
Parry et al. Cell Death and Disease          (2021) 12:222 

https://doi.org/10.1038/s41419-021-03500-6 Cell Death & Disease

REV I EW ART ICLE Open Ac ce s s

The application of BH3 mimetics in myeloid
leukemias
Narissa Parry 1, Helen Wheadon 1 and Mhairi Copland 1

Abstract
Execution of the intrinsic apoptotic pathway is controlled by the BCL-2 proteins at the level of the mitochondrial outer
membrane (MOM). This family of proteins consists of prosurvival (e.g., BCL-2, MCL-1) and proapoptotic (e.g., BIM, BAD,
HRK) members, the functional balance of which dictates the activation of BAX and BAK. Once activated, BAX/BAK form
pores in the MOM, resulting in cytochrome c release from the mitochondrial intermembrane space, leading to
apoptosome formation, caspase activation, and cleavage of intracellular targets. This pathway is induced by cellular
stress including DNA damage, cytokine and growth factor withdrawal, and chemotherapy/drug treatment. A well-
documented defense of leukemia cells is to shift the balance of the BCL-2 family in favor of the prosurvival proteins to
protect against such intra- and extracellular stimuli. Small molecule inhibitors targeting the prosurvival proteins,
named ‘BH3 mimetics’, have come to the fore in recent years to treat hematological malignancies, both as single
agents and in combination with standard-of-care therapies. The most significant example of these is the BCL-2-specific
inhibitor venetoclax, given in combination with standard-of-care therapies with great success in AML in clinical trials.
As the number and variety of available BH3 mimetics increases, and investigations into applying these novel inhibitors
to treat myeloid leukemias continue apace the need to evaluate where we currently stand in this rapidly expanding
field is clear.

Facts

● Dysregulation of prosurvival BCL-2 proteins is
highly implicated in the oncogenesis, progression,
and therapy-resistance of myeloid leukemias.

● BH3 mimetics inhibit prosurvival BCL-2 proteins
and re-balance the apoptotic pathway.

● The BCL-2-specific BH3 mimetic venetoclax has had
significant clinical success in acute myeloid leukemia
in combination with standard therapy.

● Various BH3 mimetics in combination with
standard-of-care therapies are currently under
investigation in myeloid leukemias.

Open Questions

● Could BH3 mimetics be useful in the treatment of
chronic myeloid leukemia, either alone or in
combination with tyrosine kinase inhibitors?

● Will the recent clinical success of the BCL-2
inhibitor venetoclax in combination with
cytarabine or hypomethylating agents in acute
myeloid leukemia encourage further combinatorial
studies of venetoclax with other standard-of-care
therapies in this disease?

● Is there scope for using MCL-1 and BCL-xL
inhibitors in myeloid leukemias in a clinical setting?

Introduction
Apoptosis is the best-described form of programmed

cell death, discrete from other forms of cell death such as
autophagy, necroptosis, ferroptosis, and pyroptosis1,2. An
apoptotic cell displays morphological changes including
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nucleus shrinkage and membrane blebbing. Apoptotic
cells undergo DNA degradation, cleavage of intracellular
structures, and loss of mitochondrial function1. The term
‘apoptosis’ refers to two pathways distinct in initiation.
The extrinsic apoptotic pathway is triggered via death
receptor binding at the cellular membrane3, while the
intrinsic, or ‘mitochondrial’, the pathway is regulated by
B-cell leukemia/lymphoma-2 (BCL-2) family of pro-
teins4,5. The two pathways crosstalk at the level of trun-
cated BH3-interacting domain death agonist (tBID)
activation, which occurs concurrently with the instigation
of a caspase cascade in the context of the extrinsic path-
way, and prior to activation of the multidomain proa-
poptotic effector proteins in the case of the intrinsic
pathway.
During neoplastic transformation cells face numerous

signals, including DNA damage, which would initiate
apoptosis in healthy cells; however malignant cells hijack
the apoptotic machinery to evade cell death6. One
extensively studied example is an over-reliance on the
BCL-2 family7. BCL-2 was first described in relation to
survival from cell death due to its role as a driver of fol-
licular lymphoma (FL)8. Other prosurvival members of
the BCL-2 family have been implicated to varying degrees
in the pathogenesis of other hematological malignancies
including acute myeloid leukemia (AML)9,10, chronic
myeloid leukemia (CML)11–15, multiple myeloma16, dif-
fuse large B-cell lymphoma17, and acute lymphoblastic
leukemia (ALL)18.
In recent years, the implications of BCL-2 family depen-

dence in hematological malignancies has resulted in wide-
spread and sustained effort to investigate whether this can
be exploited to selectively eliminate cancerous cells.

