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Smooth muscle-specific HuR knockout induces
defective autophagy and atherosclerosis
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Cheng Zhang1 and Wencheng Zhang 1,2

Abstract
Human antigen R (HuR) is a widespread RNA-binding protein involved in homeostatic regulation and pathological
processes in many diseases. Atherosclerosis is the leading cause of cardiovascular disease and acute cardiovascular
events. However, the role of HuR in atherosclerosis remains unknown. In this study, mice with smooth muscle-specific
HuR knockout (HuRSMKO) were generated to investigate the role of HuR in atherosclerosis. HuR expression was reduced
in atherosclerotic plaques. As compared with controls, HuRSMKO mice showed increased plaque burden in the
atherosclerotic model. Mechanically, HuR could bind to the mRNAs of adenosine 5′-monophosphate-activated protein
kinase (AMPK) α1 and AMPKα2, thus increasing their stability and translation. HuR deficiency reduced p-AMPK and
LC3II levels and increased p62 level, thereby resulting in defective autophagy. Finally, pharmacological AMPK
activation induced autophagy and suppressed atherosclerosis in HuRSMKO mice. Our findings suggest that smooth
muscle HuR has a protective effect against atherosclerosis by increasing AMPK-mediated autophagy.

Introduction
Atherosclerosis is a chronic and systemic vascular

inflammatory process, the pathological basis of coronary
artery disease, myocardial infarction, and stroke1. Despite
many treatment options, it remains the leading cause of
death worldwide. Developing new strategies to prevent
plaque formation and rupture has become an important
research area. Atherosclerosis is initiated by endothelial
dysfunction and vascular inflammation caused by cardi-
ovascular risk factors such as hyperlipidemia and hyper-
tension. Lipoproteins in the blood enter the arterial wall
from the damaged endothelial cells2,3. Inflammatory fac-
tors can stimulate monocytes and vascular smooth muscle

cells (VSMCs) to engulf oxidized low-density lipoprotein
(ox-LDL) and form foam cells4. Disordered lipid meta-
bolism, inflammation, and endothelial injury all seem to
play major roles in atherosclerosis4,5. However, the
pathogenesis of atherosclerosis is still unclear and needs
further study.
VSMCs are crucial in atherosclerosis. Most foam cells in

early atherosclerosis are derived from VSMCs6. Aberrant
proliferation and migration followed by phenotypic
switching of VSMCs are involved in the formation of
atherosclerosis7. VSMCs produce the extracellular matrix,
which forms the fibrous cap to prevent plaque rupture8.
The death and senescence of VSMCs participate in the
formation of atherosclerotic plaque and also promote
the instability of plaque in advanced lesions7,9. However,
the specific regulatory mechanism of VSMCs in athero-
sclerosis is not clear.
Autophagy is an essential subcellular process that has a

“housekeeping” role in the normal physiological functions
of the body. Autophagy participates in numerous phy-
siological and pathological processes, including cell dif-
ferentiation, growth regulation, aging, immunity, and
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tumor suppression10. Autophagy is a multi-step process
that requires a variety of autophagy-related proteins that
take part in nucleation, expansion, and finally fusion with
lysosomes of autophagosomes11,12. Accumulating evi-
dence suggests that autophagy is involved in the occur-
rence and development of atherosclerosis and related
diseases13,14. Smooth muscle-specific Atg7 knockout can
promote atherosclerosis15, but the molecular mechanism
of autophagy in atherosclerosis still needs elucidation.
Human antigen R (HuR) is a ubiquitous and conserved

RNA-binding protein that binds to AU-rich elements
(AREs) and alters ARE-mediated mRNA turnover and
translation16. HuR binds to an extensive list of RNAs that
participate in cell proliferation, apoptosis, and differ-
entiation17,18. Therefore, HuR may have an important
effect on both pathologic and physiologic functions.
Although cancer is the most widely studied disease
associated with HuR19, the molecule is also reported to
take part in chronic inflammation and nervous system
diseases18,20. Our recent work showed that adipose tissue-
specific HuR knockout caused obesity and metabolic
disorders21. Also, knockout of HuR enhanced VSMC
contraction and hypertension22. However, the role of HuR
in autophagy and atherosclerosis remains unclear.
In this study, we examined HuR expression in athero-

sclerotic plaques and found its expression decreased.
Using smooth muscle-specific HuR knockout (HuRSMKO)
mice, smooth-muscle HuR deletion promoted athero-
sclerosis by inducing defective autophagy.

