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Abstract

Diffuse intrinsic pontine gliomas (DIPG) are the most aggressive brain tumors in children with 5-year survival rates of
only 2%. About 85% of all DIPG are characterized by a lysine-to-methionine substitution in histone 3, which leads to
global H3K27 hypomethylation accompanied by H3K27 hyperacetylation. Hyperacetylation in DIPG favors the action of
the Bromodomain and Extra-Terminal (BET) protein BRD4, and leads to the reprogramming of the enhancer landscape
contributing to the activation of DIPG super enhancer-driven oncogenes. The activity of the acetyltransferase CREB-
binding protein (CBP) is enhanced by BRD4 and associated with acetylation of nucleosomes at super enhancers (SE). In
addition, CBP contributes to transcriptional activation through its function as a scaffold and protein bridge.
Monotherapy with either a CBP (ICG-001) or BET inhibitor (JQ1) led to the reduction of tumor-related characteristics.
Interestingly, combined treatment induced strong cytotoxic effects in H3.3K27M-mutated DIPG cell lines. RNA
sequencing and chromatin immunoprecipitation revealed that these effects were caused by the inactivation of DIPG
SE-controlled tumor-related genes. However, single treatment with ICG-001 or JQ1, respectively, led to activation of a
subgroup of detrimental super enhancers. Combinatorial treatment reversed the inadvertent activation of these super
enhancers and rescued the effect of ICG-001 and JQ1 single treatment on enhancer-driven oncogenes in H3K27M-
mutated DIPG, but not in H3 wild-type pedHGG cells. In conclusion, combinatorial treatment with CBP and BET
inhibitors is highly efficient in H3K27M-mutant DIPG due to reversal of inadvertent activation of detrimental SE
programs in comparison with monotherapy.

Introduction

Diffuse intrinsic pontine gliomas (DIPG) are pediatric
high-grade gliomas (pedHGG) accounting for approxi-
mately 10-15% of pediatric central nervous system
tumors. Despite major improvements in treatment
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strategies, the prognosis for DIPG patients persists to be
dismal with 5-year survival rates of 2%. Approximately
85% of all DIPGs are characterized by a mutation in the
genes encoding either histone 3.3 or 3.1, resulting in a
lysine-to-methionine  substitution at position 27
(H3K27M)'. The H3K27M mutation is supposed to
contribute to this aggressive tumor biology, probably by
inducing a stem cell-like phenotype®.

The H3K27M mutation significantly impairs EZH2
methyltransferase function within the PRC2 complex, and
leads to dramatic chromatin changes characterized by a
global loss of trimethylation accompanied by hyper-
acetylation at lysine 27 of histone 3 (H3K27me3)>. Acet-
ylation at lysine 27 of histone 3 (H3K27ac) is mediated by
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the KAT3 family of acetyltransferases (HATs) including
CREB-binding protein (CBP). In addition to its function
as an acetyltransferase, CBP serves as a protein bridge that
connects other transcription factors to the transcription
machinery, and acts as scaffold protein during the for-
mation of multicomponent transcriptional regulatory
complexes®. CBP is necessary for the recruitment of
diverse transcription factors, including the Bromodomain
and Extra-Terminal (BET) protein BRD4, to genomic
regions displaying an enrichment of acetylated nucleo-
somes, thereby promoting transcription*®. Consequently,
BRD4 and CBP are promising pharmaceutical targets for
treatment of DIPG and pedHGG"®.

Notably, BET inhibition has been reported to attenuate
activation of oncogenic programs in DIPG driven by a
subtype of enhancers referred to as “super enhancers”
(SE)”. SE are clusters of enhancers that are highly enri-
ched for activation factors such as BRD4 and CBP, and are
known to drive oncogenic programs in various malig-
nancies®. In this study, we aim to evaluate the potential
utility of combinatorial BET and CBP inhibition in DIPG.
Furthermore, we characterized the effects of these inhi-
bitors on SE programs.

Materials and methods
Cell culture

DIPG and pedHGG cell lines were cultured as pre-
viously described’. SF188 cells were cultured in DMEM/
F12. To provide various cellular phenotypes that repre-
sent the heterogeneity of DIPG tumor samples and may
differentially respond to drug treatment, cells were grown
as gliomaspheres in tumor stem cell medium (TSM) or
under differentiation conditions in TSM supplemented
with 10% FCS, as recommended in ref. °. Unless stated
otherwise, cells were treated with 2.5 uM ICG-001 (Cal-
biochem, Darmstadt, Germany), 2.5uM PRI-724 (Sell-
eckchem, Munich, Germany), and 0.25puM (+)/-]JQ1
(Selleckchem) dissolved in DMSO.