The intrinsic apoptotic pathway
Within the intrinsic apoptotic pathway, the decision to

commit to cell death occurs at the mitochondrial outer
membrane (MOM) and is dictated by a balance between
opposing factions within the BCL-2 family19. The family
can be divided primarily by function (prosurvival or
proapoptotic), and latterly by structure (Fig. 1). BCL-2,
along with myeloid cell leukemia-1 (MCL-1), B-cell lym-
phoma-extra large (BCL-xL; BCL2L1), B-cell lymphoma-
w (BCL-w), and BCL-2-related gene expressed in fetal
liver-1 (Bfl-1; A1), are able to inhibit apoptosis and con-
tain three to four regions of conserved homology termed
BCL-2 homology (BH) domains 1-4. Within the proa-
poptotic group of proteins there are two subgroups: (1)
the multidomain proteins BCL-2-associated X protein
(BAX) and BCL-2 homologous antagonist killer (BAK),
and; (2) the BH3-only proteins, including BCL-2-
interacting mediator of cell death (BIM), a p53-
upregulated modulator of apoptosis (PUMA; BBC3),
BCL-2 associated death promoter (BAD), NOXA

(phorbol-12 myristate-13-acetate-induced protein 1;
PMAIP1), BH3-interacting domain (BID), BCL-2-
interacting killer (BIK), BCL-2-modifying factor (BMF)
and Harakiri (HRK).
When activated, BAX and BAK oligomerize to form

toroidal structures within the membrane20. The result is
MOM permeabilisation (MOMP), the efflux of proteins
from the mitochondrial intermembrane space and sub-
sequent loss of membrane potential. Among the proteins
released from the mitochondria through the BAX/BAK
pores is cytochrome c, which combines with apoptotic
protease-activating factor 1 (APAF1) and caspase-9 to
form the apoptosome, a multi-protein complex that
activates the effector caspases-3, -6 and -721.
The mechanism of BAX and BAK activation may occur

via the direct activation and/or the indirect activation
model (Fig. 2)22. The direct activation model suggests that
BAX and BAK exist in an inactive conformation until
activated by a subset of BH3-only proteins termed ‘direct
activators’, including BIM, PUMA, and BID. These direct
activators are sequestered by the prosurvival proteins and
released upon inhibition of the latter by further ‘sensitiser’
BH3-only proteins (such as NOXA, HRK, and BAD).
Conversely, the indirect activation model postulates that
BAX/BAK are constitutively active and are inhibited by
the prosurvival BCL-2 proteins; in response to a death
stimulus, BH3-only proteins in turn inhibit the prosurvi-
val proteins, thereby lifting the inhibition of BAX/BAK. In
both models, the inhibition of the prosurvival proteins
and subsequent release of either direct activator BH3-only
proteins or BAX/BAK is the initiating step in triggering
apoptosis23.
BH3-only proteins display differing binding affinities to

the prosurvival proteins (e.g., NOXA binds with high
specificity to MCL-1, while HRK binds exclusively with
BCL-xL)24. Along with the evidence that malignant cells
can evade apoptosis through over-reliance on the

Fig. 1 Members of the BCL-2 family of proteins share BCL-2
homology (BH) domains and are grouped according to function
and structure. Figure not to scale. TM transmembrane domain.
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prosurvival BCL-2 proteins, this has led to the develop-
ment of highly specific small molecule inhibitors of the
prosurvival proteins. The inhibitors are rationally
designed to mimic the BH3-only protein known to inhibit
the prosurvival protein of interest and, as such, are termed
‘BH3 mimetics’25.
In this review, we focus on the use of BH3 mimetics

within the myeloid leukemias, specifically CML and AML.
We highlight the dependencies on these proteins, the
compounds developed to take advantage of these dis-
coveries and investigations conducted which combine
BH3 mimetics with standard-of-care therapies, conclud-
ing with future directions for the field.

Dysregulation of the intrinsic apoptotic pathway
in CML
CML is typified by the Philadelphia chromosome, a (t

(9;22)(q34;q11)) chromosomal translocation arising in a
hematopoietic stem cell (HSC), leading to the expression
of the fusion oncoprotein BCR-ABL26,27. This con-
stitutively active tyrosine kinase sits at the epicenter of a
complex signaling network that contributes to the
malignant transformation of HSC into leukemic stem cells
(LSC) which overpopulate the hematopoietic system with
a myeloid bias28.
The current standard-of-care treatment for chronic

phase (CP) CML is BCR-ABL-specific tyrosine kinase
inhibitors (TKIs) such as imatinib (Gleevec®)29. For
patients whose cancer becomes TKI-refractory, the dis-
ease may progress to blast phase (BP), with a 6 to 11-
month survival rate and few treatment options available30.
The BCL-2 family of proteins has been implicated in both
CML development and progression; therefore, targeting
the intrinsic apoptotic pathway may be a viable ther-
apeutic option (Fig. 3).

BIM in CML
Evasion of apoptosis in response to cytokine withdrawal

is one of the most consistently observed effects of BCR-
ABL; this withdrawal results in BIM upregulation in
normal hematopoietic progenitors, but the effect is abol-
ished in BCR-ABL-transformed cells31. BCR-ABL down-
regulates BIM transcription and labels the BIM protein
for degradation through mitogen-activated protein kinase
(MAPK) phosphorylation, with BIM levels restored by
inhibiting BCR-ABL with TKIs, such as imatinib. Silen-
cing of BIM effectively rescues CML cells from apoptosis
caused by imatinib31,32. BCR-ABL therefore supports
CML cell survival, at least in part, through the down-
regulation of BIM.

