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Sulforaphene inhibits esophageal cancer
progression via suppressing SCD and CDH3
expression, and activating the GADD45B-MAP2K3-
p38-p53 feedback loop
Sichong Han1, Yandong Wang1, Jie Ma2, Zhe Wang1, Hui-Min David Wang3,4,5,6,7 and Qipeng Yuan1

Abstract
Esophageal cancer is one of the most common cancer with limited therapeutic strategies, thus it is important to
develop more effective strategies to against it. Sulforaphene (SFE), an isothiocyanate isolated from radish seeds, was
proved to inhibit esophageal cancer progression in the current study. Flow cytometric analysis showed SFE induced
cell apoptosis and cycle arrest in G2/M phase. Also, scrape motility and transwell assays presented SFE reduced
esophageal cancer cell metastasis. Microarray results showed the influence of SFE on esophageal cancer cells was
related with stearoyl-CoA desaturase (SCD), cadherin 3 (CDH3), mitogen-activated protein kinase kinase 3 (MAP2K3)
and growth arrest and DNA damage inducible beta (GADD45B). SCD and CDH3 could promote esophageal cancer
metastasis via activating the Wnt pathway, while the latter one was involved in a positive feedback loop, GADD45B-
MAP2K3-p38-p53, to suppress esophageal cancer growth. GADD45B was known to be the target gene of p53, and we
proved in this study, it could increase the phosphorylation level of MAP2K3 in esophageal cancer cells, activating p38
and p53 in turn. SFE treatment elevated MAP2K3 and GADD45B expression and further stimulated this feedback loop
to better exert antitumor effect. In summary, these results demonstrated that SFE had the potential for developing as a
chemotherapeutic agent because of its inhibitory effects on esophageal cancer metastasis and proliferation.

Introduction
Esophageal cancer is the top 10 global arising common

cancer and multiple studies suggest that excessive
smoking, hot tea and red meat consumption, poor oral
health, and low intake of fresh fruits and vegetables are
associated with a high risk of it. Because of esophageal
cancer mostly diagnosed in advanced late stages, the
general prognosis is unsatisfied with an average of more

than 200,000 deaths per year happening1. As current
treatment strategies are limited, it remains urgent to
develop more efficient therapies to control it.
With the development of research on cancer prevention

and treatment, accumulated epidemiological evidence
indicated that many natural active substances, such as
astaxanthin2 and resveratrol3 had inhibitory effects on
multiple cancers. Among them, isothiocyanates from
cruciferous vegetables have attracted more and more
attention. Sulforaphene (SFE), as an isothiocyanate iso-
lated from radish seeds4,5, was proved to possess strong
anticarcinogenic activities. It could induce apoptosis in
lung cancer cell lines by inhibiting the PI3K-Akt pathway6

and cause hepatocellular carcinoma cell death through
repressing keratin 8 and activating anoikis7. However, it is
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Fig. 1 SFE inhibits esophageal cancer proliferation in vivo and in vitro. a Mice body weight and tumor volume were measured every 3 days
after injection of SFE or saline. b Image of tumor lumps removed from nude mice (n= 6) injected saline or SFE (75 mg/kg) and the weight of
harvestes transplanted tumors. c Colony formation assay was carried out in SFE-treated EC109 and KYSE510 cells. d, e EC109 and KYSE510 cells were
treated with gradient concentration of SFE for 24 h and 48 h, respectively, followed by using flow cytometry to asses the apoptotic rates (d) and cell
cycle distribution (e). Data represent the mean ± s.d. of three independent experiments. The statistical significance was assessed by Student’s t-test.
**P < 0.01 and ***P < 0.005. ns, not significant.
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still not clear whether SFE also function as an anti-
neoplastic compound in esophageal cancer.
Stearoyl-CoA desaturase (SCD) has been shown to