Cell viability assays

MTT assays, to monitor x-fold cell growth over time,
were carried out as described previously®. BrDU assays
were conducted using the Cell Proliferation ELISA,
BrDU-Kit (Merck, Darmstadt, Germany) according to the
manufacturer’s instructions. Crystal violet staining was

performed as described previously'’.

Clonogenicity assays

For colony- and sphere-formation assays, 2500 cells/ml
were seeded in TSM with or without 10% FCS, respec-
tively, and treated with the indicated inhibitors. Glioma-
spheres were stained as previously described®, scanned,
and analyzed using the particle analyzer plugin from
ImageJ*".
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Migration and invasion assays

Migration and invasion assays had been performed and
analyzed as previously described®. Briefly, 5000 cells of 48-
h pretreated cells in FGF-depleted TSM-work medium
were used, and migration was analyzed after 24 h.

Quantitative real-time PCR (qPCR) and western blotting

RNA was extracted using the ReliaPrep’™ RNA Cell
Miniprep System (Promega, Walldorf, Germany)
according to the manufacturer’s instructions. cDNA
synthesis followed by qPCR with the PowerUp SYBR
Green Mastermix (Thermo Fisher Scientific, Osterode
am Harz, Germany) and western blotting was performed
as previously described®'?. Oligonucleotides and anti-
bodies can be found in the supplemental materials and
methods.

Chromatin immunoprecipitation followed by next-
generation sequencing

ChIP-seq was performed as previously described?.
Briefly, cells were cross-linked in 1% formaldehyde fol-
lowed by quenching with glycine (final concentration
125 mM), lysed, and sonicated for 30 cycles (30s on/30s
off) (Bioruptor pico, Diagenode, Liege, Belgium). Pre-
cleared chromatin was incubated with 1 pg of antibody
(for antibodies see supplemental materials and methods).
Protein A-sepharose beads were used to pull down the
antibody—chromatin complex, and samples were then de-
cross-linked, and DNA was extracted.

Library preparation and next-generation sequencing

Libraries from RNA were synthesized using the Tru-
Seq RNA Library Prep Kit v2 (Illumina, Munich, Ger-
many) according to the manufacturer’s instructions.
Microplex Library preparation kit v2 (Diagenode) was
used to prepare libraries from ChIP DNA. Pools of
libraries were sequenced in the Transcriptome and
Genome Analysis Laboratory (TAL) at the University
Medical Center  Goéttingen  using  HiSeq4000
(Illumina, 50SE).

Bioinformatic analysis

Primary ChIP and RNA-seq analysis were performed as
in ref. '®. SEs were called using the ROSE algorithm® by
sorting enhancers based on the H3K27ac signal and using
default settings with ignoring regions within 2.5kb of
annotated TSS. Associated genes were identified using
GREAT analysis, and enriched factors at SE regions were
identified using ReMAP'*'>, Gene set enrichment analy-
sis was performed using FPKM values of expressed genes
in various conditions with SE selected as a text entry-
based gene database. Clustering of gene expression pat-
terns of SE-associated genes was performed using short
time-series expression miner (STEM).
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Results

H3.3K27M-mutated DIPG cells display strong stem-like
potential and proliferation activity compared with H3WT-
pedHGG cells

To evaluate if H3K27M mutation leads to changes in
cell growth in vitro, we investigated the potential of H3
wild-type (H3WT) and H3K27M-mut pedHGG and
DIPG cell lines to form gliomaspheres. In accordance with
previous reports demonstrating that H3K27M mutation
confers a more stem cell-like phenotype?, we observed a
stronger potential of the H3.3K27M-mutant VUMC-
DIPG-A and HSJD-DIPG-007 cell lines to form glioma-
spheres under stem cell conditions. In contrast, spheroid
formation of the primary DIPG cell line VUMC-DIPG-10
and the pedHGG cell lines SF188 and HSJD-GBM-001
harboring H3WT was less efficient (Fig. 1la, c). Con-
sistently, we observed a strong expression of the stem cell
markers Oct4, Sox2, and Nestin in H3.3K27M-containing
DIPG cell lines. Conversely, expression was reduced or
absent in H3WT-pedHGG and H3WT-DIPG glioma-
sphere cell lines (Fig. 1g). The expression of Oct4 and
Sox2 was strongly reduced in all monolayer cells after
culture under differentiation conditions for 3 days, but
still slightly more expressed in H3.3K27M-mut-DIPG in
comparison with H3WT-pedHGG cells (Supplemental
Fig. 1).

