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Roles of tRNA metabolism in aging and lifespan
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Abstract

Transfer RNAs (tRNAs) mainly function as adapter molecules that decode messenger RNAs (mMRNAs) during protein
translation by delivering amino acids to the ribosome. Traditionally, tRNAs are considered as housekeepers without
additional functions. Nevertheless, it has become apparent from biological research that tRNAs are involved in various
physiological and pathological processes. Aging is a form of gradual decline in physiological function that ultimately
leads to increased vulnerability to multiple chronic diseases and death. Interestingly, tRNA metabolism is closely
associated with aging and lifespan. In this review, we summarize the emerging roles of tRNA-associated metabolism,
such as tRNA transcription, tRNA molecules, tRNA modifications, tRNA aminoacylation, and tRNA derivatives, in aging
and lifespan, aiming to provide new ideas for developing therapeutics and ultimately extending lifespan in humans.

Facts

1. tRNAs are important participants in protein
translation and are involved in  various
physiological and pathological processes.

2. tRNA-associated metabolism is closely associated
with aging and lifespan.

3. The enzymes related to tRNA metabolism could be
potential targets for future therapeutic interventions
in aging and lifespan.

Open questions

1. Is tRNA metabolism involved in the regulation of
aging and lifespan mainly by affecting protein
synthesis?

2. What is the molecular mechanism by which tRNA
derivatives regulate aging and lifespan?

3. Is there potential for practical clinical applications
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based on findings concerning tRNAs in the context
of aging and lifespan?

Introduction

Transfer RNAs (tRNAs) are important participants in
protein translation, which transport their cognate amino
acids to the ribosome. There are more than 600 putative
tRNA genes in the human genome, some of which are
transcribed into precursor tRNAs (pre-tRNAs) by RNA
polymerase III (Pol III)'. Subsequently, pre-tRNAs are
transformed into mature tRNAs after a series of proces-
sing and modification processes, which are characterized
by a “clover” secondary structure as well as an L-shaped
tertiary structure®. After maturation, tRNAs are charged
with their cognate amino acids through the aminoacyla-
tion reactions mediated by aminoacyl-tRNA synthetases
(ARSs), thereby participating in protein translation®. Of
note, tRNAs will be cleaved into fragments with reg-
ulatory functions under stress conditions*°. In general,
normal tRNA metabolism is essential to maintain the
stability and functions of tRNA molecules, while the
defects in certain tRNA biogenesis proteins cause various
human diseases, including cancer, neurological disorders,
immunodeficiency, and diabetes mellitus’~*°.

Aging is a complex physiological process, usually
manifested by a gradual decline in organ function, as well
as an increase in disease incidence and risk of death. It is
reported that the global population over 65 will reach 1.6
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billion by 2050'". In fact, delaying biological aging or
extending healthspan is an eternal theme of human
health'>'?, Strikingly, tRNAs play an important role in
aging and lifespan. For example, the serum levels of
mitochondrial tRNAs and ribosomal RNAs (rRNAs) will
increase with age, which may be related to mitochondrial
dysfunction during the aging process'*. Another research
discovered that Pol III was a downstream molecule of
Target of Rapamycin Complex 1 (TORC1), and its inhi-
bition could extend organismal lifespan'®. Moreover, the
deletion of nucleoporin Nupl100 could regulate the life
span of Saccharomyces cerevisiae by inhibiting the nuclear
export of specific tRNAs'®, Therefore, tRNAs are closely
related to aging biology and thus participate in the reg-
ulation of age-related diseases and lifespan. Here, we
focus on the roles of tRNA-associated metabolism, such
as tRNA transcription, tRNA molecules, tRNA modifica-
tions, tRNA aminoacylation, and tRNA derivatives, in
aging and lifespan, which may serve as novel targets for
lifespan extension (Fig. 1).