Results
HuR levels were reduced in atherosclerotic plaque
To investigate the role of HuR in atherosclerosis, we fed

ApoE−/− mice with an ND or HFD for 12 weeks. HuR
protein level was decreased in aortas from the HFD group
(Fig. 1A, B). As compared with the ND group, for the
HFD group, HuR was downregulated in atherosclerotic
lesions (Fig. 1C). As well, HuR mRNA level was sig-
nificantly reduced in aortas from the HFD group (Fig. 1D).
HuR protein level was decreased in VSMCs induced by
ox-LDL at 24, 48, 72, and 96 h (Fig. 1E, F). For further
study, we used HuRSMKO mice generated from a hybrid of
HuR-floxed mice and α-SMA-Cre transgenic mice. HuR
protein level was downregulated in aortas from HuRSMKO

mice (Fig. 1G, H). HuR was not expressed in the aortic
smooth muscle layer of HuRSMKO mice as compared with
control mice (Fig. 1I). In summary, the expression of HuR
in atherosclerotic plaques was decreased, which suggests
that HuR acts on atherosclerosis.

HuR deletion in smooth muscle exacerbated
atherosclerosis
To explore the role of smooth-muscle HuR in athero-

sclerosis, control, and HuRSMKO mice were injected with

rAAV/D377Y-mPCSK9 then fed a Paigen diet for
12 weeks. The proportion of atherosclerotic surface
lesions was greater in HuRSMKO than control mice
(33.98 ± 6.56% vs 14.68 ± 2.47%, p < 0.001) (Fig. 2A). Oil-
red O-stained aortic roots showed significantly increased
lesion area in HuRSMKO than control mice (43.38 ± 2.75%
vs 28.80 ± 4.66%, p < 0.01) (Fig. 2B). Furthermore, deletion
of HuR increased macrophage accumulation (Fig. 2C) and
matrix metalloproteinase 2 (MMP2) level (Supplementary
Fig. 2B), decreased collagen content (Fig. 2D). However,
VSMC content and total monocyte/macrophages did not
differ from controls (Fig. 2E and Supplementary Fig. 2A).
From the above results, we calculated the plaque vulner-
ability index, which was elevated after HuR deficiency
(Fig. 2F). Taken together, lack of HuR in VSMCs pro-
moted the development of atherosclerosis.

Loss of HuR promoted apoptosis in atherosclerosis
Numerous studies have confirmed the existence of

apoptosis in atherosclerotic plaques, which even affects
the stability of plaques7,23. To determine whether HuR
knockout affected apoptosis, aortic root sections under-
went TUNEL staining. Loss of HuR markedly increased
the TUNEL-positive SMCs in HuRSMKO versus control
mice (Fig. 3A). Meanwhile, the expression of the
apoptosis-related protein cleaved caspase-3 was upregu-
lated in aortic roots of HuRSMKO mice (Fig. 3B). Besides,
HuR deletion also increased the level of cleaved caspase-3
in SMCs (Fig. 3D). Also, the serum levels of TC, TG, LDL-
C were higher in HuRSMKO than control mice (Fig. 3C).
To learn why HuRSMKO mice have the phenotype of
dyslipidemia, HuR expression in hepatocytes and liver
fibroblasts were detected. Results showed that HuR
expression was no difference in hepatocytes, but
decreased in liver fibroblasts from HuRSMKO mice com-
pared with control (Supplementary Fig. 1A, B). We fur-
ther examined serum aspartate transaminase (AST) and
alanine transaminase (ALT) levels and found elevated
AST level from HuRSMKO mice (Supplementary Fig. 1C,
D). Thus, HuR deficiency in smooth muscle increased
apoptosis in atherosclerotic mice, and loss of HuR in liver
fibroblasts may contribute to hepatic dysfunction and
dyslipidemia.