Interestingly, H3.3K27M-mut-DIPG cells, grown either
as a differentiating monolayer or in stem cell-like glio-
maspheres, displayed a higher proliferation rate than
H3WT-pedHGG/DIPG cells (Fig. 1d, f and Supplemental
Fig. 2B). The higher proliferation potential of H3.3K27M-
mut-DIPG was not accompanied by a stronger suscept-
ibility to irradiation in comparison with primary H3WT-
pedHGG cells. On the contrary, sphere formation of
H3.3K27M-mut-DIPG cells was almost unaffected by
irradiation, indicating an additional mechanism of resis-
tance in H3.3K27M-mutant DIPG, which is missing in
H3WT-pedHGG/DIPG (Fig. 1b, c). These findings indi-
cate the importance of H3K27M mutation for tumor
phenotype and resistance to radiotherapy in H3.3K27M-
mutated DIPG.

Combinatorial inhibition of BET and CBP activity markedly
affects proliferation of H3.3K27M-mut-DIPG cells

Given the proposed importance of enhancer activation
in DIPG, we next tested the effects of inhibition of CBP or
BET proteins. Cell viability of H3.3K27M-mut-DIPG and
H3WT-pedHGG gliomaspheres and monolayer cells was
reduced upon CBP or BET protein inhibition in a dose-
dependent manner (Fig. 2a). Combined treatment with
the CBP inhibitor ICG-001 and the BET inhibitor JQ1 led
to the strongest effects in monolayer cells of H3.3K27M-
mut-DIPG and H3WT-pedHGG gliomaspheres. Notably,
additive effects of ICG-001 and JQ1 were observed in
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gliomaspheres, irrespective of the H3 mutation status
(Fig. 2b, c). Comparison of cell quantification by crystal
violet staining, proliferation by BrdU incorporation, and
MTT analyses confirmed the reduced cell viability fol-
lowing BET and CBP inhibition (Supplemental Fig. 2A, B).
Interestingly, JQ1 alone or in combination with ICG-001
induced apoptosis in H3WT-pedHGG cells as determined
by PARP cleavage. Notably, in spite of their similar
response to treatment, no apoptosis was observed in
H3.3K27M-mut-DIPG cells.

Combinatorial inhibition of CBP and BET proteins
attenuates tumor-associated characteristics of H3.3K27M-
mut-DIPG

Given their marked effect on proliferation, we further
investigated the function of ICG-001 and JQ1 in H3K27M-
mut-DIPG cells. BRD4 was shown to be essential for
maintaining stemness characteristics in gastric cancer and
embryonic stem cells'®”. Due to high spheroid-forming
potential in H3.3K27M-mut-DIPG, we tested if BET and
CBP inhibition exerts inhibitory effects on these tumor-
associated characteristics. Indeed, colony- and sphere-
formation assays demonstrated decreased self-renewal
potential and proliferation upon treatment with ICG-001
and/or JQ1 (Fig. 3a, b). DIPG are also characterized by
strong migration and invasion potential. Notably, inhibi-
tion of CBP decreased migration and invasion, while BET
inhibition affected both to an even greater extent (Fig. 3c,
d). Since radiotherapy is widely regarded as standard
treatment for DIPG, we further tested whether BET and
CBP inhibition may increase the radiosensitivity of DIPG
cells (Fig. 3e—g). As expected, irradiation was most effec-
tive in differentiated monolayer DIPG cells in comparison
with more slowly proliferating gliomaspheres (Fig. 3e, f
and Fig. 1c, d). This phenotype is further associated with
mechanisms that are protective against radiation-induced
DNA damage'®. Remarkably, combined therapy atte-
nuated cell growth to an extent comparable to radio-
therapy alone. Moreover, BET inhibition in DIPG
gliomaspheres led to a stronger susceptibility to irradiation
(Fig. 3f, g), which was supported by a strong reduction in
self-renewal (Fig. 3b). These observations further demon-
strate the positive effect of combinatorial inhibition of BET
and CBP for DIPG treatment, especially after a prolonged
incubation time of overall 5 days.

