 and p57) in 3D suspension culture system,
which results in cell growth arrest [48]. The enhanced activity of
PDK4 is also found in detached hMECs, and depletion of PDK4
increases glucose oxidation and ROS production, and hence results
in heightened anoikis. However, PDK4 is overexpressed in human
cancer cells and contributes to anoikis resistance [75]. Similar trends
for glutamine metabolism that increased glutaminolytic enzyme
GDH1 expression promote ATP production and anoikis resistance
has been unveiled as well in detached lung cancer cells [76].
Until now, the precise reasons for reduced nutrient uptake

during detachment are largely unknown. Glucose transporter
(GLUT) 1 and 4, two members of the major glucose-uptake
protein family, are generally stored in cytoplasmatic vesicles and
can be transported to the plasma membrane along the actin
cytoskeleton [77, 78]. Disrupting actin cytoskeleton assembly
results in reduced glucose uptake [78]. Moreover, cytoskeleton
reorganization might also impair the activity of nutrient-uptake
channels or receptors on the membrane [61, 65]. These results
indicate that cytoskeleton reorganization may account for
nutrient starvation during detachment.
Despite the above elegant studies, the precise manner in which

ROS is modulated during ECM detachment remains incompletely
understood. However, the antioxidant defense is enhanced to
promote anchorage-independent survival and inhibition of
antioxidant defense causes cell death during detachment. For
example, the expression of antioxidant enzymes, including
catalase and superoxide dismutase (SOD2), is upregulated in
detached hMECs, and both antioxidant compounds and over-
expression of these antioxidant enzymes decrease the ROS level,
enhance ATP generation and promote survival of detached
hMECs [79]. What is more, silencing antioxidant gene expression
in breast cancer cells results in compromised ATP production and
limited anchorage-independent growth [79]. Endoplasmic reticu-
lum (ER) stress signaling pathway is also activated under
suspension, and inhibition of PERK and eIF2α, two important
regulators in ER stress signaling pathway, decreases anchorage-
independent cell survival [21, 80, 81]. More specifically, ATF4,
another master transcription factor of ER stress signaling, activates
the coordinated program of cytoprotective autophagy and
antioxidant response through upregulation of the major antiox-
idant enzyme heme oxygenase 1 (HO-1), and hence protects
detached colorectal fibrosarcoma cells from anoikis and promotes
their lung colonization in nude mice [22].

IMPORTANT SIGNALING PATHWAYS CONTRIBUTING TO
ANCHORAGE-INDEPENDENT SURVIVAL
Integrin transduction and its downstream signaling pathway
Integrin signaling is the major signaling pathway connecting the
extracellular and intracellular environment. After losing anchorage
to ECM, the environmental factors and intracellular changes, as
reviewed above (Fig. 1), directly or indirectly modulate the
activation of integrins and their downstream signaling pathways
(Fig. 2). The main downstream molecules of integrins are FAK and
SFKs. Worthy mentioning, only specific integrins (β1, β3, β5, and

α11) were able to stimulate FAK/SFK phosphorylation [82, 83].
Additionally, there are cooperative interactions between integrin/
FAK/SFKs pathway and growth receptor pathways. With or
without cooperation with growth receptor pathways, FAK/SFK
provoke downstream signaling pathways, including paxillin/
p130CAS, Ras-ERK, PI3K/AKT, Rho/ROCK, and YAP/TAZ pathways
[64, 84, 85].