Fig. 2 Execution of the intrinsic apoptotic pathway requires activation of BAX and BAK to form pores in the outer mitochondrial
membrane resulting in mitochondrial outer membrane permeabilisation (MOMP). BAX/BAK activation occurs through either the direct
activation model, indirect activation model or a balance of both.

Fig. 3 BCR-ABL affects the intrinsic apoptotic pathway through
upregulation of prosurvival and downregulation of proapoptotic
proteins. Targeting of these protein results in a shift away from
apoptosisin CML cells. Black arrows indicate BCR-ABL-mediated up- or
downregulation.
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Prosurvival BCL-2 proteins
MCL-1 mRNA and MCL-1 protein are expressed con-

stitutively in a BCR-ABL-dependent manner in CML
regardless of disease stage12. Upregulation of BCL-xL has
been observed in BCR-ABL-transformed HL-60 and BaF3
cells, while inhibition of the Akt/Protein kinase B pathway
was found to reverse the upregulation of BCL-xL in the
latter33,34. Investigations using apoptosis-resistant BCR-
ABL+ mice suggest BCL-2 mutations in myeloid pro-
genitors may be critical in the transition of BCR-ABL+

leukemias to advanced stage disease13. Further, inhibiting
both BCL-2 and BCR-ABL is sufficient to induce apop-
tosis in CML stem cells in a murine CML model and TKI-
resistant BP-CML patient samples35.

Role of BAX
The serine/threonine-specific protein kinase Akt/Pro-

tein kinase B, a downstream target of BCR-ABL, is con-
stitutively active in CP-CML and BP-CML cells; Akt
inhibits a conformational change in BAX required for
translocation to the mitochondrial membrane, thus hin-
dering MOMP in response to cellular stress36,37. In CML
cells expressing high levels of BCR-ABL, this movement
of BAX is prevented38.
The microRNA miR-29b, able to increase the expres-

sion of BAX, is inhibited by BCR-ABL and is down-
regulated in BP-CML39,40. Overexpression of miR-29b in
the CML cell line K562 has been shown to halt pro-
liferation and induce apoptosis, indicating an important
role for this miR in regulating cell death39.
Thus, CML cells can hijack BAX both at the transla-

tional and conformational levels, thereby decreasing
sensitivity to cytotoxic stimuli and a further balance shift
of the BCL-2 family proteins in favor of cell survival.

Dysregulation of the intrinsic apoptotic pathway
—AML
AML is the most common myeloid malignancy in adults,

with an incidence rate of 3–5 cases per 100,000 per year and
a median age of 68 years at diagnosis. AML covers a
genetically heterogenous group of disorders of myelopoiesis
with immature myeloid blasts in the bone marrow, blood,
and extramedullary tissues. These blast cells out-compete
normal hematopoiesis leading to the disease phenotype of
fever, infection, anemia, bruising, and bleeding41.
Classification of AML is based on the World Health

Organization and European Leukemia Network criteria,
which rely on morphology, immunophenotyping, and the
detection of underlying genetic lesions including both
recurrent cytogenetic and molecular abnormalities42.
Conventional karyotyping is the mainstay of risk stratifi-
cation in AML and is complemented by fluorescence
in situ hybridization analysis and RT-PCR for the targeted
detection of specific recurrent genetic abnormalities43.

Next-generation sequencing can further stratify AML
based on the presence or absence of cooperating muta-
tions involved in driving the disease, encompassing epi-
genetic regulators, cell signaling and proliferation
pathways, master hematopoietic transcription factors, and
tumor suppressors44. The cytogenetic and molecular
abnormalities present at diagnosis influence prognosis
and clinical management and are used to subtype patients
appropriately into favorable, intermediate, and adverse
prognostic categories41,42.
This complex genomic landscape, combined with other

co-morbidities and age at onset, makes treatment and
management of AML patients challenging and, increas-
ingly, an individualized approach is required. The ther-
apeutic pathway taken will depend not only on the
underlying genomic lesions, but also the age and fitness of
the patient. Younger and fit older patients will receive
high-intensity induction chemotherapy, followed by either
consolidation chemotherapy or a stem cell transplant,
dependent on response to therapy and genetic lesions
present at diagnosis. Until recently, patients deemed unfit
to tolerate intensive chemotherapy would receive either
low dose cytarabine (LDAC), hypomethylating agents
(HMA), or palliative treatment such as hydroxyurea in
addition to supportive care41. LDAC and HMA may
achieve remissions in a minority of patients, but are not
curative and almost all patients will relapse. Small mole-
cule inhibitors may also be included for patients with
specific genetic lesions, e.g. midostaurin for patients with
a fms-like tyrosine kinase 3 (FLT3) mutation45.