Identification of super enhancer programs in DIPG cells
SE have previously been implicated in tumor progression
and aggressiveness in DIPG’. However, little is known
about the SE landscape in H3.3K27M cells. Accordingly,
we performed ChIP-seq for H3K27ac and H3K27me3 in
DIPG-007 cells and identified SE regions (Fig. 4a). As
expected, these regions were highly occupied by H3K27ac
and were devoid of H3K27me3 (Fig. 4b). Comparison of
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Fig. 1 H3.3K27M-mut-DIPG cells show higher proliferation, stem cell-like characteristics, and resistance to irradiation in comparison with
H3WT-pedHGG cells. a Total number of H3WT and H3.3K27M-mut gliomaspheres after 5 days. b Quantification and (c) bright-field images of H3WT
and H3.3K27M-mut gliomasphere formation after irradiation with 8 Gy (after 24 h) after 5 days. Spheres where scored according to their size: large
(>0.1 mm) and small (<0.1 mm), # large and A small spheres, scale bar T mm. d, e Cell viability assessed by MTT assay, reflecting the cell growth over
time of primary H3.3K27M-mut-DIPG and H3WT-pedHGG/DIPG cells grown under stemness- (gliomaspheres) and differentiation- (monolayer)
conditions. f Protein expression of stemness-associated markers Oct4, Nestin, and Sox2 in cytoplasmatic and nuclear protein fractions of H3WT and
H3.3K27M gliomaspheres, assessed by western blotting, B-actin served as loading control.
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the identified SE with published data from DIPG-007 cells H3K27M in DIPG (Fig. 4c). Pathway enrichment analysis
with ectopic H3WT overexpression'® confirmed that the  for genes associated with these SE revealed a c-MYC sig-
identified SE regions are significantly dependent upon nature, which is in concordance with previous reports
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|
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highlighting the role of MYC in DIPG (Fig. 4d)*>*".
Additional enriched pathways included p73, which has
previously been associated with a more invasive signature
in glioblastomasm. To further characterize these SE, we
used ReMAP to identify transcription factors that may
potentially nucleate these regions (Fig. 4e). Interestingly,
MYC and MYC-associated factor X (MAX) were identified
among the most significantly enriched factors. Other
transcription factors included the AP1 factor JUND, which
has been found to mediate detrimental tumor biological
effects in glioblastomas®. In addition, Transcription Fac-
tor 7 Like 2 (TCF7L2), which directly interacts with CBP**,
was found to be highly enriched at these SE regions. In
general, identification of SE in the DIPG-007 can uncover
potential therapeutic targets and pathways that can be
leveraged to increase survival in DIPG patients.

Activation of a subset of SE by inhibition of CBP or BET can
be reversed by combined therapy

As BET inhibition was extensively documented to spe-
cifically downregulate SE programs in various cancer
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types including DIPG”®, we hypothesized that the com-
binatorial effects we observed with BET and CBP inhibi-
tion may be due to potentiated effects in silencing the SE
programs. Accordingly, we performed RNA- and ChIP-
seq analyses from cells treated with JQ1, ICG-001, or their
combination. As expected, GSEA analysis showed that
JQ1 treatment significantly downregulated the majority of
genes associated with SE (Fig. 5a). In contrast, analysis in
ICG-001-treated cells revealed that most genes associated
with SE in DIPG-007 cells were significantly upregulated
(Fig. 5b). Interestingly, combined therapy led to a less-
weighted pattern of regulation with half of the genes
observed to be upregulated compared with DMSO and
the other half downregulated (Fig. 5c). To further char-
acterize the altered patterns of regulation in combined
therapy, we clustered the gene expression changes in SE-
associated genes using the STEM algorithm and identified
four significant clusters (Fig. 5d). Cluster 1 included 58
genes that were specifically downregulated by BET inhi-
bition and unperturbed by CBP inhibition whether alone
or in combination. These genes included many that are
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analysis on genes associated with super enhancers showing programs activated in DIPG-007. e ReMAP analysis output identifying the factors that
most significantly nucleate super enhancer regions in DIPG-007.