promote lung cancer growth by increasing mono-
unsaturated fatty acids level8 and to activate the endo-
plasmic reticulum unfolded protein response9, which was
associated with cancer cell metastasis10. Cadherin 3
(CDH3), a classical cadherin of the cadherin superfamily,
has also been linked to many types of cancer, such as
colorectal, breast, and pancreatic cancers11–13. Mitogen-
activated protein kinase kinase 3 (MAP2K3) belongs to the
MAP kinase kinase family and participates in the MAP
kinase-mediated signaling cascade. It activates p38 to play
its role in hepatocellular carcinoma14, colorectal cancer15,
breast cancer16 and other tumors. Growth arrest and DNA
damage inducible beta (GADD45B), a member of the
GADD45 gene family which is induced by various geno-
toxic stresses17–19, is involved in DNA damage repair, cell
cycle arrest, and cell survival. It has a strong inhibitory
effect on proliferation and metastasis in multiple tumors
such as hepatocellular carcinoma20. According to micro-
array results, we confirmed these four genes were the
targets of SFE in esophageal cancer cells, and SFE could
inhibit esophageal cancer progression through suppressing
SCD and CDH3 expression, and activating the GADD45B-
MAP2K3-p38-p53 feedback loop.
In conclusion, our findings identify the key genes and

signaling pathways involved in SFE inhibiting metastasis
and proliferation of esophageal cancer. These results
reveal the mechanism of SFE against esophageal cancer,
and suggest that SFE has great potential to be applied as
an anticancer agent.

Results
SFE inhibits esophageal cancer cell proliferation and
metastasis
To evaluate the effect of SFE on esophageal cancer

in vivo, KYSE150 cells xenograft model was established.
There was no significant difference in mice body weight,
while the tumor volume and lumps weight in mice treated
with SFE were obviously smaller than that of the control
group (Fig. 1a, b). We then examined the role of SFE in
four esophageal cancer cell lines, finding a dose-
dependent inhibition of SFE on cell proliferation (Sup-
plementary Fig. S1A). EC109 and KYSE510 cells were
more sensitive to SFE and selected for the following
experiments. The anti-proliferative activity of SFE was
further determined using the colony formation assay,
which demonstrated a decreasing trend of relative colony
formation rates of cancer cells as the SFE concentration
increased gradually (Fig. 1c). We next examined whether
this suppressed effect was due to cell apoptosis and cell
cycle arrest. Fluorescence-activated cell sorting (FACS)
analysis showed a significantly higher level of apoptosis in

SFE-treated EC109 and KYSE510 cells than that in
DMSO-treated cells (Fig. 1d). Caspases are proteolytic
enzymes widely known for modulating cell death, and we
measured the activity of the most critical ones, finding
caspase-9 and caspase-3 activities were significantly ele-
vated, yet that of caspase-8 was almost unchanged (Sup-
plementary Fig. S1B). As the mitochondrial pathway and
the death receptor pathway are reported to mediate cas-
pases activation, and caspase-9 and caspase-8 belonged to
the two pathways respectively21,22, we predicted SFE
induced mitochondrial apoptosis in esophageal cancer
cells and then measured the mitochondrial membrane
potential, the decrease of which was a characteristic per-
formance in mitochondrial apoptosis. The result shown in
Supplementary Fig. S1C was consistent with our predic-
tion. Western blotting detection of mitochondrial
apoptosis-related protein levels further proved this pre-
diction (Supplementary Fig. S1D). Apart from cell apop-
tosis, SFE treatment could induced G2/M cell cycle arrest
in a dose-dependent and time-dependent manner (Fig. 2e
and Supplementary Fig. S1E). The change of sub-G0
phase shown in Fig. 2e also indirectly indicated SFE
induced esophageal cancer cell apoptosis dose-
dependently and time-dependently.
SFE treatment also suppressed esophageal cancer cell

metastasis (Fig. 2a, b). It is widely accepted that epithelial-
mesenchymal transition (EMT) has a major impact on
cancer metastasis, for the weak cell-cell interaction and
high migratory ability caused by EMT assisting cells to
isolate from primary lesions to blood vessels. So we
detected EMT markers expression, and found epithelial
cell-related protein levels were promoted by SFE treat-
ment while those of mesenchymal cell-related protein
were significantly downregulated (Fig. 2c).