HuR deletion resulted in defective autophagy
VSMC autophagy was reported to be important during

the process of atherosclerosis14,15. To detect whether HuR
could regulate autophagy, we used transmission electron
microscopy after VSMCs were infected with ad-HuR or
ad-LacZ for 48 h. HuR overexpression increased the
number of autophagosomes (Fig. 4A). Also, autophagic
flux was monitored in VSMCs by infection with ad-
GFP-mRFP-LC3II. As compared with controls, VSMCs
with HuR overexpression by ad-HuR infection showed
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Fig. 1 HuR levels were reduced in atherosclerotic plaque. A, B Western blot analysis of HuR protein level in aortas from apolipoprotein E-
knockout (ApoE−/−) mice fed a high-fat diet (HFD) or normal diet (ND) (n= 5). C Immunohistochemical staining of HuR in aortas from ApoE−/− mice
fed an HFD or ND (n= 5). D Quantitative RT-PCR analysis of HuR mRNA level in aortas from ApoE−/− mice fed an HFD or ND (n= 5). E, FWestern blot
analysis of HuR protein level in vascular smooth muscle cells (VSMCs) induced by 50 μg/ml oxidized low-density lipoprotein (ox-LDL) at different
times (n= 5). G, H Western blot analysis of HuR protein level in aortas from control and HuRSMKO mice (n= 5). I Immunofluorescent staining of aortas
from control and HuRSMKO mice to determine HuR (green) and α-SMA (α-smooth muscle actin; red) localization. Scale bar= 50 μm.
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Fig. 2 HuR deletion in smooth muscle cells exacerbated atherosclerosis. CTR and HuRSMKO mice were injected with rAAV/D377Y-mPCSK9 and
fed a Paigen diet for 12 weeks. A Oil-red O staining in aortas (n= 10). B Oil-red O staining in aortic roots (n= 6). Scale bar= 200 μm.
c Immunohistochemical staining of MOMA-2 in aortic roots (n= 6). Scale bar= 200 μm. D Masson staining in aortic roots (n= 6). Scale bar= 200 μm.
E Immunohistochemical staining of α-SMA (n= 6). Scale bar= 200 μm. F Vulnerable index of atherosclerotic plaques (n= 6).
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an increased number of GFP+/RFP+ and GFP−/RFP+

LC3II puncta (Fig. 4B–D). However, VSMCs knocked
down by HuR siRNA transfection showed decreased
number of GFP+/RFP+ and GFP−/RFP+ LC3II puncta
as compared with controls (Fig. 4E–G). Thus, HuR
overexpression induced autophagic flux, and loss of
HuR suppressed autophagic flux and resulted in defec-
tive autophagy.

AMPKα1 and AMPKα2 were the target genes of HuR
As a key factor in cellular energy metabolism and acti-

vator of autophagy, AMP-activated protein kinase
(AMPK) participates in various physiological and patho-
logical processes24. The mRNA levels of AMPKα1 and
AMPKα2 were decreased in aortas from HuRSMKO mice
(Fig. 5A). To detect whether AMPKα was the HuR target
gene, the sequence of mouse AMPKα transcripts was

Fig. 3 Loss of HuR promoted apoptosis in atherosclerosis. A Immunofluorescent staining of aortic roots from CTR and HuRSMKO mice to
determine TUNEL-positive VSMCs. Red puncta denotes TUNEL-positive cells. Green region denotes α-SMA. Scale bar= 20 μm. B Immunohistochemical
staining of cleaved caspase-3 in aortic roots (n= 6). Scale bar= 50 μm. C Serum lipid profiles (total cholesterol [TC], triglycerides [TG], high-density
lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]) (n= 6). D Western blot analysis of cleaved caspase-3 in control and
HuR-deficient SMCs (n= 5).
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analyzed and there are 3 AREs in the 3′ UTR of AMPKα1
and 4 AREs in the 3′ UTR of AMPKα2. Next, we exam-
ined the binding of HuR to AMPKα1 and AMPKα2
mRNA by RNA immunoprecipitation and mRNA stability
assay. HuR could bind to the mRNAs of AMPKα1 and

