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Abstract
Spermatogenesis is the complex process of male germline development and requires coordinated interactions by
multiple gene products that undergo strict developmental regulations. Increasing evidence has suggested that a
number of long noncoding RNAs (lncRNAs) may function as important regulatory molecules in various physiological
and pathological processes by binding to specific proteins. Here, we identified a subset of QKI-5-binding lncRNAs in
the mouse testis through the integrated analyses of RNA immunoprecipitation (RIP)-microarray and biological
verification. Among the lncRNAs, we revealed that NONMMUT074098.2 (Lnc10), which was highly expressed in the
spermatogonia and spermatocytes of the testis, interacted with QKI-5. Furthermore, Lnc10 depletion promoted germ
cell apoptosis via the activation of p38 MAPK, whereas the simultaneous knockdown of QKI-5 could rescue the
apoptotic phenotype and the activation of p38 MAPK, which were induced by the loss of Lnc10. These data indicated
that the Lnc10-QKI-5 interaction was associated with the regulatory roles of QKI-5 and that the Lnc10-QKI-5 interaction
inhibited the regulation of QKI-5 on the downstream p38 MAPK signaling pathway. Additionally, we functionally
characterized the biological roles of Lnc10 and found that the knockdown of Lnc10 promoted the apoptosis of
spermatogenic cells in vivo; this suggested that Lnc10 had an important biological role in mouse spermatogenesis.
Thus, our study provides a potential strategy to investigate the biological significance of lncRNA-RBP interactions
during male germline development.

Introduction
Spermatogenesis refers to the complicated, yet highly

ordered, process of continuous production of haploid
spermatozoa from diploid spermatogonia, which proceeds
through mitosis, meiosis, and spermiogenesis inside the
testes1,2. This series of processes involves the coordinated
interactions of multiple gene products that undergo strict
developmental regulations in time and space3. Thus,
identifying key regulatory gene products will potentially

be useful in elucidating the molecular mechanism of
spermatogenesis.
Long noncoding RNAs (lncRNAs) are defined as tran-

scripts that are longer than 200 nucleotides (nt) and have
little protein-coding potential4. Accumulating evidence
shows that lncRNAs are emerging as important regulatory
gene products in various physiological and pathological
processes5–7. Over the past years, genome-wide tran-
scriptome analyses of lncRNA repertoires have demon-
strated that lncRNAs are highly organ-specific and
preferentially expressed in testes8. Furthermore, recent
studies have demonstrated the dynamic expression pat-
terns during male germline development, which suggests
potential functional roles for lncRNAs in spermatogen-
esis9–12. A testis-specific lncRNA, Tslrn1, is highly
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expressed during the pachytene stage, and Tslrn1 deletion
does not affect normal male fertility but causes a sig-
nificant reduction in spermatozoa number13. Additionally,
lncRNA033862 controls spermatogonial stem cell (SSC)
self-renewal and survival by regulating the expression of
GDNF receptor alpha1 (Gfrα1)14. Despite these promising
findings, most of the lncRNAs systematically identified in
the testis have not been functionally characterized in vivo
in a mouse model. One emerging theme is that lncRNAs
may exert their functional role by interacting with specific
target proteins and act as decoys, guides, or scaffolds15,16.
Recently, an integrated analysis of large-scale high-
throughput sequencing of immunoprecipitated RNAs
after cross-linking (CLIP-Seq) and RNA-Seq datasets
respectively identified 21,073 and 1662 lncRNA-RNA
binding protein (RBP) interactions in humans and mice17.
A schizophrenia-associated lncRNA, Gomafu, has been
found to be involved in the alternative splicing of schi-
zophrenia pathology-related genes through its direct
interaction with Quaking (QKI) and serine/arginine-rich
splicing factor 1 (SRSF1)18. Additionally, lnc-Lsm3b can
compete with viral RNA in the binding of retinoic acid-
inducible gene-I (RIG-I) monomers, which restricts the
conformational shift of the RIG-I protein and prevents
downstream signaling in the innate immune response19.
These findings indicate that the function of many
lncRNAs depends on the interaction with functional
proteins. However, the biological significance of the
interaction of lncRNA with RBP in spermatogenesis
remains to be further investigated.
QKI belongs to the signal transduction and activation of