SFE inhibits cell metastasis through inactivation of the Wnt
pathway
To identify the target genes and pathways related to SFE

regulating esophageal cancer peogression, EC109 and
KYSE510 cells treated with SFE or DMSO were analyzed
via microarrays. We selected the coincident mRNAs
between the top 30 upregulated and downregulated ones
in the two cell lines for further validation (Fig. 3a, upper),
and found that SCD and CDH3 mRNA levels decreased
most significantly in SFE-treated cells (Fig. 3a, lower).
Proving SFE could decrease SCD and CDH3 expression
in vitro and in vivo (Fig. 3b–d), we identified SCD and
CDH3 were the targets of SFE in esophageal cancer cells.
Next, we tested whether SCD and CDH3 played an

important role in esophageal cancer cells. siRNAs specific
for SCD and CDH3, as well as plasmids harboring full-
length human SCD and CDH3 sequences, were designed
and transfected into cancer cells (Supplementary Fig. S2A,
B). It was found that both SCD and CDH3 had no
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influence on cell proliferation (Supplementary Fig. S2C,
D) but could promote cell metastasis (Supplementary Fig.
S3A, B). Moreover, overexpressing SCD and CDH3 could
reverse the inhibition of SFE on cell metastatic capacity
(Fig. 4a–c), indicating SCD and CDH3 were involved in
SFE suppressing cell metastasis.

To reveal the mechanism by which SCD and CDH3
increased the metastatic ability of esophageal cancer cells,
we searched on the LinkedOmics database (http://www.
linkedomics.org/) and found both SCD and CDH3
expression were positively correlated with the Wnt
pathway widely known to be associated with cell
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Fig. 2 SFE suppresses esophageal cancer cell metastasis. a, b Scrape motility assay (a) and transwell assay (b) were performed in SFE-treated
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metastasis (Supplementary Fig. S4A, B)23–25, which was
verified by qRT-PCR and western blotting (Supplemen-
tary Fig. S5A, B). Then we verified SFE could inactivate

the Wnt pathway (Fig. 4d) while SCD and CDH3 over-
expression reactivated it in esophageal cancer cells
(Fig. 4e). In short, SFE inactivated the Wnt pathway by
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Fig. 4 SFE inactivates the Wnt pathway by downregulating SCD and CDH3 expression. a, b Scratch motility assay (a) and transwell assay (b) in
EC109 and KYSE510 cells. c Western blotting detection of EMT related gene expression in EC109 and KYSE510 cells. d qRT-PCR and western blotting
were used to show the mRNA and protein levels of the Wnt pathway-related genes in SFE-treated EC109 and KYSE510 cells. e Western blotting
detection of the Wnt pathway-related gene expression after overexpressing SCD and CDH3 in SFE-treated EC109 and KYSE510 cells. Original
magnification ×100. Scale bars= 100 μm. Data represent the mean ± s.d. of three independent experiments. The statistical significance was assessed
by Student’s t-test. *P < 0.05, **P < 0.01, and ***P < 0.005. ns, not significant.
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downregulating SCD and CDH3 expression to suppress
esophageal cancer cell metastasis.

SFE inhibits cell proliferation through a positive feedback
loop
We had proven that SFE could significantly inhibit