AMPKα2 (Fig. 5B). Meanwhile, the stability of AMPKα1
and AMPKα2 mRNAs was increased by HuR over-
expression (Fig. 5C, D), but decreased by HuR deficiency
(Supplementary Fig. 3A, B). Then we further verified the
relationship between HuR and AMPKα. VSMCs were

Fig. 4 HuR deletion resulted in defective autophagy. A Transmission electron microscopy of autophagosomes (black arrow) in VSMCs infected
with ad-HuR or ad-LacZ. Scale bar= 5000 nm (left), 1000 nm (middle), 500 nm (right). B–D fluorescence photomicrographs (B) and quantification
(C, D) of GFP-mRFP-LC3II puncta in VSMCs infected with ad-HuR or ad-LacZ (n= 26). Scale bar= 10 μm. E–G Fluorescence photomicrographs (E) and
quantification (F, G) of GFP-mRFP-LC3II puncta in VSMCs transfected with control or HuR siRNA (n= 26). Scale bar= 10 μm. Yellow puncta denotes
autophagosome. Red puncta denotes autolysosome.
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Fig. 5 AMPKα1 and AMPKα2 are the target genes of HuR. A Quantitative RT-PCR analysis of aortic mRNA levels of AMPKα1, AMPKα2 from CTR
and HuRSMKO mice (n= 5). B RNA immunoprecipitation with anti-HuR or control IgG antibody. Lanes 1, 5, no template PCR control; lanes 2, 6, IgG
RNA immunoprecipitation; lanes 3, 7, anti-HuR RNA immunoprecipitation; lanes 4, 8, 10% input. C, D VSMCs were infected with adenovirus-expressing
GFP (green fluorescent protein) or HuR and then treated with actinomycin D (5 μg/ml). Quantified RT-PCR analysis of percentage mRNA levels of
AMPKα1 (C) and AMPKα2 (D) (n= 5) in VSMCs. E Western blot analysis of AMPKα1 and AMPKα2 in VSMCs treated with DMSO or 30 μM CMLD-2 for
24 h (n= 5). F Western blot analysis of AMPKα1 and AMPKα2 in VSMCs transfected with CTR siRNA or HuR siRNA for 48 h (n= 5). Western blot
analysis of AMPKα1 and AMPKα2 in VSMCs, G infected with ad-GFP or HuR (n= 5), and H treated with PBS or 0.5 μg/μl recombinant HuR protein for
48 h (n= 5). I Western blot analysis of AMPKα1 and AMPKα2 in aortas from CTR and HuRSMKO mice (n= 5). J Immunohistochemical staining of
AMPKα1 and AMPKα2 in aortas from CTR and HuRSMKO mice (n= 5). Scale bar= 100 μm.
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stimulated with 30 μM CMLD-2, a HuR inhibitor, for
24 h. The protein expression of AMPKα was sharply
reduced in VSMCs with CMLD-2 treatment (Fig. 5E) and
AMPKα1 and AMPKα2 protein levels in VSMCs were
reduced after HuR knockdown by HuR siRNA transfec-
tion (Fig. 5F). In contrast, the levels of AMPKα1 and
AMPKα2 were increased in VSMCs with HuR over-
expression by ad-HuR infection or HuR recombinant-
protein stimulation (Fig. 5G, H). The protein levels of
AMPKα1 and AMPKα2 were significantly reduced in
HuRSMKO versus control mice (Fig. 5I). Immunohisto-
chemical staining results for AMPKα1 and AMPKα2 in
aortas from control and HuRSMKO mice were consistent
with the above results (Fig. 5J). The effect of HuR on
AMPK expression was further confirmed by oxLDL-
stimulated SMCs after HuR knockdown or expression
(Supplementary Fig. 4A, B). Therefore, AMPKα1 and
AMPKα2 are the target genes of HuR.