Role of BCL-2 family in AML
The journey from the identification of BCL-2 depen-

dence in AML to the successful development and clinical
application of the BCL-2-specific inhibitor venetoclax is a
triumph of modern cancer therapy. BCL-2 was found to
be expressed in AML CD34+ progenitor cells and pro-
myelocytes while this expression was absent in their
heathy counterparts, and evidence was presented that
induction chemotherapy resulted in selection for leu-
kemic CD34+ cells expressing high levels of BCL-246.
Later, it was shown that BCL-2 is essential for the
maintenance of cancer cells in a murine model of leuke-
mia, in the first example of the functional removal of a
BCL-2 family prosurvival protein resulting in cancer
regression47.
BCL-2 expression has also been shown to be sig-

nificantly upregulated in newly diagnosed AML patients
(range of 34–87%) and relapsed AML patients10,48–50.
Patients with elevated BCL-2 tend to present with higher
percentage of peripheral blasts48, with over-expression
also correlating with CD34 and CD117 positivity and
poorer response to chemotherapy10,49,50, suggesting a
more primitive phenotype.
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An early investigation saw the application of a cell-
permeable BCL-2 binding peptide, based on the structure
of BAD, in HL-60 cells in vitro and human myeloid leu-
kemia cells in a murine model, resulting in leukemic cell
death51. This was followed swiftly by the description of
HA14-1, a small molecule compound able to bind to the
BCL-2 surface pocket and capable of inducing caspase-
dependent apoptosis in HL-60 cells52.
Other BCL-2 family proteins, including BCL-xL and

MCL-1 have been implicated in the pathogenesis of
AML53–55. BCL-xL and BAD, along with BCL-2, are
upregulated in the majority of AML stem/progenitor cell
populations, compared to normal hematopoietic stem/
progenitor cells (HSPCs), with induction chemotherapy
resulting in a further upregulation of BCL-2 and BCL-
xL46,54. MCL-1 is consistently high in the majority of
newly diagnosed AML patients and has been associated
with relapse56,57. MCL-1 is also linked to stem cell sur-
vival, especially in FLT3-internal tandem duplication
(FLT3-ITD) AML stem cells58.
A critical role of MCL-1 in cell survival was demon-

strated in an elegant study using bone marrow HSCs/
HSPCs transformed with the oncogenes mixed-lineage
leukemia (MLL)-eleven nineteen leukemia (MLL-ENL)
and MLL-ALL1-fused gene from chromosome 9 (MLL-
AF9), and corresponding AML mouse models. Depletion
of Mcl-1 led to the death of cells in vitro and reduced
disease burden in AML-afflicted mice, with cell death
being rescued by overexpressing Bcl-2 or Mcl-157.
Due to the heterogeneity of AML, studies indicate that

cells may be ‘addicted’ to BCL-2, MCL-1, or both
depending on the genomic landscape of the patient at
diagnosis59. If BH3 mimetics are to be used successfully
clinically in the management of AML, patient-specific
prediction of BCL-2 family dependency, potentially by
BH3 profiling may well be essential60,61.

The rise of BH3 mimetics
The developmental journey of BH3 mimetics to clinical

use has been extensively covered, including the excellent
reviews by Lessene et al.62 and Leverson et al.63. One of
the first BH3 mimetics developed, following HA14-1, was
ABT-737, a small molecule with high binding affinity to
BCL-2, BCL-xL, and BCL-w16,64. ABT-737 represents the
first example of an anti-cancer drug designed specifically
to target a protein-protein interaction, and was identified
through the structure-activity relationships (SAR) by
nuclear magnetic resonance (NMR) method and site-
directed parallel synthesis, a triumph of modern, rational
cancer therapy design64.
The major limitation of ABT-737 was the lack of oral

bioavailability, prompting the development of ABT-263
(navitoclax)65. Navitoclax is a dual inhibitor of BCL-2/
BCL-xL, and its application as a monotherapy in relapsed/

refractory (R/R) CLL was promising, with a 35% partial
response rate, though 28% of patients experienced grade
3/4 thrombocytopenia due to the requirement of BCL-xL
in the development of platelets66,67. The serious adverse
effects associated with BCL-xL inhibition in vivo was
addressed with the development of ABT-199 (venetoclax,
Venclexta®), a highly specific BCL-2 inhibitor that
induced less thrombocytopenia68.
Venetoclax was first described in 201368, and since has

been approved in the US for the treatment of CLL with
17p deletion (2016), in combination with rituximab
(Rituxan®) for previously untreated CLL (2018), newly
diagnosed AML in combination with HMA or LDAC
where intensive induction chemotherapy is not possible
(accelerated approval in 2018, full approval in 2020) and
in combination with non-chemotherapeutics for pre-
viously untreated CLL (2019). The path to these approvals
in AML will be addressed further in this review.
Of interest in the context of the current COVID-19

pandemic, NHS England granted temporary emergency
approval of venetoclax in specific AML patient groups.
Venetoclax treatment can be delivered on an outpatient
basis, allowing for reduced attendance at the clinic for the
duration of the pandemic until regular treatment can be
resumed.
Resistance to venetoclax can occur through upregulation

of other BCL-2 prosurvival proteins, and subsequent tar-
geting of these proteins with alternative BH3 mimetics or
inhibiting upstream regulatory pathways is often effective in
overcoming resistance69–71. To this end, and especially when
targeting cancers in which BCL-2 is not the primary pro-
survival BCL-2 protein, other BH3 mimetics may come to
the fore of clinical studies in the future (Table 1).