esophageal cancer cell progression, and SCD and CDH3
were involved in SFE inhibition of cell metastasis, yet the
mechanism by which SFE inhibited cell proliferation was
still unclear. So we compared the KEGG enrichment
analysis of microarray data and found the p53 pathway
was one of the top 30 pathways in both analyses (Sup-
plementary Fig. S6A). Interestingly, SFE improved p53
protein level rather than transcriptionally regulated p53
gene (Supplementary Fig. S6B), suggesting that there were
other effectors assisting SFE to regulate the p53 pathway.
p38 had been proved to phosphorylate p53 on Ser33 and
Ser46 as a prominent activator26–28, and we found
MAP2K3 and GADD45B, the activators of p3814–16,29,30,
were differentially expressed in the microarray of EC109
cells. After confirming SFE could upregulate MAP2K3
and GADD45B expression in vitro and in vivo (Fig. 5a–c),
and considering GADD45B was the target gene of p5331–33,
we guessed there was a specific cascade, MAP2K3/
GADD45B-p38-p53-GADD45B, in SFE-treated esopha-
geal cancer cells. Western blotting certified this axis made
sense (Supplementary Fig. S6C). After identifying 30 µM
was the optimal concertration of SB202190 (Supplemen-
tary Fig. S6D), a commonly used inhibitor of the p38
pathway34–36, we applied SB202190 and SFE successively
to process esophageal cancer cells and further verified
p38, p53 and GADD45B could be reactivated by SFE
(Supplementary Fig. S6E). Yet these results implied
GADD45B expression was not necessarily directly regu-
lated by SFE. siRNAs specific for MAP2K3 were designed
(Supplementary Fig. S7A, B) and transfected into SFE-
treated cancer cells to determine the relationship between
SFE and GADD45B. The results demonstrated that
MAP2K3 expression was lower than that of the negative
control group while GADD45B expression was still higher
(Fig. 5d), proving GADD45B was indeed the target of SFE.
Through transfection of siRNAs specific for MAP2K3 and
GADD45B, as well as plasmids harboring full-length
human MAP2K3 and GADD45B sequences (Supple-
mentary Fig. S7A, B), we found MAP2K3 and GADD45B
inhibited esophageal cancer cell proliferation (Supple-
mentary Fig. S7C, D). Furthermore, decreasing MAP2K3
and GADD45B expression could rescue the cell apoptosis
and G2/M arrest induced by SFE (Supplementary Fig.
S8A–D), indicating MAP2K3 and GADD45B were related
to SFE inhibiting cell proliferation.
It was reported that GADD45B could bind and relieve

the autoinhibition of MAP3K437–39, an activator of
MAP2K340, and the STRING database (http://string-db.

org/) also pointed out the interaction among GADD45B,
MAP3K4, and MAP2K3 (Supplementary Fig. S9, left).
Thus we speculated that there might be a positive feed-
back loop composed of GADD45B, MAP2K3, p38, and
p53 (Supplementary Fig. S9, right). To confirm this
speculation, We carried out co-IP assay and found more
MAP3K4 was immunoprecipitated when GADD45B was
overexpressed in EC109 cells (Fig. 6a). As we had proved
that GADD45B was a target of SFE, SFE treatment could
induce the same result shown in Fig. 6a. Based on the
conclusion that MAP3K4 could be bound to GADD45B
(Fig. 6a) and activated MAP2K3 subsequently (Fig. 6b),
and SFE activation of the p38 pathway was partially
abrogated by decreasing MAP2K3 and GADD45B
expression (Fig. 6c), we could summarize that the inhi-
bitory effect of SFE on cell proliferation was achieved by
the GADD45B-MAP2K3-p38-p53 positive feedback loop.
A schematic representation of the association between

SFE and esophageal cancer cells was illustrated in Fig. 7. It
described that SFE inactivated the Wnt pathway through
suppression of SCD and CDH3 expression to inhibit cell
metastasis, and by activating the GADD45B-MAP2K3-
p38-p53 positive feedback loop, SFE had an inhibitory
influence on cell proliferation.