HuR positively regulates autophagy
Because AMPK could induce autophagy25 and AMPKα is

the HuR target gene, we investigated whether HuR regulates
autophagy. HuR inhibition with CMLD-2 or HuR siRNA
decreased levels of p-AMPK and LC3II and increased p62
level in VSMCs (Fig. 6A, B). In contrast, levels of p-AMPK
and LC3II were elevated and that of p62 was decreased with
HuR overexpression by ad-HuR infection or HuR
recombinant-protein stimulation (Fig. 6C, D). Furthermore,
as compared with control mice, HuRSMKO mice showed
lower levels of p-AMPK and LC3II and higher level of p62
(Fig. 6E). Thus, HuR positively regulates autophagy.

Pharmacological AMPK activation induced autophagy and
suppressed atherosclerosis in HuRSMKO mice
To further demonstrate that HuR regulates autophagy

via AMPK, VSMCs were transfected with control or HuR
siRNA then treated with the AMPK activator A769662.
The levels of p-AMPK and LC3II were increased with
A769662 in control and HuR-deficient VSMCs (Fig. 7A).
In animal experiments, control and HuRSMKO mice were
given an intraperitoneal injection of A769662 daily and
fed a Paigen diet for 12 weeks after single intravenous
injection of rAAV/D377Y-mPCSK9. The plaque area was
significantly decreased after A769662 treatment in control
and HuRSMKO mice (Fig. 7B, C). Also, A769662 reduced
the number of apoptotic cells (Fig. 7D). Furthermore, only
TC and LDL-C blood levels were slightly reduced with
A769662 treatment (Fig. 7E). Thus, smooth-muscle HuR
protects against the development of atherosclerosis via
AMPK-mediated autophagy.

Discussion
In this study, the expression of HuR was decreased in

atherosclerotic plaques from ApoE−/− mice with an HFD

for 12 weeks. However, Rudolf Pullmann and Mitali Ray
reported that increased HuR expression in atherosclerotic
plaques from patients with neointimal proliferation and
LDLR−/− mice lacking of IL-1926,27. These results sug-
gested that HuR may play an important and complicated
role in atherosclerosis. To explore the potential role of
HuR in atherosclerosis, we generated smooth muscle-
specific HuR knockout mice and constructed an athero-
sclerotic model. As compared with controls, HuRSMKO

mice more frequently exhibited atherosclerotic plaques
and increased instability of plaques. Knockout of HuR
inducing atherosclerosis was attributed to defective
autophagy. Mechanically, HuR could bind to and stabilize
the mRNAs of AMPKα1 and AMPKα2, thereby increas-
ing the expression of AMPKα and enhancing autophagy
(Fig. 7F).
As a member of RNA-binding proteins, HuR has a

primary role to bind to the target mRNAs and modulate
their stability and translational efficiency28. HuR also
interacts with other types of RNA, including small inter-
fering RNA, long noncoding RNAs, and circular RNAs29.
Binding to RNAs such as cyclinA, hypoxia-inducible fac-
tor-1, cyclooxygenase 2, B-cell lymphoma-2 is associated
with proliferation and apoptosis; thus, HuR is related to
the occurrence of tumorigenesis30,31. HuR regulates
mRNAs of inflammatory factors such as interleukin 6, so
HuR may be involved in inflammatory diseases28,32. In
addition, HuR is also involved in metabolic diseases such
as diabetes by binding to glucose transporter (GLUT1)
mRNA33. After the discovery of the relationship between
HuR and hypertension in VSMCs22, here we continued to
use smooth muscle-specific HuR knockout mice to
explore the role of HuR in atherosclerosis. Smooth-
muscle HuR protected against the development of
atherosclerosis by targeting AMPKα, which expands our
understanding of HuR in cardiovascular diseases.
AMPK is a serine/threonine-protein kinase that acts as