BH3 mimetics with standard-of-care therapies
Two methods of administering BH3 mimetics deserve

consideration: co-treatment and the one-two punch
method (Fig. 4). In the first, a BH3 mimetic is chosen
based on the known BCL-2 dependency of the cancer cells
to prohibit this defense against the chemotherapy of
choice. The second method involves inducing a targetable
change in the cancer cells. Treatment with the che-
motherapy is used to induce cell death signaling in the
cells, thereby making the cells more reliant on one or
more of the BCL-2 family proteins; the cells can then be
targeted with a selected BH3 mimetic. To be most effec-
tive, this may require several rounds of sequential treat-
ment with chemotherapy, alternating with a BH3
mimetic. In both cases, dependency can be measured
through ex vivo mimetic treatment or methods such as
BH3 profiling72. This approach may be particularly valu-
able in diseases such as AML where complex genetic
landscapes make it more challenging to predict individual
patient response to treatment.
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Although a vast array of highly specific BH3 mimetics
targeting different members of the BCL-2 family are
available to researchers at the bench, venetoclax is the
only one in common use clinically. This is due to the
adverse effects of targeting BCL-xL and MCL-1, namely
thrombocytopenia66,73 and potentially cardiac toxi-
city74,75, respectively. If BH3 mimetics targeting other
family members are to be used clinically in the future,
fine-tuning to improve tolerability will be required. Drug
dosages that induce cancer cell death must be lower than
those which damage healthy tissue; it is here that the one-
two punch method could be utilized, to heighten the
sensitivity of the cancer cells to the mimetic, and to allow
recovery of normal tissue in between rounds of mimetic
treatment.

Chronic myeloid leukemia
One of the biggest challenges in treating CP-CML is

TKI-resistance. Among other pathways, overexpression of
the BCL-2 prosurvival proteins and low levels of the
proapoptotic BIM protein have been linked to TKI-
resistance, leading to investigations into combining TKIs
with BH3 mimetics. The persistence of CML stem cells
also represents a barrier to the successful elimination of
the disease;28 these LSCs are resistant to TKI treatment,
with alternative methods for eradicating this population
therefore required76,77.

Pre-clinical combinations of TKIs with BH3 mimetics in CML
In terms of circumventing TKI-resistance via BCL-2

family imbalance mechanisms, co-treatment using TKI
with a BH3 mimetic has shown efficacy. ABT-737 re-
sensitized the CML cell line K562 to imatinib-induced cell
killing in cells with imatinib-resistance mediated by BIM
knockdown or BCL-2 overexpression32. This effect was
also observed in Bim−/−Bad−/− BCR-ABL-transformed
murine fetal liver-derived myeloid progenitor cells. These
findings demonstrate that imatinib-resistance resulting
from alterations in the BCL-2 family can be overcome
through co-treatment with a BH3 mimetic
Analysis of CP-CML East Asian patients found a BIM

deletion polymorphism, resulting in expression of BIM
lacking the BH3 domain, and was linked to TKI-resistance78.
Crucially, although TKI-resistance is usually associated with
BCR-ABL kinase domain mutations79, it was found that
patients with the polymorphism were less likely to have a
BCR-ABL kinase domain mutation, suggesting an almost
mutually exclusive mechanism of TKI-resistance and that
treating these patients with further TKIs may be of little
advantage. Co-treatment with ABT-737, however, restored
imatinib-induced cell death in BIM-mutated CML cell lines
and patient samples with the polymorphism.
More recently, BH3 mimetics in combination with TKIs

have been used to target the CML progenitor compart-
ment, with notable success in a number of CML disease
models35,80–82. These include reducing the colony-
forming capacity of CP-CML progenitors (CD34+ CP-
CML cells, venetoclax with imatinib)80, reducing leukemic
burden and long-term engraftment potential and
increasing overall survival in CML murine models (Bcr-
Abl1+ Tet-off Lin-Sca-1+cKit+ cells, venetoclax with
nilotinib)35, and increasing apoptosis in BP-CML pro-
genitors (CD34+CD38− BP-CML cells, venetoclax with
nilotinib)35, (CD34+ BP-CML cells, ABT-737 with ima-
tinib)81 and CP-CML progenitors (CD34+CD38- CP-
CML cells, ABT-737 with imatinib/nilotinib)82.
In summary, for TKI-resistance mediated by the proa-

poptotic or prosurvival proteins, BH3 mimetics appear
effective in redressing the balance, and re-sensitizing
CML cells to TKIs.

Table 1 Currently commercially available BH3 mimetics
and related compounds are known to have been
investigated in the context of hematological malignancies,
with those in current and/or previous clinical trials for
leukemias denoted with an asterisk (*).