Discussion
Esophageal cancer is one of the most common cancer

with extremely aggressiveness and poor survival rate.
Patients underwent therapeutic surgeries have a 5-year
survival rate of only 25%, even worse when they are not
suitable for therapeutic surgeries. More and more evi-
dence suggest that isothiocyanates from cruciferous
vegetables is associated with a decreased risk of various
cancers2–4. As one of the isothiocyanates, SFE has
attracted much attention for its potential role in pro-
tecting people from multiple diseases. This study revealed
the strong antitumor activity of SFE and its mechanism of
inhibiting esophageal cancer progression.
So far lots of reports have mentioned that the Wnt

pathway is associated with cell metastasis, repression of
which could prevent EMT and then inhibit metastasis23–25.
In this study, we showed that SFE could inactivate it
through inhibiting SCD and CDH3 expression to regulate
esophageal cancer cell metastasis. However, we are unable
to figure out the effectors which interact with SCD and
CDH3 directly to achieve their regulation of the Wnt
pathway, thus further studies are warranted to deeply
investigate the regulatory mechanism.
In addition, we found SFE could induce G2/M arrest

and cell apoptosis by up-regulating MAP2K3 and
GADD45B expression to activate p38 and p53 in order.
The role of the p38 pathway in cancer development seems
to be uncertain. Some studies demonstrated that p38
mediated cancer cell metastasis to promote
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tumorigenesis41 while some showed that the p38 pathway
acted as a tumor suppressor42. In our study, p38 played a
negative role in esophageal cancer cell proliferation. It was
reported that MAP3K4 could be bound to and activated

by GADD45B through disrupting its N-terminal non-
catalytic domain inhibition of the C-terminal kinase
domain37–39. We used co-IP assay to confirm this inter-
action for the first time in esophageal cancer cells and
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Fig. 5 MAP2K3 and GADD45B are the target genes of SFE in esophageal cancer cells. a The relative expression of MAP2K3 and GADD45B in
SFE-treated EC109 and KYSE510 cells was analyzed by qRT-PCR and western blotting, respectively. b Representative images of immunohistochemistry
showed the MAP2K3 and GADD45B protein levels in saline-treated or SFE-treated xenograft tumor lumps. c The relative expression of MAP2K3 and
GADD45B in vivo was analyzed by qRT-PCR and western blotting, respectively. d qRT-PCR and western blotting in EC109 and KYSE510 cells. Original
magnification ×400. Scale bars= 60 μm. si-MAP2K3, equal mixed si-MAP2K3-1 and si-MAP2K3-2. NC: negative control RNA duplex, the control of
siRNA. Data represent the mean ± s.d. of three independent experiments. The statistical significance was assessed by Student’s t-test. *P < 0.05 and
**P < 0.01.
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identified the GADD45B-MAP2K3-p38-p53 cascade was
highly associated with the inhibition of SFE on cell pro-
liferation. Studies had shown that apoptosis-related pro-
teins were involved in regulating cancer cell metastasis,

for example, pro-survival Bcl-2 over-expression was
associated with enhanced cell invasion and migration43,44

while pro-apoptotic Bad and Bax could significantly
suppress EMT45. As SFE induced mitochondrial apoptosis
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Fig. 6 A GADD45B-MAP2K3-p38-p53 positive feedback loop in SFE-treated esophageal cancer cells. a co-IP assay was carried out in EC109
cells with GADD45B overexpressing or SFE treatment (20 μM). b The phosphorylation level of MAP2K3 in EC109 and KYSE510 cells with GADD45B
overexpression or expression decreased was detected by western blotting. c After decreasing MAP2K3 and GADD45B expression in SFE-treated
EC109 and KYSE510 cells, the p38 pathway-related protein levels were detected by western blotting. si-MAP2K3, equal mixed si-MAP2K3-1 and si-
MAP2K3-2. si-GADD45B, equal mixed si-GADD45B-1 and si-GADD45B-2. NC: negative control RNA duplex, the control of siRNA. Data represent the
mean ± s.d. of three independent experiments. The statistical significance was assessed by Student’s t-test. *P < 0.05 and **P < 0.01. ns, not significant.
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through the activated p53, and several observations
implied p53 could inactivate the Wnt pathway in various
ways46–48, and we speculated that there was a connection
between cell apoptosis caused SFE-treatment and metas-
tasis, which involved p53 and the Wnt pathway in eso-
phageal cancer cells. In the coming future, we will verify
our guess that SFE-mediated cell metastasis may be
attributed to cell apoptosis.
In summary, our study emphasizes that SFE inhibits eso-