a central component of the signaling pathway regulating
the conversion between anabolism and catabolism34.
AMPK is a heterotrimer composed of one catalytic sub-
unit and two regulatory subunits. The AMPK subunits all
have multiple isoforms. Differences in isoform composi-
tion affects AMPK localization and function. Catalytic
subunit α, which has two different isoforms, α1 and α2, is
a major functional component of AMPK activation.
Phosphorylation at Thr172 of α subunit is essential for
AMPK activation35. Because mammalian AMPK is sen-
sitive to the AMP:ATP ratio, any cellular process that
reduces ATP levels or increases AMP concentration could
activate AMPK. Some cytokines such as leptin, adipo-
nectin, and ghrelin and some drugs such as AICAR,
A769662, and metformin can activate AMPK directly or
indirectly36. Also, AMPK activation is known to be
mediated by liver kinase B1 (LKB1), Ca2+/calmodulin-
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Fig. 6 HuR positively regulates autophagy. Western blot analysis of p-AMPK, p62, and LC3II in VSMCs. A Treated with DMSO or 30 μM CMLD-2 for
24 h (n= 5). B Transfected with CTR or HuR siRNA for 48 h (n= 5). C Infected with ad-GFP or ad-HuR (n= 5), and D treated with PBS or 0.5 μg/μl
recombinant HuR protein for 48 h (n= 5). E Western blot analysis of p-AMPK, p62, and LC3II in aortas from CTR and HuRSMKO mice (n= 5).
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Fig. 7 Pharmacological AMPK activation induced autophagy and suppressed atherosclerosis in HuRSMKO mice. A Western blot analysis of
VSMCs transfected with CTR or HuR siRNA for 48 h, then treated with 200 μM A769662 for 1 h (n= 5). CTR and HuRSMKO mice were single injected
with rAAV/D377Y-mPCSK9, then intraperitoneally injected with 30 mg/kg A769662 daily and fed a Paigen diet for 12 weeks. B Oil-red O staining in
aortas (n= 5). C Oil-red O staining in aortic roots (n= 5). Scale bar= 200 μm. D TUNEL staining in aortic roots (n= 5). Scale bar= 50 μm. E TC, TG,
HDL-C, and LDL-C levels (n= 6). F Diagram for the role of smooth-muscle HuR in atherosclerosis via AMPK-mediated autophagy. HuR indicates
human antigen R; AMPK, Adenosine 5′-monophosphate-activated protein kinase.
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dependent kinase CaMKK2 (CaMKKβ), and transforming
growth factor-β-activated kinase 1 (TAK1)24,36,37. Some
studies have reported that ΔNp63α, a p53 family member,
and microRNAs such as mir-19 and mir-101 can regulate
the expression of AMPKα38–40. Our study found that HuR
could regulate AMPKα, which enhances our under-
standing of the regulatory mechanisms of AMPKα
expression and activation. Recent studies showed that
AMPK plays an important role in lipid metabolism41,42. In
this study, we demonstrated that AMPKα1 and AMPKα2
were the target genes of HuR. Therefore, we speculated
that HuR may regulate lipid metabolism through AMPK
in hepatocytes. In the future study, hepatocyte-specific
HuR knockout mice will be generated and these mice are
predicted to have the phenotype with dyslipidemia.
Whether and how HuR regulating the impact of AMPK
on dyslipidemia will be explored.
Autophagy is a major intracellular degradation system

that aims to dynamically cycle energy and matter for cell
renewal and homeostasis43. The most important upstream
regulators of autophagy are AMPK and mammalian target
of rapamycin. Moreover, some studies have found that
AMPK and mammalian target of rapamycin interact with
each other44,45. From autophagosomes to autolysosomes,
autophagy-related proteins such as Atg5, Atg7, LC3II, and
p62 are indispensable for the occurrence and develop-
ment of autophagy46. In recent years, the relationship
between autophagy and atherosclerosis has also attracted
much attention. Macrophage-specific Atg5 deficiency
promotes atherosclerosis by interfering with cholesterol
transport, apoptosis, and inflammation47–49. Endothelial-
specific Atg5 and Atg7 deletion cause atherosclerotic
plaque formation50,51. Knockout of Atg7 in VSMCs
accelerates the process of atherosclerosis and promotes
the regeneration of intima after injury15. Autophagy is
closely related to cell senescence and apoptosis, which are
also involved in atherosclerosis. In this study, knockout of
HuR led to defective autophagy, which further increased
apoptosis and atherosclerosis.
In summary, HuR could increase AMPK-mediated

smooth muscle autophagy and play a protective role in
atherosclerosis. Our research provides a new concept and
drug target for treating atherosclerosis.