known to be associated with a more aggressive and
invasive phenotype in various cancer types including
glioblastoma. Cluster 2 included 20 genes that are
downregulated in all conditions. Importantly, cluster 3
included 23 genes that were upregulated by JQ1 and
downregulated by ICG-001. Surprisingly, genes in this
cluster were associated with an unfavorable prognosis in
glioma, like Annexin A2 (ANXA2)*® and Ferritin Light
Chain (FTL)*. Interestingly, the fourth cluster comprised
11 genes whose upregulation by ICG-001 was prevented
by concomitant treatment with JQ1. This cluster also
included detrimental genes that are associated with poor
survival and invasion, such as Aldehyde Dehydrogenase 1
family member A3 (ALDHIA3)*"*%, Keratin 80
(KRT80)*, and Ras Responsive Element Binding Protein 1
(RREB1)*° (for summary see Fig. 5e). qPCR analyses of
H3K27M-DIPG-007 and H3WT-HSJD-GBM-001 cells
confirmed that these genes are upregulated by CBP
inhibition, but this activation is reversed by combinatorial
treatment due to high sensitivity to BET inhibition
(Fig. 6a—c). The same pattern of activation was observed
for the super enhancers associated with these genes as
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confirmed by ChIP-seq following inhibition of BET and
CBP monotherapy (Fig. 6d—f). These observations point
to the activation of detrimental super enhancers by single
treatment with either JQ1 or ICG-001, whereas combined
treatment reverses these inadvertent programs (for sum-
mary see Fig. 6g).

Discussion

DIPG are the most aggressive brain tumors among
pediatric high-grade glioma with median survival rates of
less than 1 year. Due to their diffuse growth and location,
DIPG are inoperable, and the current therapeutic gold
standard remains to be radiation therapy (RT) that con-
fers only a few months survival advantage. In 2012,
identification of frequently occurring H3K27M mutations
in up to 85% of all DIPG uncovered a shift of the epige-
netic balance reflected by global loss of H3K27me3'.
Interestingly, H3.3K27M in DIPG is not associated with
an unfavorable prognosis compared with DIPG carrying
H3WT, indicating that additional factors may contribute
to the poor prognosis in DIPG'. In contrast, survival
differences are observed between H3K27M mutant and
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ACSL5* GPR110 PDP1 CAvV1* ACAP3 ANK2
ADORA2B GPR37L1 PHLDA1 E2F2* ANXA2* BTC
\/\ AKAP12 HABP2 PHLDB2 EMP3* BAIAP2 FGF1*
AMPD3 HMGA2* PIK3IP1 GPR15 CcCcDC85B IRF2BPL
ICG-001 ANXA3 HS3ST1 PPP1R1C* GRAP EPPK1 KRT80
AREG* IRS1* PRF1* HEXIM2 FTL* MTHFD1L*
ASPRV1 KCNN4 RNF141 KITLG HIST1H2BC NFATC2*
CAV2 KLRK1 SCG2 KRR1 HMGA1* RREB1
CLCF1* KRT17 SH3PXD2A LAMA2 ID1* TTLL10
Ja1 CPNE7 KRT23 SOCS6 LGSN ID3* ZNF217
DSC2 LIF* TBL1XR1 MALL IFNE
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ZFP36
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E Cluster 1 ACSL5 induces glioma cell proliferation and tumorigenicity [53]
AREG associated with patient survival and astrocytoma's malignancy [54]
CLCF1 associated with poor patient survival [55]
ELFN2 oncogenic function [56]
—\/ EREG enhancess tumorigenicity by activation of ERK/MAPK [57]
FBLIM1 promotes migration and invasion by activation of STAT3 [58]
HMGA2 promotes stemness, invasion, poor survival and tumorigenicity [59]
IRS1 promotes radioresistence [60]
LIF contributes to tumor growth and progression [41]
PPP1R1C involved in disease progression and resistance to TMZ therapy [61]
PRF1 associated with poor patient survival [62]
ZBTB20 promotes proliferation, migration and invasion [63]
Cluster 2
CAV1 promotes tumorigenicity [64]
E2F2 regulates the tumor-initiating capability (proliferation) [65]
EMP3 associated with GBM patient survival [42]
\_ SSFA2 promotes proliferation of GBM [66]
TENC1 contributes to the maintenance of GBM structures [67]
Cluster 3 ANXA2 positive regulator of the mesenchymal subtype [26]
HMGA1 enhances stemness and temozolomide resistance [68]
»_/\ ID1 regulates GBM self-renewal and radio-resistance [69]
ID3 promotes formation of stem-like cells and tumor angiogenesis [70]
TUBB3 induces tumor progression and malignant transformation [71]
FTL induces proliferation [27]
Cluster 4
ALDH1A3 induces mesenchymal identity, predictive for survival of patients [25]
FGF1 sustains stem-cell characteristics [72]
MTHFD1L promotes invasion [73]
NFATC2 promotes invasion [74]