phageal cancer progression via suppressing SCD and CDH3
expression, and activating the GADD45B-MAP2K3-p38-p53
positive feedback loop. To the best of our knowledge, this is
the first study to reveal the anti-esophageal cancer mechanism
of SFE and characterize the specific roles of SCD, CDH3,
MAP2K3, and GADD45B in esophageal cancer cells. These
results provide new insights into the strong antineoplastic
activity of SFE and prove SFE a potential chemotherapeutic
agent to overcome esophageal cancer.

Materials and methods
Cell culture and chemicals
The human esophageal cancer EC109, KYSE510, KYSE150,

and TE-1 cell lines were obtained from the National Infra-
structure of Cell Line Resource, cultured in RPMI-1640
medium (Gibco, Grand Island, NY, USA) with 10% fetal
bovine serum (FBS) (Gibco), 100 units/mL penicillin (Invi-
trogen, Carlsbad, CA, USA) and 100mg/mL streptomycin
(Invitrogen). The cell lines were characterized by Genetic
Testing Biotechnology Corporation (Suzhou, China) using
short tandem repeat markers and they were not contaminated

by mycoplasma detected by Myco-Lumi Luminescent Myco-
plasma Detection Kit (Beyotime, Shanghai, China). SFE was
separated and purified from radish seeds (Beijing Tongrentang
Co., LTD, Beijing, China) as reported previously2,3, dissolved in
DMSO (Beijing Chemical Factory, Beijing, China). SB202190
was obtained from MedChem Express (Monmouth Junction,
NJ, USA).

Xenograft tumor assay
KYSE150 xenograft in 6-week-old female nude BALB/c

mice (Beijing Weitong Lihua Experimental Animal Technol-
ogy Co., Ltd) was established. 8.0×106 KYSE150 cells sus-
pended in RPMI-1640 medium were subcutaneously
inoculated into fossa axillaris of mice. When the tumor
volume reached 100–300mm3, mice with too large or too
small tumors were eliminated. Eventually, 12 mice bearing
similar volume of tumors were selected and randomly divided
into two groups and treated with 75mg/kg SFE or saline via
intraperitoneal injection once a day for 2 weeks. Body weight
and tumor volume were measured twice a week after the first
injection. At the end of treatment, all mice were sacrificed, and
tumors were imaged, weighed, and dissected prior to immu-
nohistochemical analysis (Supplementary Table S1). The
operators and investigators were blinded to the group alloca-
tion throughout the process. Immunoreactivity was detected
by a horseradish peroxidase kit (BioGenex, Fremont, CA,
USA). Then the slides were counterstained with hematoxylin,
dehydrated and fixed.
This assay was carried out in accordance with an

Institutional Animal Care and Use Committee (IACUC)
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Fig. 7 Schematic representation illustrates SFE modulation of esophageal cancer cell metastasis and proliferation. It illustrates the
mechanism by which SFE inhibits esophageal cancer metastasis and proliferation.
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of Institute of Biophysics, Chinese Academy of Sciences
and performed in accordance with the Guidelines for
Animal Experiments of IACUC according to the laws and
notifications of the People’s Republic of China.

Plasmid and small RNAs construction
Full-length homo sapiens SCD, CDH3, MAP2K3, and

GADD45B were cloned into the pcDNA3.0 (pC3.0)
plasmid, producing pC3.0-SCD, pC3.0-CDH3, pC3.0-
MAP2K3, and pC3.0-GADD45B plasmids. All of the
plasmids, as well as small interfering RNA (siRNA)
duplexes and negative control RNA duplex (NC) (Sup-
plementary Table S2), were purchased from Genepharma.