FAK/SFK-paxillin/ p130CAS bidirectional signaling pathway
Activated by integrins, FAK/SFKs recruit and activate integrin
adaptor proteins (IAPs), including talin, kindling, paxillin, and
p130CAS (also known as BCAR1) [63, 64, 86, 87]. On the other hand,
mechanical force induces conformational changes of actin
cytoskeleton and hence triggers recruitment and activation of
those IAPs, which in turn phosphorylate and activate FAK and
integrin [63, 86, 87]. Overall, it is a bidirectional pathway between
FAK/SFKs and paxillin/p130CAS regulating cell survival. As reported,
FAK overexpression rescues detached hMECs and fibroblast cells
from anoikis [88], while FAK inhibition reverses anoikis resistance
and blocks protective autophagy in multiple cancers [89, 90]. The
similar role of SFKs in anchorage-independent survival has been
identified as well [89–91]. Consistently, paxillin and p130CAS are
upregulated in detached cancer cells and involved in FAK/SFK
induced cell survival during detachment [92–94]. Notably, it is
demonstrated that paxillin is essentially required for facilitating
anchorage-independent survival via phosphorylating FAK [95].

Cooperative growth receptor and death receptor signaling
During detachment, integrin/FAK/SFK pathway regulates the
expression and activity of growth factor receptors, including EGFR,
PDGFR, VEGFR, HGFR, and IGFR, see review [96]. It is also reported
that activated growth factor receptor signaling pathways involve in
integrin activation and recycling [97–99]. Hence, integrin/ FAK/SFKs
and growth receptor pathways are closely cooperated to ensure
anchorage-independent survival [24, 96, 100, 101].
On the other hand, there is a crosstalk between integrin/FAK/

SFKs and death receptor pathways. For example, receptor-
interacting protein (RIP) acts as a key shuttling protein between
integrin/FAK signals and Fas/FasL signals. After dissociating from
FAK, RIP binds to Fas and forms a death-inducing signaling
complex, which activates caspase-3 and eventually results in
anoikis [102]. In addition, death receptors such as FasL, DR5, and
TNFR, are downregulated or inactivated in suspended cells against
anoikis [102, 103].

Ras/ERK signaling pathway
Early study reveals that Ras overexpression induces malignant
transformation and protects epithelial cells from anoikis [7]. Ras/
ERK upregulation and the de novo Kras mutation are detected in
anoikis-resistant endothelial cells and cancer cells [2, 104]. Over-
expression of key molecules in Ras/ERK signaling pathway
attenuates cellular stress and promotes anchorage-independent
survival [48], while Ras/ERK pathway inhibitors reverse anoikis
resistance [2, 105]. Moreover, ERK activation, independent of
serum and FAK or PAK activity, during detachment is sustained
longer than growth factors induced activation [106]. These results
indicate the protective and essential role of Ras/ERK signaling in
response to detachment Box 1.

PI3K/AKT signaling pathway
Similarly, PI3K/AKT signaling pathway can be activated by
detachment and protects cells from death during detachment
[74, 105]. Previous studies demonstrate that PI3K/AKT downstream
proapoptotic and antiapoptotic molecules, including Bcl-2, Bak,
Bcl-X(L), and Bax, modulate anoikis in transformed and non-
transformed cells [7, 15, 16]. The following studies prove that PI3K/
AKT signaling pathway, cooperating with or without Ras/ERK
signaling, enhances the entry of glucose carbons into the TCA
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cycle, promotes ATP production, and cell survival during detach-
ment [48, 74]. Interestingly, the finding that overexpression active
forms of AKT in PDK1-knockdown breast cancer cells are unable to
rescue anchorage-independent growth indicates that PI3K could
also be activated by PDK1, which is the downstream target of Ras/
ERK signaling [107].

Rho signaling pathway
Rho family small GTPases are key molecules regulating remodel-
ing of the actin cytoskeleton. The central molecules in Rho
signaling are RhoA, Rac1, and Cdc42, which can be activated by

multiple signaling molecules, such as growth factor receptors, and
mechanical forces [64, 108]. Active Cdc42 and Rac1 protect
epithelial cells and fibroblasts from anoikis via activation of AKT
and ERK signaling pathway [109, 110]. Rho-associated kinase
(ROCK), the main effector in Rho signaling pathway, protects
anchorage-independent survival, while ROCK inhibitor Y27632
reverses anoikis resistance [111, 112]. Y27632 also reduces entosis
and protects cells from lysosomal cell death [28]. Furthermore, a
report that ROCK inhibitors reduce damages and improve
outcomes in retinal detachment, in vivo [113], also supports the
critical role of Rho signaling pathway in anchorage-independent
survival.