Fig. 5 CBP and BET inhibition downregulates super enhancer programs inadvertently activated by individual therapies. a-c GSEA plots
showing enrichment of super enhancer programs in control compared with treatment (a) of JQT1, (b) ICG-001, and (c) combinatorial treatment.

d Significant clusters showing different patterns of gene expression regulation upon treatment with DMSO, JQ1, ICG-001, or combined 1CG-001/JQ1
treatment. Asterisks mark genes that promote GBM characteristics. Bold and colored genes promote other tumor entities. @ Genes of four clusters
differentially regulated by ICG-001, JQ1, and combinatorial treatment and their function in GBM pathogenesis™ >,
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effect of combinatorial therapy.

Fig. 6 Inadvertently activated gene expression in DIPG-007 cells by single treatment with ICG-001 and JQ1 is reversed by combined

treatment due to inhibition of associated super enhancers. a-c gPCR validating the gene expression of (@) ALDH1A3, (b) KRT80, and (c) RREB1 in
DIPG-007 and GBM-001 cells after 48 h of treatment with ICG-001 and JQT1, as indicated. P < 0.05. d—f Occupancy profiles of H3K27ac at ALDH1A3,
KRT80, and RREB1 in cells treated with JQ1 or ICG-001 overlaid on DMSO-treated cells for comparison. Super enhancers in control cells are shown in
gray. g Graphical model depicting the mutual effect of JQ1 and ICG-001 on detrimental programs affecting each other and leading to an increased

H3 wild type in non-pontine diffuse midline gliomas®".
This suggests that H3.3K27M mutation might play a more
prominent role in non-pontine midline gliomas compared
with DIPG. However, H3K27M-mutated DIPG cell lines
appear to behave in general more aggressively in vitro
compared with H3WT-DIPG and pedHGG cells con-
firming that additional factors contribute to the poor
survival of DIPG patients. H3K27me3-deficient nucleo-
somes in H3K27M-mut-DIPG acquire H3K27ac, resulting
in the formation of H3K27M-K27ac heterotypic nucleo-
somes and global hyperacetylation of H3K27.

Hyperacetylation favors the function of transcriptionally
active, acetylation-dependent factors such as BET pro-
teins®. Previous investigations showed that BET inhibition
results in DIPG growth suppression in vitro and
in vivo””?*%, Consistently, we showed that H3.3K27M-
mut-DIPG cells are highly sensitive to JQ1. Moreover,
gene expression profiling in H3.3K27M-mut-DIPG cells
revealed that many oncogenic programs are attenuated by
JQ1 treatment. On the other hand, we hypothesized that
acetyltransferases such as CBP may play a significant role
in the context of DIPG malignancy as it was reported to
highly occupy super enhancers®®. Indeed, H3WT-
pedHGG as well as H3.3K27M-mut-DIPG cell growth
was sensitive to CBP inhibition. Interestingly, monolayer
cultures of H3.3K27M-mut-DIPG cells grown under dif-
ferentiation conditions showed a stronger response to
treatment with ICG-001. Notably, CBP was shown to be
crucial for the activation of genes that promote normal
differentiation of cortical precursors into neuronal,
astrocytic, and oligodendroglial precursors®. However,
the particular function of CBP in this context in DIPG
needs to be further examined.

Moreover, we further investigated the combined effect
of CBP and BET inhibition on H3.3K27M-mut-DIPG
cells. Surprisingly, we found that the combinatorial effect
of JQ1 and ICG-001 efficiently hinders proliferation,
sphere formation, and radioresistance with strongest
effects after combinatory treatment. This was not expec-
ted given the relatively moderate effects after mono-
therapy. Determination of the expression changes and
affected SE by single and combinatorial use of BET and
CBP inhibitors revealed partially antagonistic and detri-
mental effects caused by ICG-001 or JQ1, which were
eliminated after combination of these inhibitors. As
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expected, JQ1 treatment significantly downregulated most
genes associated with SE, which we identified in
H3.3K27M-mut-DIPG cells. In contrast, we observed that
monotherapy with ICG-001 upregulates the majority of
SE-associated genes. This effect is quite surprising, given
the reported enrichment of CBP as a feature for SE*°.
However, ICG-001 does not inhibit CBP catalytic activity,
but instead blocks interaction with other proteins such as
B-catenin and RXR*’. Consequently, it is possible that
inhibition of such interactions may facilitate others,
thereby promoting the nucleation of SE driven by factors
whose interaction with CBP is not inhibited by ICG-001.
Thus, it would be of interest to evaluate the effects of
newly developed CBP inhibitors that exhibit high selec-
tivity and target the catalytic region of CBP®®, In addition,
we uncovered that JQ1 and ICG-001 upregulate genes
that are associated with a more aggressive phenotype.
Importantly, this effect is attenuated when these agents
are used in combination.