Cell viability assay
Cell viability was measured using the Cell Counting Kit-

8 (CCK-8) reagent (Beyotime) according to the manu-
facturer’s instructions. Cells seeded in 96-well plates were
treated with DMSO or gradient concentrations of SFE for
48 h. After CCK-8 solution was added to each well, cells
were incubated at 37 °C for 1 h. The absorbance was
measured by microplate reader (Bio-Rad, Hercules, CA,
USA) at 450 nm.

Colony formation assay
Cells were treated with gradient concentrations of SFE,

or transfected with plasmids or siRNAs specific for SCD,
CDH3, MAP2K3 and GADD45B. After 9 days, cells were
fixed with 3.7% formaldehyde and dyed with crystal violet.
The colony numbers were counted and analyzed by
ImageJ 2X software (Rawak Software, Inc. Germany).
DMSO treatment, pC3.0 plasmid and NC were used as
negative control, respectively.

Cell counting, apoptosis, and cell cycle analysis
For cell counting, cells were transfected with plasmids

or siRNAs. After 24 h, 48 h, and 72 h, they were harvested
and counted, respectively. Cells treated with SFE or
transfected with siRNAs in combination with SFE treat-
ment, were collected after 24 h and 48 h, followed by cell
apoptosis and cell cycle analysis. Cell apoptosis was
determined using the Dead Cell Apoptosis Kit with
Annexin V Alexa Fluor™ 488 & Propidium Iodide (Invi-
trogen) and cell cycle distribution was analyzed with Cell
Cycle Detection Kit (KeyGEN BioTECH, Jiangsu, China)
according to the manufacturer’s instructions. Both ana-
lyses were detected with MoFlo XDP flow cytometer
(Beckman Coulter, Miami, FL, USA) and data was pro-
cessed by Summit V5.2.1 (Beckman Coulter).

caspase-8/caspase-9/caspase-3 activity assay
Caspase activity was measured with Caspase-8 Activity

Assay Kit, Caspase-9 Activity Assay Kit, and Caspase-3

Activity Assay Kit (Beyotime) according to the manu-
facturer’s instruction. Cells were lysed after exposed to
gradient concentrations of SFE for 24 h and 48 h,
respectively. Substrates were diluted to 0, 10, 20, 50, 100,
and 200 µM as standards. Cell lysates were mixed with
10 µL of 2 mM substrate and reaction buffer to a total
volume of 100 µL, and incubated at 37 °C for 2 h. Absor-
bance of samples and standards was measured with
microplate reader (Bio-Rad) at 405 nm.

Measurement of mitochondrial membrane potential
This assay was accomplished with Mitochondrial

Membrane Potential Assay Kit with JC-1 (Beyotime). In
brief, cells were treated with gradient concentrations of
SFE for 24 h, or the same concentration of SFE for 6 h,
12 h and 24 h, respectively. 10 µM CCCP was added to a
well as a positive control and the plates were incubated for
20min. Then cells were treated with JC-1 staining solu-
tion and incubated for another 20min at 37 °C. Finally,
the plates were sealed and observed on a fluorescence
microscope (80i, Nikon). Images were analyzed by ImageJ
2X software.

Scrape motility and transwell assays
In scrape motility assay, cells were scratched with a

sterile 100 µl pipette tip and photographed at ×100 mag-
nification using BEION medical image software V4.20
(Beion, Shanghai, China) at different time points. In
transwell assay, the transwell chambers (Corning, NY,
USA) were covered with matrigel (BD Biosciences, San
Jose, CA, USA) overnight. Cells cultured in 1% FBS were
added to the chambers and medium with 10% FBS was
added to the lower wells. After 48 h incubation, the
number of cells invading through the matrigel was
counted in 6 randomly selected visual fields using a Leica
DM3000 microscope (Leica, Wetzlar, Germany). Data
were analyzed by ImageJ 2X software.