Roles of tRNA metabolism in aging and lifespan
tRNA transcription in aging and lifespan

Small  ubiquitin-related  modifier =~ modification
(SUMOylation) is a highly dynamic post-translational
modification that has been confirmed to be related to
transcriptional repression'”'®, Meanwhile, many studies
have linked SUMOylation to aging process'®*’. In
eukaryotes, three essential RNA polymerases are evolu-
tionarily conserved enzymes responsible for the tran-
scription of their nuclear genomes. Of these, Pol I mainly
transcribes the 25S rRNA precursor, Pol II transcribes
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transcribes short RNAs such as tRNAs and 5S rRNA*"*,
Interestingly, SUMO machinery was widely distributed in
the genome, especially at the promoters of histone and
protein biogenesis genes, as well as Pol I-transcribed
rRNA genes and Pol Ill-transcribed tRNA genes®®. Sur-
prisingly, the SUMO machinery was selectively retained
on histone and tRNA genes and released in large quan-
tities from other chromatin in senescent cells, indicating
that maintaining the suppression of histone and tRNA
loci was beneficial to the stability of the aging state®,
These data support that SUMOylation-mediated coordi-
nated repression of a transcriptional program is associated
with cell growth and proliferation.

It is well-known that TORC]1 is an important longevity
determinant among many species®*>°. Recent studies
observed that the GATA transcription factor Gafl defi-
ciency could shorten the normal chronological lifespan
and reduce the lifespan extension caused by TORC1
inhibition in yeast”’. Specifically, upon TORCI block,
Gafl served as a transcription factor downstream of
TORCI1 that directly bound to Pol III-transcribed tRNA
genes and inhibited their transcription, thereby promot-
ing longevity by inhibiting translation. Strikingly, Pol III
mediated the longevity-promoting effects of TORCI1
inhibition". In this condition, systemic Pol III deficiency
could facilitate the longevity in yeast, flies, and worms,
and gut-specific inhibition of Pol III in adult worms or
flies was sufficient to prolong the lifespan, which might be
related to the reduced protein synthesis and increased
resistance to proteotoxic stress. Importantly, the effects of
Pol III inhibition and rapamycin treatment on lifespan
extension were not additive'”. Rapamycin treatment

various messenger RNAs (mRNAs), while Pol III  suppressed the phosphorylation of TORCI1 substrate in
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Fig. 1 Roles of tRNA-associated metabolism in aging and lifespan. The tRNA genes are transcribed into pre-tRNAs, which are then transformed
into mature tRNAs after a series of processing and modifications. Subsequently, mature tRNAs are involved in protein translation. During this process,
tRNA-associated metabolism, such as tRNA transcription, tRNA molecules, tRNA modifications, tRNA aminoacylation, and tRNA derivatives, plays an
important role in aging and lifespan.
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the intestine, while the gut-specific Pol III inhibition did
not, indicating that Pol III acted as a downstream mole-
cule of TORCI to regulate lifespan.

TORCI1 directly phosphorylated MAF1 homolog nega-
tive regulator of Poll III (Mafl) at multiple sites and thus
controlled its localization and Pol III-mediated tran-
scription®®™°, Notably, inhibition of TORC1 by rapamy-
cin treatment reduced pre-tRNA levels in whole flies, and
overexpression of gut-specific Mafl reduced pre-tRNA
levels and prolonged lifespan, indicating that Mafl-
mediated Pol III inhibition might be involved in the reg-
ulation of lifespan by mTOR pathway'”. Moreover, maf1A
cells showed a shorter lifespan under lower glucose con-
ditions, and the short lifespan was rescued by introducing
the plasmid encoding mafl gene, which suggested that
Mafl was required for lifespan extension of Schizo-
saccharomyces pombe®. Mafl was phosphorylated by
TORC1 under high-calorie conditions, while it was
dephosphorylated by PP2A and PP4 under -calorie-
restricted conditions. The phosphorylation status of
Mafl was associated with S. pombe lifespan and tRNA
levels. Importantly, Mafl-dependent inhibition of tRNA
transcription extended lifespan in fission yeast mainly by
preventing genomic instability at tRNA genes, rather than
inhibiting protein synthesis®'. Further studies discovered
that the break of tRNA genes was caused by replication-
transcription conflicts, while Mafl could limit Pol III-
mediated transcription to maintain genomic integrity>>.
These findings indicate that transcription-related geno-
mic instability may play an important role in the aging
process. Intriguingly, Mafl deletion increased the lifespan
in worms and mice, which also indicated that Mafl par-
ticipated in lifespan regulation through complex
mechanisms, not just by regulating Pol III output®®*,