Hippo signaling pathway
Hippo signaling plays a critical role in mechanical transduction in
multiple cancers, for further information, see [114, 115]. YAP and
TAZ, two key cotranscription factors in hippo signaling pathway,
could be activated by αvβ3 integrin, while the activated YAP/TAZ
transcriptionally upregulate GLUT3 expression and increase
glucose uptake to support anchorage-independent survival of
glioblastoma cells [116]. During detachment, cytoskeleton reorga-
nization activates Lats1/2 and leads to YAP phosphorylation and
inactivation, then induces anoikis in nontransformed cells [117].
Additionally, YAP could activate PI3K/AKT signaling pathway via
transcriptional regulation of PI3Kcb, a catalytic subunit of PI3K/AKT
signaling [118].

Fig. 2 Molecular pathways sustaining anchorage-independent survival. During detachment, the ligand–integrin interaction between cells
and ECM is disrupted and the cells lose the growth stimuli from ECM. However, the integrin can be also stimulated by mechanical force and
cytoskeleton reorganization that actin filaments recruit integrin adaptor proteins, such as talin, kindlin, paxillin, and p130CAS to integrin, hence
inducing integrin clustering and activation. The activated integrin induces FAK/SFK activation and its downstream signaling proteins. There is
also crosstalk between FAK/SFK and growth receptor signaling, such as EGFR, PDGFR, VEGFR, and IGFR signaling pathway. In cooperation with
growth receptor signaling, integrin/FAK/SFKs induces Paxillin/p130CAS/JNK, Ras/ERK, PI3K/AKT, YAP/TAZ, and RhoA/ROCK signaling activation,
and hence regulate mechanical transduction, cytoskeleton reorganization, and metabolism. Noteworthy, there is also crosstalk between these
downstream signaling pathways. Eventually, activated integrin signaling and its downstream signaling inhibits various forms of cell death,
including anoikis, autophagy, cell cycle arrest and entosis.

Box 1. Integrin activation and its role in cell survival

The integrins comprise a family of 24 different heterodimers and they are
assembled by 18 α and 8 β subunits with distinct ligand-binding specificities and
signaling properties [84, 85]. Proteins from ECM, such as laminin, fibronectin,
vitronectin, and collagen, are the major ligands of integrins [84]. Ligand-binding
triggers integrin activation and initiates integrin-binding adaptor proteins binding
to integrin cytoplasmic domain, and hence leads to actin cytoskeleton
reorganization, integrin clustering, and fully activation. Consequently, fully
activated integrin induces activation of focal adhesion kinase (FAK) and SRC
family kinases (SFKs) and their downstream signaling pathways, which in turn
control survival, proliferation, autophagy, and other cell fate transitions [64, 84, 85].
Thus, detachment will challenge cellular dynamics, behavior, and cell fate via
modulating integrin signaling pathway.
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THE IMPLICATION OF ANCHORAGE-INDEPENDENT SURVIVAL
IN CANCER METASTASIS
Cancer metastasis is a process that cancer cells detach from the
primary site, enter the vascular or lymphatic vessel, localize, and
reproduce at remote sites [96, 119]. Thus, anchorage-independent
survival is critical for the success of metastasis. While tumor
heterogeneity endows tumor cells the potential to survive from
various stresses, tumor cells successfully adapt to a stressed
environment via activation of the above key signaling pathways
that will take the priority of colonization and develop metastasis.
Thus, therapies against the above processes or signaling pathways
hold the potential to prevent or cure cancer metastasis (Table 1).