A similar effect, where the expression of genes upre-
gulated by one agent is blocked by BET inhibition, has
already been reported for JQ1 treatment in conjunction
with histone deacetylase inhibitors”*’. In general, this
provides a rational basis for further investigation of
combined ICG-001/BET inhibitor treatment as a potential
effective therapeutic approach in DIPG.

Interestingly, we identified four different, significant
gene sets by clustering the observed gene expression
changes in SE-associated genes after single and combined
inhibition of CBP and BET proteins. Cluster 1 included
downregulated genes by JQ1 and in combination with
ICG-001. Cluster 2 included downregulated genes in all
conditions. Genes identified in these two clusters are
associated with a more aggressive and invasive phenotype
in various cancer types including glioblastoma. For
example, Leukemia inhibitory factor (LIF) in Cluster 1
that contributes to GBM tumor growth and progression™
or Epithelial membrane protein 3 (EMP3) in Cluster 2
whose high expression was shown to be associated with
worse GBM patient survival*'. Genes of Cluster 3 were
upregulated by JQ1 and downregulated by ICG-001, and
Cluster 4 included genes whose upregulation by ICG-001
was prevented by concomitant treatment with JQ1. Sur-
prisingly, genes in clusters 3 and 4 were associated with an
unfavorable prognosis in glioma. For example, Annexin
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A2 (ANXA2), Ferritin Light Chain (FTL), and Inhibitor of
DNA-binding-1 (ID1I) fulfill important tumor functions in
glioma and glioblastoma, such as the promotion of inva-
sion and tumor progression“, proliferation26, or che-
moresistance®®*>,  The fourth cluster included
detrimental genes such as ALDHIA3 promoting
stemness-like features in glioma, and is associated with
worse survival®”*®, Another example, KRT80, is over-
expressed in more aggressive glioma®® and, together with
CBP, contributes to therapy resistance*’, whereas RREBI
promotes an invasive phenotype30’48. In agreement with
the function of these genes, ICG-001 treatment of
H3.3K27M-mut-DIPG was not as efficient in inhibiting
migration and invasion as JQI treatment. Interestingly,
gene expression profiling upon BET and CBP inhibition
revealed that this effect appears to be particularly specific
to H3K27M-mut-DIPG cells.

Accordingly, we propose a model where JQ1 and ICG-
001 not only inactivate SE-related programs when given
alone, but also inadvertently activate detrimental pro-
grams that can be attenuated when both agents are used
in combination. However, further investigations are nee-
ded to elucidate if JQ1, ICG-001, or similar drugs with the
same function can pass the blood—brain barrier (BBB) and
inhibit DIPG growth in vivo. Recent studies have already
successfully proved the BBB permeability of JQ1***°.
Although ICG-001 has not been used to treat brain
malignancies so far, its derivative PRI-724 has already
been investigated in several clinical trials in other types of
cancer, including myeloid malignancies, pancreatic can-
cer, and advanced solid tumors (NCT01302405,
NCT01606579, and NCT01764477). Notably, PRI-724
leads to comparable effects to those seen with ICG-001 in
DIPG and pedHGG cells (Supplemental Fig. 3A, B). ICG-
001 had been additionally found to transiently increase
BBB permeability due to depression of endothelial
cell—cell interaction®”.

In conclusion, the combinatorial use of JQ1 and ICG-
001 showed a high efficacy in attenuating the growth and
self-renewing potential of DIPG cells. In addition, JQ1 and
ICG-001 exhibited an antiproliferative effect that is
comparable to radiation alone. We report that ICG-001
and JQ1 inadvertently activate a subgroup of detrimental
super enhancer programs that are reversed in
combination.
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