tRNA molecules in aging and lifespan

In addition, tRNA molecules are also involved in the
regulation of aging and lifespan. Sagi et al.>> demonstrated
that tRNA expression decreased with age in worms, and
the higher sup-7 tRNA levels at day 6 were associated with
a longer lifespan. The decline in tRNA expression might
cause protein misfolding, leading to the development of
age-related diseases. Moreover, nuclear tRNA accumula-
tion was related to the increased replicative lifespan in
yeast®. In this context, deletion of tRNA exporter Losl
could significantly extend lifespan. Mechanistically, diet-
ary restriction excluded Losl from the nucleus in a
manner dependent on Rad53 and mTOR, thereby pro-
moting nuclear tRNA accumulation and transcription
factor Gen4 activation. Analogously, deletion of Nup100
facilitated the expression of Gcn4d by suppressing the
nuclear export of tRNAs and thus contributed to the
increased longevity in S. cerevisiae'®. nupI00A cells did
not show tRNA splicing and aminoacylation defects,
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indicating that Nup100 was mainly responsible for the re-
export of several mature tRNAs, such as tRNA™,
tRNAT™, and tRNA™. Of note, the localization of Losl
and Msn5 (another protein involved in tRNA export) was
not regulated by Nup100, which supported that Nup100
could regulate tRNA export in a manner distinct from
them'®. Together, the dysregulation of tRNA levels and
transport may affect the lifespan of organisms.

tRNA modifications in aging and lifespan

tRNAs always undergo a variety of post-transcriptional
modifications, which affect tRNA stability, codon recog-
nition, and even aminoacylation®’. Strikingly, many studies
have demonstrated that certain tRNA-modifying enzymes
are involved in the regulation of cellular senescence and
lifespan (Table 1). Alkylation repair homolog 8 (ALKBHS)
is a tRNA methyltransferase involved in the formation of
5-methoxycarbonylmethyluridine (mcm®U), 5-methox-
ycarbonylmethyl-2/-O-methyluridine ~ (mcm®Um),  5-
methoxycarbonylmethyl-2-thiouridine (mcm®s®U), and 5-
methoxycarbonylhydroxymethyluridine (mchm®U) at the
anticodon wobble position of tRNAs**™*, ALKBHS-
deficient mouse embryonic fibroblasts showed selenopro-
tein loss as well as a senescence phenotype characterized
by  increased levels of  senescence-associated
B-galactosidase = (SA-B-Gal), heterochromatin foci,
p16™*, and senescence associated secretory phenotype
markers*!. Another research found that dTrm7_ 34 and
dTrm7_32, as functional orthologs of yeast TRM7 and
human Fts] RNA 2/-O-methyltransferase 1 (FTSJ1), cata-
lyzed 2’-O-Methylation (Nm) at specific tRNAs in Droso-
phila®. Interestingly, Nm at position Gg, limited the
cleavage of tRNA™, while the 3’ terminal Cmg, might
stabilize the tRNA™™ fragments that were produced in
dTrm7_34 mutants. Meanwhile, the mutant animals of
dTrm7_34 and dTrm7_32 exhibited small RNA pathway
dysfunctions, increased susceptibility to RNA virus infec-
tion, and shortened lifespan, suggesting that these two
methyltransferases appeared to modulate the small RNA
silencing and lifespan in adult flies**.