Integrin/FAK/SFK signaling in metastasis
Numerous studies prove that integrin/FAK/SFK signaling pathway
plays a critical role in cancer metastasis [64, 96]. Hence, inhibition of
integrin/FAK/SFK signaling seems prospective to prevent metastasis.
However, integrin inhibitors failed to show monotherapy efficacy in
patients with advanced or metastatic cancer in several clinical trials
[120–124]. Given that, researchers explore the combination therapy
with other drugs in different cancers and some report combina-
tional efficacy and acceptable toxicity in advanced lung cancer
[125–127]. Same as integrin inhibitors, limited clinical efficacy is
documented in advanced cancer patients receiving a single FAK/SFK
inhibitor [128–131]. Collectively, integrin/FAK/SFK targeting therapy
still holds the prospect in metastatic cancer treatment but needs
further investigation. It is important to keep in mind that there is
more to integrin/FAK/SFK signaling inhibition therapy. First, most
integrins play a redundant role in both adhesion and signaling
transduction, and there is also compensatory upregulation of a
nontargeted integrin. Both of which make it difficult to block these
processes with a single drug. Moreover, it is extremely hard to
achieve acceptable toxicity in metastasis treatment due to the
critical function of integrins in normal tissue homeostasis.

Ras/ERK signaling in metastasis
Genetic extinction of oncogenic Kras signaling results in specific
elimination of invasive and metastatic disease while allowing for
sustained primary tumor growth [132]. Moreover, oncogenic

transformation of Ras in NIH/3T3 generates a metastasis
phenotype [133, 134]. Recently, it is clear that Ras/ERK signaling
is functionally required for cancer metastasis in colorectal cancer
[132, 135], germ-cell tumors [136], multiple myeloma [137], skin
cancer [138, 139], melanoma [140], and lung cancer [141].
Clinically, Ras/ERK signaling pathway inhibitors show antitumor
activities in untreated BRAF mutant unresectable or metastatic
cancers [142–145] and prolong the patients’ survival. Due to
increasing application in primary or metastatic cancers, however,
treatment resistance of Ras/ERK pathway inhibitors turns to be an
inevitable and frustrating issue.

PI3K/AKT signaling in metastasis
Genomic profiling reveals that metastasis specific genetic muta-
tion or activation are enriched in PI3K/AKT signaling pathway in
multiple types of cancer, including colorectal cancer [135, 146],
melanoma [147, 148], prostate cancer [149], lung cancer, breast
cancer, and renal cell carcinomas [150]. Moreover, kinases in PI3K/
AKT signaling pathway are activated in circulating tumor cells
(CTCs), which are derived from primary sites and developed
several years before metastasis [151, 152]. Animal experiments
report the efficacy of PI3K/AKT signaling inhibitors in reducing
metastasis [153, 154]. Clinically, PI3K/AKT inhibitors demonstrate
combinational therapeutic efficacy with other therapies in
metastasis or advanced cancers [155, 156]. However, same as
Ras/ERK pathway inhibitors, drug resistance is the major obstacle
for PI3K/AKT signaling inhibitors in metastasis.

Rho signaling in metastasis
Accumulating evidences indicate that increased activity or
expression of Rac1, Cdc42, and ROCK enhances metastatic
potential of cancer cells, in vitro and in vivo [157–159]. Several
preclinical studies report the efficacy of Rho/ROCK inhibitors in
treating metastatic nasopharyngeal, pancreatic carcinoma, and
breast cancer [160, 161]. Furthermore, Huang et al. demonstrate
that Fasudil, an FDA-approved RhoA/ROCK inhibitor, could
reduce metastasis through facilitating the arrest of CTCs [162].
These results imply the potential of Rho signaling inhibitors in
metastasis treatment.

Table 1. The role of signaling pathways in anchorage-independent survival and their implication in the treatment of cancer metastasis.