Microarray analysis
Total RNA was extracted from EC109 and KYSE510 cells

treated with SFE (20 µM) or DMSO as negative control.
Analyses were achieved with Affymetrix Human Tran-
scriptome Array 2.0 by Shanghai Biotechnology Corpora-
tion. Fold change > 2 and P-value < 0.05 were set as the
threshold for significantly differential expression. The heat
map drawn by ImageGP (www.ehbio.com/ImageGP/index.
php/Home/Index/index.html) showed the top 30 upregu-
lated and downregulated mRNAs in both cell lines which
were selected for further research. Related signaling path-
ways were selected based on Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis. The microarray
data are deposited in the NCBI Gene Expression Omnibus
(GEO) datasets under the accession number GSE150891.
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Quantitative reverse transcription PCR (qRT-PCR)
Total RNA was extracted from cells or grinded tumor

lumps treated with trizol reagent (Invitrogen). Each
sample was reverse transcribed into cDNA with the Pri-
meScript™RT Master Mix (TaKaRa). SYBR Green Real-
time PCR Master Mix (TOYOBO, Osaka, Japan) and ABI
7500 real-time PCR system (Applied Biosystems) were
used to measure the expression of target genes according
to the recommendations of the manufacturer. Gene
expression was calculated relative to β-actin, an internal
reference gene, using the 2−ΔΔct method. Primers were
shown in Supplementary Table S3.

Nuclear and cytoplasmic protein extraction
Extraction was performed using Nuclear and Cyto-

plasmic Protein Extraction Kit (Beyotime). Briefly, cells
were resuspended in cytoplasmic protein isolation solu-
tion A with phenylmethanesulfonyl fluoride (PMSF)
(Beyotime). Next, the homogenate was treated with
cytoplasmic protein isolation solution B and centrifuged
at 4 °C for 10min. The obtained supernatant was cyto-
plasmic protein fraction. Then the precipitate was resus-
pended in nuclear protein isolation solution with PMSF,
vortexed and homogenized on ice alternately for 30 min
and centrifuged at 4 °C for 10min. The supernatant was
nuclear protein fraction.

Western blotting assay
Protein was isolated from cells or grinded tumor lumps

using RIPA Lysis Buffer (Beyotime) with PMSF. After
measuring protein concentration by BCA Protrin Assay
Kit (Beyotime), all the samples were boiled with 4 x SDS-
PAGE Sample Loading Buffer (Beyotime) for 7 min at
100 °C. Then protein was separated by SDS-PAGE and
transferred to PVDF membranes (Millipore, Darmstadt,
Germany). Membranes were blocked by 5% milk and
immunoblotted with primary antibodies (Supplementary
information, Table S1). After incubation with HRP-
labeled goat anti-mouse IgG or goat anti-rabbit IgG
(Beyotime), the blots were detected using the Chemilu-
minescence Image Analysis System (Tanon, Shanghai,
China) with ECL Iuminescence reagent (Sangon Biotech,
Shanghai, China). β-actin and lamin B1 were used as
loading control.

Co-immunoprecipitation (co-IP) assay
Lysate of cells treated with SFE (20 µM) or over-

expressing of GADD45B was generated under the addi-
tion of Halt Protease Inhibitor Cocktail (Thermo Fisher
Scientific, Waltham, MA, USA) and Halt Phosphatase
Inhibitor Cocktail (Thermo Fisher Scientific). Protein
concentration was measured by the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific). A total of 2 550 µg/mL

protein was used for co-IP assay performed with the
Pierce Co-IP Kit (Thermo Fisher Scientific). 50 µg of the
GADD45B primary antibody was incubated with the
delivered resin and covalently coupled for 2 h. The
antibody-coupled resin was incubated with 250 µL cell
lysates overnight at 4 °C, and then the protein complexes
were eluted. Subsequent western blotting assay was per-
formed as described before.

Statistical analysis
Data were analyzed using the Prism software version 6

(GraphPad Software Inc., San Diego, CA, USA). Values
are represented as the mean ± SD and all experiments
were conducted three times. Significance was determined
using the two-tailed Student’s t-test. P < 0.05 was con-
sidered statistically significant.
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