In mammals, mitochondrial translation optimization
factor 1 (MTOI) catalyzed the formation of Tm’U at
anticodon position 34 in certain mitochondrial tRNAs
(mt-tRNAs)*®. The loss of MTO1 affected translation
fidelity through defective tRNA modification in mice,
resulting in tissue-specific oxidative phosphorylation
(OXPHOS) defects. mttu-1 and mtcu-2 in Caenorhabditis
elegans  were the homologs of tRNA 5-
methylaminomethyl-2-thiouridylate = methyltransferase
(TRMU) and MTO1** (Fig. 2a). Notably, the lifespan of
mttu-1 mutants was slightly extended at 20 °C, and that of
mtcu-2 and mttu-1 double mutants was significantly
extended, which was associated with the OXPHOS dys-
function in C. elegans. These findings indicate that these
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Fig. 2 The dysregulation of tRNA-modifying enzymes in aging and lifespan. a The mtcu-2 and mttu-1 mutants show OXPHOS dysfunction,
resulting in lifespan extension. b Trm9 deletion enhances heat-shock resistance of mutants, thereby supporting the link between longevity and
cellular protection. € NSun2 inhibits the translation of p27 by methylating p27 mRNA, thereby delaying the process of replicative senescence. d
NSun2 promotes the translation of Shc adapter proteins by methylating Shc mRNA. Subsequently, the increased Shc proteins activate p38MAPK,
thereby facilitating premature senescence. e Dnmt2 knockdown fibroblasts are susceptible to senescence under control conditions, manifested by
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two modifying enzymes may be synergistic in regulating
the lifespan of worms. But the underlying molecular
mechanism requires further research. Fabrizio et al.*’
discovered that the deletion of acyl-CoA binding protein
(Acbl), tRNA methyltransferase 9 (Trm9) and CKA2
could significantly extend lifespan by performing a screen
of a yeast homozygous deletion collection. Among them,
Trm9 was responsible for the formation of 5-
methoxycarbonyl-methyluridine (mecm®U) at position 34
in tRNAS™ and tRNA“® Importantly, their deletion
enhanced the heat-shock resistance of mutants, thereby
supporting the link between longevity and cellular pro-
tection (Fig. 2b). Furthermore, human Trm9-like protein
(hTRMIL) was down-regulated in a variety of cancer
tissues, and its re-expression significantly inhibited tumor
growth in vivo®™. hTRMIL induced a senescence-like
phenotype related to SA-B-Gal activity and p21 expres-
sion. Meanwhile, hTRMOL could upregulate LIN9 and
inhibit the hypoxic response, thereby exerting antitumor
activity.

Mammalian NOP2/Sun domain family member 2
(NSun2) is responsible for the cytosine-5 methylation
(m°C) in specific tRNA molecules, such as tRNASY,
tRNA*P, and tRNAY?'", Interestingly, NSun2 inhibited
the translation of p27 by methylating the 5’-untranslated
region (UTR) of p27 mRNA, thereby delaying the process
of replicative senescence®® (Fig. 2c). At the same time,
overexpression of the p27 5"UTR fragment could rescue
the decrease of p27 and the increase of cyclin-dependent
kinase 1 caused by NSun2 overexpression in 2BS cells,
indicating that NSun2-mediated mRNA methylation
played an important role in replicative senescence®®. Cai
et al.*” demonstrated that NSun2 promoted the transla-
tion of Src homology and collagen (Shc) adapter proteins,
p66SHC, p52SHC, and p46SHC, by methylating Shc
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mRNA at multiple sites (Fig. 2d). Subsequently, the
increased Shc proteins activated p38 mitogen-activated
protein kinase (p38MAPK) and increased cellular reactive
oxygen species production, thereby facilitating the pre-
mature senescence of human vascular endothelial cells
induced by oxidative stress or high glucose.

In addition, DNA methyltransferase-2 (Dnmt2) specifi-
cally methylated cytosine 38 in the anticodon loops of
tRNAs*>!. It has been confirmed that Dnmt2 is indis-
pensable for maintaining the normal lifespan of Droso-
phila, and its overexpression can prolong lifespan®’,
Moreover, Dnmt2 was also related to the condition-
dependent apoptosis and senescence in mouse fibro-
blasts>®. On the one hand, Dnmt2 knockdown fibroblasts
were more prone to apoptosis under the stimulation of
hydrogen peroxide. On the other hand, these cells were
more susceptible to senescence under control conditions,
manifested by increased levels of p53 and p21, telomere
shortening, oxidative stress, and DNA damage (Fig. 2e).
Consistently, Dnmt2 silencing inhibited the proliferation
of human fibroblasts and induced cellular senescence®.
These findings indicate that Dnmt2 may serve as a novel
regulator of longevity.