Active
signaling
pathway

Functions during detachment Activated in cancer metastasis Efficacy of targeting inhibitors in
metastatic patient or animal

Integrin/FAK/
SFKs pathway

Protecting cells from anoikis and
activating protective autophagy

Activated in a variety of metastasis,
including breast cancer, lung cancer,
melanoma, colorectal cancer, prostate
cancer, glioblastoma, liver cancer [96]

Melanoma [176], breast cancer [177],
colorectal cancer [178], ovarian cancer
[179], hepatocellular carcinoma [180], non-
small cell lung cancer [181], etc.

Ras/ERK
signaling
pathway

Attenuating cellular stress and
enhancing anoikis resistance

Colorectal cancer [132, 135], germ-cell
tumors [136], multiple myeloma [137], skin
cancer [138, 139], melanoma [140] and
lung cancer [141]

Thyroid cancer [142, 143], non-small cell
lung cancer [144, 182], melanoma
[145, 183, 184], colorectal cancer [185],
biliary tract cancer [186]

PI3K/ATK
signaling
pathway

Enhancing nutrients uptake,
decreasing ROS production and
inhibiting anoikis

Colorectal cancer [135, 146], melanoma
[147, 148], prostate cancer [149], lung
cancer, breast cancer and renal cell
carcinomas [150]

Endometrial cancer [155], breast cancer
[156, 187–189], gastric cancer [190], cervical
carcinoma [191], prostate cancer [192, 193],
non-small cell lung cancer [194] and other
cancers [195, 196]

Rho signaling
pathway

Regulating cytoskeleton
reorganization and mechanical
transduction, protecting cells from
anoikis and entosis

Lymphoma [157], colorectal cancer
[158, 159], breast cancer [197, 198], liver
cancer [199, 200], melanoma [201, 202],
pancreatic cancer [203]

Nasopharyngeal cancer [160], pancreatic
cancer [161], breast cancer [204], melanoma
and colorectal cancer [162]

Hippo
signaling
pathway

Regulating mechanical
transduction, enhancing nutrients
uptake, protecting from anoikis
and autophagy

Breast cancer [165, 205, 206], prostate
cancer [117], lung cancer [207], colorectal
cancer [208], melanoma [165], gastric
cancer [163]

Breast cancer [165, 209] and melanoma
[165]
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YAP/TAZ signaling in metastasis
An abundance of studies demonstrate the high activation of YAP/
TAZ signaling pathway in metastatic tumor [115, 117]. In CTCs,
YAP transcriptionally upregulates Rho GTPase activation protein
29 (ARHGAP29) and hence promotes metastasis of gastric cancer
[163]. Moreover, YAP-dependent metabolic adaptation promotes
lymph node metastasis in melanoma patients [164]. Currently,
Verteporfin, a YAP/TAZ–TEAD interaction inhibitor, suppresses the
prometastasis effect of YAP in breast cancer and melanoma [165].
However, the clinical application of verteporfin in cancer patients
is restricted because of global toxicity and low solubility. Also, very
slight penetration into the brain, which is one of the most
common metastatic sites, is another challenge for verteporfin-
treating metastasis.

Targeting mechanical transduction and adaptation
During metastasis, cancer cells suffer from multiple mechanical
forces, including fluid shear stress when circulating within the
vessel systems and cell deformation when passaging through the
microvasculature [62, 67, 166]. More than 90% of cancer cells
died due to these mechanical forces [166, 167]. The range of fluid
shear stress varies from vessels that are 0.64–12 dyn/cm2 in the
lymphatic system, 4–30 dyn/cm2 in arteries, and 1–4 dyn/cm2 in
veins [62]. It is well established that high mechanical force leads
to cell cycle arrest and even death [62, 168]. In addition, cancer
cells undergo mechanical transduction as reviewed above
against such restraints [62, 168]. There are also mechanical
adapted strategies against mechanical stresses. For example,
membrane stretch induced by microvascular deformation
induces PANX1 opening and activation, leading to increased
ATP releasing, in turn, the released ATP supports cell viability by
activating P2Y receptors in microvascular metastatic breast
cancer [67]. Hence, inhibition of mechanical transduction and
adaptation would decrease the burden of CTCs and hence
prevent metastasis.