Materials and methods
Reagents
Adenovirus expressing GFP, HuR (ad-HuR, ad-GFP),

and recombinant adeno-associated viral of murine pro-
protein convertase subtilisin/kexin type 9 mutants
(rAAV/D377Y-mPCSK9) were from Vigenebio (MD,
USA). Adenovirus expressing LacZ (ad-LacZ) and GFP-
mRFP-LC3II (ad-GFP-mRFP-LC3II) were from Hanbio
(Shanghai). Actinomycin D and Oil-red O were from
Sigma (St Louis, MO, USA). A769662 was from Selleck

Chemical (Houston, TX, USA). Ox-LDL was from Yiyuan
(Guangzhou, China). CMLD-2 was from Millipore
(Temecula, CA, USA). Recombinant HuR protein was
from Proteintech (Chicago, IL, USA). Control and HuR
siRNA were synthesized by BioSune (Shanghai). The
sequences for HuR siRNA were 5′-CCAGUUUCAAU
GGUCAUAATT-3′ and 5′-UUAUGACCAUUGAAACU
GGTT-3′ and control siRNA were 5′-GGUUGAAUCUG
CAAAGCUUTT-3′ and 5′-AAGCUUUGCAGAUUCAA
CCTT-3′. Paigen diet was from Trophic Diets (TP28640,
China), containing 15% fat, 0.5% bile salt, and 1.25%
cholesterol.

Cell culture and infection
Mouse smooth muscle cells were from ATCC (Mana-

ssas, VA, USA) with STR authentication. Cells were cul-
tured in DMEM containing 10% fetal bovine serum and
50 μg/ml penicillin/streptomycin and seeded in 6-well
plates at 1.0 × 104 cells/cm2. VSMCs grown to 70% con-
fluence were infected with adenovirus at multiplicity of
infection 75 for 48 h.

Mouse models
Smooth muscle-specific HuR knockout (HuRSMKO) mice

were generated as described22. Male control and HuRSMKO

mice at 8 weeks old were given a single tail-vein injection
with rAAV/D377Y-mPCSK9 at 1.5 × 1011 pfu for each
mouse as described52 and fed a Paigen diet for 12 weeks.
Male apolipoprotein E-deficient mice (ApoE−/−) at
8 weeks old were from Vital River (Beijing) and were
divided into two groups for high-fat diet (HFD) or normal
chow diet (ND) feeding. Mice were housed at 25 °C, 12-h
light/dark. Mice were euthanized using profound anes-
thesia with 4% isoflurane followed by exsanguination and
tissue removal. The animal experiment was approved by
the Animal Care Committee of Shandong University and
was performed in compliance with the Animal Manage-
ment Rules of the Chinese Ministry of Health. All animal
experiments were performed conform the guidelines from
Directive 2010/63/EU of the European Parliament on the
protection of animals used for scientific purposes.

Atherosclerotic lesion assay
Mice were euthanized and perfused with PBS. Hearts and

aortas from the proximal ascending aorta to the abdominal
aorta were removed and fixed in 4% paraformaldehyde.
Aortas were dissected free of fat and adventitial tissue,
opened longitudinally, stained with 0.5% freshly-made Oil-
red O for 2 h, and pinned onto black silicon plates for
imaging. After optical cutting temperature (OCT) com-
pound embedding, the heart was cut to the aortic root to
reveal the valvular lobe, stained with 0.5% Oil-red O and
observed by microscopy. The results were reported as
percentage of lesion area to total aortic area.
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Morphology of aorta and aortic root
Aortas and hearts were embedded in OCT and sliced

into 5-μm-thick frozen sections. The heart was cut to the
aortic root. After sections were hydrated, immuno-
fluorescence, immunohistochemistry, or other special
staining was performed. To detect HuR-knockout effi-
ciency in VSMCs, fluorescent double labeling of aortic
sections was performed with HuR antibody (1:300, Mil-
lipore) and α-SMA antibody (1:300, Abcam). Sections of
aortic roots were immunostained with MOMA-2 anti-
body (1:300, Abcam) to detect macrophage content and
α-SMA antibody to detect VSMC content. The collagen
of aortic root was detected by using a Masson staining kit
(Solarbio, Beijing). The plaque vulnerability index was
calculated as follows: (macrophage staining %+ lipid
staining %)/(SMC staining %+ collagen staining %)53.