Compound Target Published PubMed ID

ABT-737 BCL-2, BCL-xL,
BCL-w

2005 15902208

ABT-263 (navitoclax)* BCL-2, BCL-xL,
BCl-w

2008 18451170

ABT-199 (venetoclax)* BCL-2 2013 23291630

GX15-070 (obatoclax)* Pan-BCL-2 2005 16304385

WEHI-539 BCL-xL 2013 23603658

S1 Pan-BCL-2 2011 20503275

Apogossypolone (ApoG2) Pan-BCL-2 2008 18769131

BI97C1 (sabutoclax) BCL-2, BCL-xL,
A1, MCL-1

2010 20443627

TW-37 BCL-2, BCL-xL,
MCL-1

2006 16951185

BXI-61, BXI-72 BCL-xL 2013 23824742

JY-1-106 BCL-xL, MCL-1 2013 23680104

MIM1 MCL-1 2012 22999885

UMI-77 MCL1 2014 24019208

Marinopyrrole A
(maritoclax)

MCL-1 2012 22311987

A-1331852 and A1155463 BCL-xL 2015 25787766

A1210477 MCL-1 2015 25590800

S63845 MCL-1 2016 27760111

S55746 (BCL201)* BCL-2 2018 29732004

ML311 (EU-5346) MCL-1, A1 2012 23762927

HA14-1 BCL-2 2000 10860979

2-Methoxy antimycin A3 BCL-2, BCL-xL 2001 11175751

AMG176* MCL-1 2018 30254093

Gossypol (AT101)* Pan-BCL-2 2003 13678404

AZD5991* MCL-1 2018 30559424

S64315 (MIK665)* MCL-1 Unpublished N/A

A385358 BCL-xL 2006 16951189

VU0661013 MCL-1 2018 30185627

ML311 MCL-1 2013 23762927

AZD4320 BCL-2, BCL-xL 2019 29931583
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However, due to the effectiveness of TKIs alone, there is
very little clinical trial activity investigating combinations
of BH3 mimetics with TKIs. One phase 2 clinical trial is
currently recruiting, combining venetoclax with the TKI
dasatinib in early CP-CML, with the primary endpoint of
assessing the proportion of patients achieving major
molecular response after 12 months of therapy
(NCT02689440)83. To date, no results are available for
this trial. A second phase 2 study combining decitabine,
ponatinib and venetoclax in blast phase CML is also
underway, with a primary endpoint of overall response
rate (NCT04188405)84. To date, there are no clinical trials
in CML of MCL-1 or BCL-xL inhibitors.

Acute myeloid leukemia
The success story of venetoclax in AML is one that

cannot be understated, especially for the exceptionally
short timeframe from the first description of venetoclax in
201368 to full approval by the FDA for venetoclax plus
HMA or LDAC in older, unfit AML patients in 2020. This
speaks to the substantial and convincing work into the
BCL-2 family in AML, through pre-clinical studies of
venetoclax alone and in combination with other therapies,
to the large international trials that resulted in directly
improving patient care. Figure 5 illustrates this remark-
able path.
Along with mounting evidence for the role of BCL-2

in AML cell survival, early preclinical studies into
venetoclax as a monotherapy in AML cell lines, patient
samples, and a murine xenograft model demonstrated
on-target cell killing9, with particular sensitivity to
venetoclax seen in AML cells harboring the MLL fusion
genes and in acute promyelocytic leukemia (APL)

cells85. Interestingly, venetoclax is especially potent in
AML cells with isocitrate dehydrogenase 1 and 2
(IDH1/2) gene mutations; these proteins have been
implicated in increasing BCL-2 dependence86. In a
phase 2 clinical trial in relapsed/refractory AML, single-
agent venetoclax had an overall response rate of 19%,
while 33% (4 out of 12) of patients with IDH1/2
mutations demonstrated CR87,88.
There is also increasing use and success with the MCL-

1 inhibitors AMG-176, AMG-397, and S64315 in pre-
clinical models of AML, regardless of the presence of
specific genetic lesions59,89.
Despite the limited clinical success of venetoclax as a

monotherapy in AML, evidence supporting the combi-
nation of venetoclax with standard-of-care therapies in
AML is encouraging. For example, treatment of AML
patients with cytarabine and idarubicin has been shown to
increase BCL-2 expression in the CD34+ compartment46

and high de novo expression of BCL-2 is correlated with
poor response to treatment90,91, indicating scope for
venetoclax combinations in AML.

Azacitidine with BH3 mimetics in AML
Pre-clinical synergistic cytotoxic effects were shown by

several groups when combining ABT-737 or venetoclax
with the HMA azacitidine in AML cell lines and primary
patient samples in vitro92–94. RNA-interference screening
identified the proapoptotic BCL-2 proteins as potential
targets for enhancing the effects of azacitidine92, and later
it was shown that ABT-737 was a more potent agent than
venetoclax when used in combination with azacitidine,
due to the variable expression of the prosurvival BCL-2
proteins between patients93.