tRNA aminoacylation in aging and lifespan

It is well known that tRNAs bind to their homologous
amino acids through ARS-mediated aminoacylation,
thereby transporting amino acids to the ribosome to
participate in protein synthesis. In mammalian cells, one
part of ARSs exists in free form, while the other part
interacts with three ARS-interacting multi-functional
proteins (AIMPs) to form a multi-tRNA synthetase
complex (MSC)*. Intriguingly, ARSs and AIMPs are
closely associated with aging and lifespan (Table 2). Pre-
vious studies found that a null mutation in mitochondrial
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Fig. 3 The dysregulation of ARSs in aging and lifespan. a MML-1/MXL-2 inhibits TOR activity by down-regulating LARS, leading to the nuclear
localization and activation of HLH-30/TFEB. b mTORC1-S6K1 phosphorylates EPRS and thus induces its release from the MSC. The phosphorylated
EPRS binds to FATP1 to promote its translocation to the plasma membrane. ¢ AIMP3 interacts with lamin A and recruits Siah1, which leads to the
degradation of lamin A as well as an imbalance in its isoform levels. d Resveratrol binds to TyrRS and facilitates its nuclear translocation. Then, TyrRS
interacts with PARP1 and promotes its activation by stimulating NAD*-dependent auto-poly-ADP-ribosylation.

leucyl-tRNA synthetase 2 (LARS2) was associated with
longevity by screening 5690 genes of C. elegans’®. The
long-lived worms had impaired mitochondrial functions,
manifested by lower ATP content and oxygen consump-
tion. Furthermore, Mondo/Max-like complex (MML-1/
MXL-2) played an important role in the lifespan extension
induced by germline removal®” (Fig. 3a). In this context,
MML-1/MXL-2 inhibited TOR activity by down-
regulating LARS, leading to the nuclear localization and
activation of HLH-30/TFEB. Another research observed
that prolyl-hydroxylase domain protein 1 (PHD1) levels
were reduced in aging muscles, and PHD1 knockout mice
had lower muscle mass®®, PHD1 increased the stability of
LARS by interacting with it, thereby ensuring leucine-
mediated mTORCI1 activation and maintaining muscle
mass. These findings indicate that LARS participates in
the biology of aging through different signaling pathways.
Niehues et al. built a Drosophila model for
Charcot—Marie—Tooth neuropathy by three mutations in
glycyl-tRNA synthetase (GARS)®’. Of note, the expression
of these mutants, including GARS_E71G, GARS_G240R,
and GARS_G526R, not only induced defects in neuronal
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morphology but also shortened the lifespan of flies in a
dosage-dependent manner. In-depth research found that
the mutant GARS proteins showed normal subcellular
localization, but the overall protein synthesis in neurons
was significantly reduced®. Interestingly, the hetero-
zygous GARS“?*'® mice had a normal lifespan, while this
mutation significantly rescued the shortened lifespan
caused by the SOD19%** mutation®. Therefore, more
studies are still needed to explore the roles of GARS in
lifespan regulation.