Detection of apoptosis
Apoptosis was detected by immunohistochemical

staining with cleaved caspase-3 antibody (1:300, Affinity)
and terminal UTP nick end-labeling (TUNEL). Briefly,
aortic root sections were fixed in fresh 4% paraf-
ormaldehyde for 20min at 15–25 °C, then incubated with
premeabilization solution containing 0.1% Triton X-100
and 0.1% sodium citrates for 2 min at 2–8 °C. Staining
followed the recommendations of the in-situ Cell Death
Detection Kit (Roche, Basel, Switzerland).

Lipid profile assays
Serum was isolated for determining levels of total cho-

lesterol (TC), triglycerides (TG), high-density lipoprotein
cholesterol (HDL-C), and low-density lipoprotein cho-
lesterol (LDL-C). The blood lipid assay kit was from
Jiancheng Bioengineering Institute (Nanjing, China).

Western blot analysis
A 15-μg amount of protein lysates from isolated aorta

and SMCs were run on a 12% SDS-PAGE gel and
immunoblotted overnight with the primary antibodies for
HuR (29 ng/ml, 12582S, CST), AMPKα1 (1 μg/ml,
Ab32047, Abcam), AMPKα2 (1 μg/ml, ab3760, Abcam),
p-AMPK (27 ng/ml, 2535S, CST), p62 (293 ng/ml, 18420-
1-AP, Proteintech), LC3I/II (64.5 ng/ml, 4108S, CST),
Cleaved Caspase-3 (1 μg/ml, BF0711, Affinity), and
β-actin (1 μg/ml, 20536-1-AP, Proteintech).

RNA immunoprecipitation assay
Whole-cell lysates were incubated overnight at 4 °C with

protein A/G beads pre-conjugated with 5 μg rabbit IgG or
HuR antibody (Millipore). RNA was then isolated from
immunoprecipitates by using the Magna RIP kit (Milli-
pore) with the primer sequences AMPKα1: 5′-GGC
ACCTTCGGGAAAGTGAA-3′ and 5′-TGTGAGGGTG
CCTGAACAGC-3′ and AMPKα2: 5′-GAAGATTCGCA

GTTTAGATGTTG-3′ and 5′-TCGAACAATTCACCTC
CAGA-3′.

GFP-mRFP-LC3II punctation
VSMCs were infected with ad-GFP-mRFP-LC3II for

48 h. LC3II spots were observed by fluorescence micro-
scopy (Nikon, Tokyo). GFP-RFP-LC3II serves as a specific
marker for autophagic flux that relies on the different
nature of GFP and RFP fluorescence under acidic condi-
tions. Because GFP was quenched in the lysosomal acidic
conditions, autophagosomes are shown as yellow puncta
(RFP+GFP+), and autolysosomes are shown as red puncta
(RFP+GFP−) in green- and red-merged images54. The
mean number of LC3II points per cell was calculated from
more than 30 cells.

Transmission electron microscopy
After infection with ad-LacZ or HuR for 48 h, VSMCs

were harvested and fixed in electron microscope fixative
containing 2.5% glutaraldehyde (Servicebio, Wuhan, China)
for 2 h. Samples were fixed in 1% osmium tetroxide and
dehydrated with ethanol in ascending order, followed by
epoxide resin-embedding and cut into sections. Images of
stained sections were collected by transmission electron
microscopy (HT7700, Hitachi, Japan).

Statistical analysis
Group allocation for the experiments was randomized

and not blinded. Sample analyses were not blinded. Data
are expressed as mean ± SEM and were analyzed by using
GraphPad Prism 6.0. All data were tested for normal
distribution and equal variances. Student t test was used
to compare two groups with 95% confidence interval.
One-way ANOVA and Bonferroni post-tests were used in
four groups. Statistical significance was set at P < 0.05.
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