Fig. 4 Differing treatment methods deserve consideration for the application of BH3 mimetics in combination with standard therapies.
Proposed methods for combination treatments with BH3 mimetics include co-treatment with a chemotherapy or inducing an increase in
dependency on a BCL-2 prosurvival protein by treatment with chemotherapy which can then be targeted with a BH3 mimetic (one-two punch
method).
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These promising findings led to the development of
clinical trials investigating a BCL-2-targeting BH3
mimetic in combination with azacitidine in myeloid leu-
kemias. A phase 1b trial comparing the combination of
venetoclax with azacitidine or decitabine in AML patients
over 65 years of age with treatment-naïve AML, and who
were ineligible for intensive chemotherapy, demonstrated
an extremely promising 73% CR or CR with incomplete
count recovery (CRi) for the cohort receiving HMA and
400mg venetoclax95–97. These results led, in 2016, to the
FDA granting venetoclax Breakthrough Therapy Desig-
nation in combination with HMA in older patients with
treatment-naive AML.
The large VIALE-A phase 3 trial that followed com-

bined azacitidine with 400 mg venetoclax and compared
against an azacitidine plus placebo control group, enrol-
ling 443 untreated AML patients who were either over the
age of 75 or could not tolerate standard chemotherapy, or
both98. At an interim analysis, overall survival (OS) and

CR were increased from the control (OS: 9.6 months; CR:
28.3%) to the azacitidine plus venetoclax group (OS:
14.7 months; CR: 66.4%)99. By 2018, the FDA had granted
accelerated approval for venetoclax in combination with
HMA in patients who cannot receive induction che-
motherapy, and full approval granted for this indication
in 2020.

Cytarabine with BH3 mimetics in AML
Incorporation of cytarabine into the DNA of rapidly

dividing cells induces cell cycle arrest in the S phase
through inhibition of DNA synthesis100. Pre-clinical
inhibition of BCL-2 by antisense oligonucleotides, oba-
toclax or venetoclax in combination with cytarabine has
been shown to significantly enhance cell death in AML
cell lines and patient samples71,101,102. Cytarabine-
mediated reduction of MCL-1 expression may also con-
tribute to the synergistic action of BCL-2 and/or BCL-xL
inhibition in these cells71.

Fig. 5 The journey from development to clinical application of venetoclax is a triumph of rational cancer therapy design. Extensive
experimental data identifying the prosurvival BCL-2 family members as potential therapeutic targets, focused preclinical work combining BH3
mimetics with standard-of-care therapies in AML, and highly promising, international clinical trials have led to FDA approval of venetoclax with HMA
or LDAC in an impressively short timeframe.
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In phase 1b/2 clinical trials with patients over the age of
65, the combination of venetoclax with LDAC had a CR
rate of 54% and OS of 10.1 months, though these rates
were increased to 62% and 13.5 months respectively for
patients with no prior HMA treatment103,104.
As with the azacitidine plus venetoclax success, a large,

international phase 3 clinical trial, VIALE-C, was quick to
follow105. Enrolled participants were ineligible for inten-
sive chemotherapy and were treated either with veneto-
clax or placebo with LDAC. As of summer 2020, OS was
4.1 and 7.2 months and CR rates were 13% and 48% in the
control and venetoclax arms, respectively106. This trial
continues in follow-up, but in 2020 these promising initial
results led to FDA full approval of LDAC with venetoclax
in treatment-naive AML patients.

Further pre-clinical combinations of conventional therapy
with BH3 mimetics in AML
The success of venetoclax in AML in combination with

the standard-of-care therapies HMA and LDAC has led to
investigations into combining this BH3 mimetic with
other clinically available therapies. Here we will briefly
describe some of these pre-clinical investigations.

Midostaurin
The apoptotic response to the FLT3 kinase inhibitor

midostaurin in FLT3-ITD-positive primary AML samples
and cell lines is enhanced in the presence of venetoclax107.
FLT3-ITD upregulates MCL-1 through STAT5 activation
and the Akt pathway; therefore, inhibition of FLT3-ITD
and treatment with venetoclax concomitantly removes the
protection of both MCL-1 and BCL-2, rendering the cell
sensitive to apoptosis58,108.

Sorafenib
Sorafenib is a multi-kinase inhibitor targeting RAF,

PDGFRB, VEGFR2, FLT3, and KIT, and induces apoptosis
in AML cells via BIM and downregulation of MCL-
1109,110. Further sensitizing cells to BIM with BH3
mimetics potentiates the apoptotic effect of sorafenib, as
seen in combination with obatoclax and venetoclax111.

All-trans retinoic acid (ATRA)
MCL-1 overexpression impedes the ability of ATRA to

induce growth arrest and differentiation in APL and
combining ATRA with an MCL-1-interfering BH3
mimetic has been postulated to induce a greater cytotoxic
response than ATRA alone112. However, the combination
of JY-1-106 with ATRA was shown in one study to have
little effect on reducing cell proliferation in HL-60, an
APL cell line113.