The mutations in Aats-met, a homolog of human
methionyl-tRNA synthetase 2 (MARS2), caused photo-
receptor degeneration and reduced lifespan of flies, which
was associated with the increased ROS, oxidative phos-
phorylation defects and upregulation of mitochondrial
unfolded protein response®. Moreover, inhibition of
MARS could shorten the lifespan of flies by reducing the
expression of anti-microbial peptides genes®”. Arif et al.
discovered that glutamyl-prolyl-tRNA synthetase (EPRS)
was a downstream effector of the mTORC1 and p70
ribosomal protein S6 kinase 1 (S6K1) axis, which was
involved in the biological processes of obesity and aging®?
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(Fig. 3b). In terms of mechanism, mTORC1-S6K1 phos-
phorylated EPRS at Ser”®® and thus induced its release
from the MSC. Subsequently, the phosphorylated EPRS
bound to fatty acid transport protein 1 (FATP1) to pro-
mote its translocation to the plasma membrane and long-
chain fatty acid uptake. Consistently, homozygous
phospho-deficient EPRS S999A mice showed reduced
adipose tissue, weight loss and longer lifespan, while
replacement of the phospho-mimetic S999D allele
restored the weight of s6kl-deficient mice to normal®.
Furthermore, seryl-tRNA synthetase (SerRS) not only
bound to telomere DNA repeats but also enriched Pro-
tection of Telomeres 1 (POT1) proteins to telomeres via
direct interaction with POT1 in the nucleus®. The
enrichment of POT1 led to the shortening of telomeres,
thereby inhibiting the growth of HeLa cells by inducing
cellular senescence. Intriguingly, the activity of nonsense-
mediated mRNA decay (NMD) decreased with the age of
C. elegans, and NMD could contribute to the longevity in
daf-2 mutant worms®, Further research has shown that
downregulation of yars-2/tyrosyl-tRNA synthetase 2
(TyrRS2), an NMD target, effectively extends the lifespan
of mutants, indicating that NMD-mediated RNA quality
control plays an important role in organismal aging®.
Moreover, AIMPs, which mainly act as scaffolds in the
MSC, is also associated with the aging process. It was
reported that AIMP2 was a parkin substrate and con-
tributed to the development of Parkinson’s disease (PD)®e.
Overexpression of AIMP2 could activate poly(ADP-ribose)
polymerase-1 (PARP1), thereby resulting in an age-
dependent dopaminergic neuronal loss in mice®”. The
PARP1 inhibitor AG014699 inhibited the degeneration of
dopaminergic neurons in AIMP2 transgenic mice, indicat-
ing that PARP1 could be used as a target for PD treat-
ment®”. Notably, AIMP2-DX2, a splicing variant of AIMP2
lacking exon 2, was induced by oncogenes in human lung
cancer cells and could block oncogene-induced apoptosis
and senescence by inhibiting p14/ARF®®. In addition,
endogenous AIMP3 levels increased in aging human tis-
sues, and AIMP3 transgenic mice had an obvious pre-
mature aging phenotype, which was manifested as earlier
cessation of weight gain, hair loss, reduced bone mineral
deposits in female and bone thickness, lordokyphosis, as
well as wrinkled skin with reduced adipocytes®® (Fig. 3c).
Mechanistically, AIMP3 interacted with lamin A and
recruited seven in absentia homolog 1 (Siah1), which led to
the degradation of lamin A. The lamin A degradation would
result in an imbalance in its isoform levels, thus inducing
organismal aging. Analogously, Lee et al.”® demonstrated
that AIMP3 levels were increased, while the levels of miR-
543 and miR-590-3p were decreased during the senescence
of human mesenchymal stem cells. These two microRNAs
(miRNAs) could inhibit the expression of AIMP3 by bind-
ing to AIMP3 transcripts, thereby delaying cellular aging.
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tRNA derivatives in aging and lifespan

Particularly, pre-tRNAs or mature tRNAs are cleaved
into diverse subtypes of fragments under stress condi-
tions, which are named tRNA derivatives’ . Victoria et al.
discovered that the circulating levels of 5 tRNA halves
derived from tRNAGCA  and (RNAMCTD  were
decreased, and those derived from tRNAMSGTS) gand
tRNAAPETO) were increased with age in normal mice’?.
Importantly, the alterations in the levels of these 5/ tRNA
halves were mitigated in the long-lived Ames dwarf mice.
Likewise, another study found that the serum levels of
certain specific 5/ tRNA halves changed significantly with
age in mice, and their levels could be regulated by calorie
restriction’®. These results suggest that tRNA fragments
may play vital roles in the anti-aging effects of dwarfism or
calorie restriction. In some cases, RNA molecules har-
boring a 2/,3’-cyclic phosphate (cP-RNAs) at the 3/ end
are generated from endoribonuclease-mediated RNA
cleavage’®. It was worth noting that cP-RNAs, mainly
from tRNAs, rRNAs, and mRNAs, were abundantly pre-
sent in mouse tissues, and their levels declined in an age-
dependent manner’”. Among them, the cP-RNAs derived
from tRNAs were produced from the cleavage of antic-
odon loops and 3’-terminal CCA sequences. However,
more studies are needed to explore the roles of tRNA
derivatives in aging.