Suppression of metabolism and antioxidant response
The expression of nutrient transporters such as lipid transporter
and antioxidant defense-related genes, is increased in metastatic
cancer cells, which promote colonization at lipid-rich tissue, in vivo
[169]. Tasdogan and colleagues report that inhibition of MCT1,
which transports lactate to maintain pentose phosphate pathway
and redox balance, depletes CTCs in melanoma and reduces
metastatic burden in patient-derived xenografts [170]. These
results imply that inhibition of metabolism and antioxidant
response poses the potential in treating cancer metastasis.
However, controversary conclusions are found in antioxidant
inhibition therapy. Some others report that both systemic
antioxidant dosing and activation of cell-intrinsic antioxidant
pathways promote metastasis in animal models of melanoma
[171], breast cancer [172], and lung cancer [173, 174].

Entosis-targeted therapy in metastatic cancer
It is well documented in various types of cancer that the presence
of entosis in metastatic cancers is much common compared with
primary cancers [28, 39, 175]. Given that entosis can generate
distinct functional cellular entities by division or releasing from
cell-in-cell structure, it is reasonable that entosis not only
promotes cell viability during metastasis, but also contributes to
its heterogeneity and malignancy after colonization. Entosis-
targeting therapy presents a high possibility fortifying metastasis
treatment. Except Rho/ROCK signaling pathway [28], however, the
molecular mechanism of cell-in-cell structure formation and
entotic cell death is largely unknown. Recently, Hayashi group
reports that genetic features, including TP53 mutation, Kras
amplification, and MYC amplification, are significantly associated
with entosis in pancreatic cancer [39]. Without doubt, effective
in vitro and in vivo models will boost the understanding of the

role and regulation of entosis in metastasis, and help metastasis
treatment.

CONCLUSION
Detachment, the initial step of metastasis, is a stressed event and
during which cells suffer from multiple stresses, including loss of
growth stimuli, altered mechanical force, cytoskeletal reorganiza-
tion, diminished nutrient uptake, and increased ROS production.
Those failed to adapt to these stresses will undergo various forms
of cell death, such as anoikis, autophagy, cell cycle arrest, and
entosis. Consequently, the majority of cells die; however, a very
small number of cells survive, in vitro and in vivo. The survived
cells colonize and develop metastasis at the remote sites. Hence,
detachment acts as selection and evolution power that imposes
cancer cells metastatic potential and promotes malignancy during
cancer development.
Previous studies demonstrate that a variety of signaling

pathways are upregulated during detachment and required for
anchorage-independent survival, such as integrin/FAK/SFKs,
Ras/ERK, PI3K/AKT, Rho, YAP/TAZ, and other cooperative
signaling pathways. Those pathways are also found to be highly
activated in metastatic cancer samples. Thus, the mechanism
study of cellular and genetic adaptation to anchorage-
independent survival will shed light on the understanding of
metastasis and implications for metastasis treatment. Indeed,
therapies targeting metabolism, antioxidant response, mechan-
ical transduction, and the related signaling pathways show
impressive efficacy in various metastasis models. Clinically, some
specific inhibitors against integrin/FAK/SFKs, Ras/ERK and PI3K/
AKT signaling pathways could improve the outcome of patients
with metastasis. However, apart from limited clinical efficacy and
potential toxicity in metastasis treatment, treatment resistance
turns to be a critical challenge and obstacle for cancer
treatment. Therefore, mechanism and regulation study of
anchorage-independent survival will help reveal the mechanism
of drug resistance, explore the combinational efficacy, and
improve metastasis patient’s survival. Worthy nothing, the
efforts to explore the appropriate models, in vitro and in vivo,
will accelerate and broaden our understanding of anchorage-
independent survival and cancer metastasis.
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