Daunorubicin
Daunorubicin is a DNA-intercalating chemotherapeutic

able to induce sphingomyelin hydrolysis and ceramide
generation114. Overexpression of BCL-2 has been shown
to prevent daunorubicin-induced apoptosis in AML cell
lines through inhibition of X-linked inhibitor of apoptosis
protein (XIAP) and degradation of Akt115,116. Removal of
this BCL-2-mediated protection against daunorubicin has
been shown to be effective at synergistically inducing
apoptosis and growth inhibition in cell lines and in patient
samples, using either ABT-737 or venetoclax71,117.

Combining mimetics
The possibility of combining BH3 mimetics with dif-

ferent target specificities is also under scrutiny in both
CML and AML studies, although toxicity concerns have
potentially held back investigations of this nature70,118,119.
Combining BH3 mimetics has the advantage of disabling
the cell’s ability to ‘switch’ between prosurvival proteins, a
commonly reported resistance mechanism to BCL-2
inhibition, and thus overcoming the redundancy in the
BCL-2 family system70,120–122.

Further clinical trials with BH3 mimetics in AML
In contrast to the clinical success of venetoclax, clinical

trials of MCL-1 inhibitors have been more problematic.
Initially, there were difficulties in developing MCL-1
inhibitors as the binding site is shallower and less flexible
than that of BCL-2 or BCL-xL123. Recently, however, 4
agents (S64315124, AMG176125, AMG397126, and
AZD5991127) with activity against MCL-1 entered phase 1
clinical trials as single agents in AML (NCT02979366128,
NCT02675452129, NCT03465540130, NCT03218683131,
with a view to combining with venetoclax (NCT03672695
132, NCT03797261133, NCT03218683131) or azacitidine
(NCT02675452129), once dose-finding studies are com-
pleted. Importantly, CDK9 inhibitors (e.g., alvocidib,
dinaciclib, CYC065, and AZD4573134–137) indirectly
inhibit MCL-1. These agents have preclinical activity in
AML, and a number of early phase clinical trials are
ongoing. It will be important to determine if they have
efficacy with a favorable safety profile.
The BCL-2/BCL-xL inhibitor navitoclax has undergone

extensive clinical trial evaluation in solid tumor, lymphoid
malignancies and myeloproliferative neoplasms, but not
AML. Further development has been limited by the pre-
dicted and on-target side effect of thrombocytopenia67.

Measuring BCL-2 family dependence
Heterogenous responses to BH3 mimetics occurs in

patients, indicating a need for personalizing treatment
approaches when considering these drugs. BH3 profiling,
a technique developed to predict relative dependency on
BCL-2, MCL-1, and BCL-xL, has been shown to be useful
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in predicting responses of patients with AML after
treatment with venetoclax, as well as highlighting poten-
tial resistance mechanisms88.
The success of BH3 profiling in this regard has led to

the incorporation of this technique in several clinical trials
as a prognostic marker and determinant of response, most
notably for myelodysplastic syndrome and AML138–141,
but also in trials focusing on CLL142 and ALL143. Further,
combining BH3 profiling results with basal expression
data for the prosurvival BCL-2 proteins (termed ‘mito-
chondrial profiling’) has also been shown to be effective in
indicating BCL-2 dependence144. In the case of the clinical
trial NCT02520011145, demonstrable MCL-1 dependence
in AML, as determined by mitochondrial profiling, was
used to identify eligible patients, although this trial was
later terminated due to slow enrollment.
In addition, protein and gene expression profiles of the

target BCL-2 family members146,147 and expression of
BH3-only proteins such as BIM148 have been shown to
correlate with response to BH3 mimetics.
BH3 and mitochondrial profiling, along with gene and

protein expression data, represent high-throughput
methods with a fast turnaround time, often requiring
few cells and with limited ex vivo exposure of patient
samples. As these techniques are refined, there is a
trend in the literature towards assays with high speci-
ficity and sensitivity for identifying patients who may
benefit from BH3 mimetic treatment, warranting
investigations into the point-of-care applications of
these assays.

Future directions
With substantial progress being made in the field of

BCL-2-targeted therapies and our increasing under-
standing of dysregulation of this family in the myeloid
leukemias, great strides have been made in bringing these
areas together, as highlighted in this review.
A number of unanswered questions and areas for

further investigation remain to be addressed. With the
difficulties in targeting MCL-1 and BCL-xL, the iden-
tification of a therapeutic window is required, which
could be addressed through sequential or alternating
treatment strategies to allow time for healthy tissue
recovery, or through potent combinations that would
allow for a substantial reduction in the concentrations
of BH3 mimetic required. Further, measuring BCL-2
family dependency in a point-of-care setting to refine
treatment deserves additional scrutiny to determine
clinical utility.
As clinical trials advance and standard treatment regi-

mens incorporate BH3 mimetics to a greater degree, these
novel therapeutic combinations may represent a sig-
nificant step in the direction of targeted, personalized
therapy for patients with myeloid leukemias.
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