Of note, tRNA derivatives have been confirmed to be
related to some age-related pathological processes, espe-
cially neurodegenerative diseases. Karaiskos et al.”®
observed that the abundance of tRNA fragments in rat
brains changed dynamically under the background of age.
On the one hand, the levels of tRNA fragments derived
from the 3’ end usually increased with age. On the other
hand, the levels of tRNA fragments derived from the 5
end were lower in the brains of middle-aged rats, while
their levels were higher in the young and old rats. Inter-
estingly, the potential targets of these fragments appeared
to be enriched in neuronal functions and development,
indicating that tRNA fragments might be involved in
human aging and neurodegeneration’®. Similarly, eight
tRNA fragments were found to be differentially expressed
in the brains of senescence-accelerated mouse prone 8
(SAMP8) mice, and these fragments seemed to regulate
the brain function-associated pathways in a miRNA-like
pattern’”. For example, AS-tDR-011775 could act on
myelin-associated oligodendrocyte basic protein or parkin
(PARK?2), thus contributing to the development of brain
aging-associated diseases’”. Conspicuously, cleavage and
polyadenylation factor I subunit 1 (CLP1) could facilitate
the efficient generation of tRNA exons by maintaining the
integrity of the tRNA splicing endonuclease complex, and
CLP1 kinase-dead mice showed progressive loss of lower
motor neurons’®. At the mechanistic level, loss of CLP1
activity led to the accumulation of 5’ leader exon tRNA
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fragments derived from pre-tRNA™" (5' Tyr-tRF) and
p53-mediated cell death. Further research found that the
5" Tyr-tRF promoted the p53-dependent neuronal cell
death by interacting with pyruvate kinase M2 (PKM2)”°.
In addition, Balaskas et al. discovered that various tRNA
and tRNA fragments were differentially expressed
between young and old equine chondrocytes®. Impor-
tantly, certain 5’ tiRNAs, such as tiRNA His-GTG and
tiRNA Glu-TTC, were induced in both old equine
chondrocytes and high-grade osteoarthritis cartilage,
indicating that tRNA fragments might be involved in the
development of age-related cartilage diseases®’.

Conclusion and future perspective

Traditionally, tRNAs are considered as housekeeping
molecules that mainly transport amino acids to the
ribosome to participate in protein translation. After
transcription, each tRNA needs to undergo a series of
complex maturation processes to become functional®. In
their metabolic process, defects in any step may cause
various human diseases®>~%*. For example, the tRNA-
modifying enzyme FTSJ1 was down-regulated in non-
small cell lung cancer (NSCLC) tissues®. Importantly,
FTSJ1 inhibited the growth of NSCLC cells by reducing
the expression of DNA damage-regulated autophagy
modulator 1. Furthermore, certain ARSs, including
asparaginyl-tRNA synthetase, aspartyl-tRNA synthetase 2,
and GARS, were associated with the development of
neurological disorders®*~®%, As described above, tRNA-
related metabolism, including tRNA transcription, tRNA
molecules, tRNA modifications, tRNA aminoacylation,
and tRNA derivatives, not only participates in cellular
senescence but also plays a vital role in aging and long-
evity of organisms. In this context, studying tRNAs seems
to provide new ideas for lifespan extension. However, the
related molecular mechanism research is still in the initial
stage, especially in the aspect of tRNA derivatives.

Indeed, some studies have begun to explore clinical
transformations based on tRNA metabolism. Mutations in
the human mitochondrial DNA (mtDNA) are implicated
in age-associated disease phenotypes and aging®>*.
Notably, specific mitoTALENs monomers for the
tRNA*? m.5024C > T mutation could reduce the mutant
mtDNA load and restore the tRNA*" levels in the muscle
and heart of a mouse model of heteroplasmic mtDNA
mutation”’. It was reported that the natural phenol
resveratrol contributed to extending the lifespan of
organisms”>”?, Further research showed that resveratrol
could bind to the active site of TyrRS and facilitate its
nuclear translocation”® (Fig. 3d). Then, TyrRS interacted
with the C-domain of PARP1 and promoted its activation
by stimulating NAD"-dependent auto-poly-ADP-
ribosylation. Moreover, AIMP3 overexpression inhibited
the functions of mesenchymal stem cells under hypoxic
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conditions, while the down-regulation of
AIMP3 significantly improved the age-related senescence
of stem cells®®. Interestingly, hypoxia-inducible factor la
(HIFla) could activate autophagy and inhibit mitochon-
drial respiration via suppressing the expression of AIMP3,
thereby delaying aging’®. These findings provided a pos-
sible target for the regulation of aging. Another study
found that the tRNA-derived fragments from the pre-
frontal cortex, cerebrospinal fluid and serum were dif-
ferently expressed between PD patients and control
samples, and they could distinguish PD from controls,
indicating that tRNA fragments might serve as potential
biomarkers for age-associated disease’®. In conclusion,
tRNA metabolism is closely related to aging and lifespan,
and studying their relationship may become a hot topic in
the future.
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