RNA (STAR) family of the KH domain-containing RBP20.
The Qki gene produces three major isoforms designated
as QKI-5, QKI-6, and QKI-7, respectively21,22. QKI has
been found to be involved in the regulation of precursor
mRNA (pre-mRNA) splicing, mRNA stability, microRNA
(miRNA) biogenesis, and circular RNA (circRNA) for-
mation by selectively binding to QKI response element
(QRE) located in the target RNAs23–25. It is well estab-
lished that QKI is required for neural development and
myelination by regulating oligodendrocyte and Schwann
cell differentiation26. Since the ubiquitous expression
profile of QKI, the interactions of QKI with multiple RNA
species have been implicated in various physiological and
pathological processes outside the nervous system. QKI is
a critical regulator of the vascular smooth muscle cell
(VSMC) phenotype by binding to Myocd pre-mRNA and
regulating alternative splicing27. Recently, it has been
reported that QKI binds upstream and downstream of
circRNA-forming exons to promote circRNA formation
during the epithelial-to-mesenchymal transition (EMT)28.
Additionally, our previous study demonstrates the pivotal
role of QKI-5 in regulating primary miR-124-1 processing
via a distal RNA motif during erythropoiesis29. Despite

the functional diversity of specific interactions of QKI
with many RNA species, it is largely unknown if QKI can
bind to lncRNAs and its functional importance during
spermatogenesis.
In this study, we identified 5922 lncRNAs binding to

QKI-5 in the mouse testis using an RNA immunoprecipi-
tation (RIP)-microarray analysis. Among them, Lnc10
exhibited a similar high expression pattern with QKI-5 in
the testis. Furthermore, we unveiled that the binding of
Lnc10 to QKI-5 suppressed germ cell apoptosis via inhi-
biting the activation of the p38 MAPK signaling pathway.
Additionally, using a shRNA-mediated functional approach
of lncRNA in vivo, we demonstrated that Lnc10 played a
significant regulatory role in mouse spermatogenesis.

Results
QKI-5 is highly expressed in the mouse testis
The three major isoforms of Qki gene, QKI-5, QKI-6,

and QKI-7, are differed by ~30 amino acids in their C-
termini (Fig. 1a). To detect the expression pattern of the
three isoforms, we performed quantitative real-time PCR
(qRT-PCR) with cDNA derived from Germ cells, Sertoli
cells and Leydig cells30. Notably, we observed that QKI-5
was the most abundant isoform in Germ cells (Fig. 1b).
However, there was no significant difference among these
three isoforms in the Sertoli cells or Leydig cells. Next, we
employed qRT-PCR and Western blotting to measure the
tissue specificity of QKI-5. The results showed that QKI-5
was most highly expressed in the mouse testis (Fig. 1c, d).
Moreover, the expression level of QKI-5 in the mouse
testis gradually increased within 4 weeks after birth, and
the high expression levels were maintained in adulthood
(Fig. 1e). To further assess the expression pattern of QKI-
5 during mouse spermatogenesis, we isolated 6 distinct
germ cell types from the testes based on the STA-PUT
method31. A qRT-PCR analysis suggested that the
expression level of QKI-5 was comparable in early sper-
matogenesis (from priSG-A to plpSC) but was sig-
nificantly increased in pacSC and gradually reduced in the
rST and the elST (Fig. 1f). Furthermore, immunostaining
of QKI-5 revealed a major enrichment in the nuclei of
spermatocytes (Fig. 1g). Collectively, these data demon-
strate that QKI-5 is the major isoform and is highly
expressed in the mouse testis.

Knockdown of QKI-5 inhibits apoptosis in GC1-spg cells via
inhibiting the p38 MAPK signaling pathway
Given that QKI-5 was the major isoform in the testis

and a well-known RNA binding protein, we performed
RIP assay to functionally characterize QKI-5 in mouse
spermatogenesis. The RNA recovered from RIP was
subjected to an Agilent mouse lncRNA microarray to
detect the mRNAs and lncRNAs that bind to QKI-5 in the
testis. We initially identified 4088 mRNAs according to

Li et al. Cell Death and Disease          (2019) 10:699 Page 2 of 14

Official journal of the Cell Death Differentiation Association



microarray analysis (Supplemental Table S3). Afterward,
Kyoto encyclopedia of genes and genomes (KEGG)
pathway analysis and Gene Ontology (GO) term analysis
were applied to determine the roles of those mRNAs in
spermatogenesis. Notably, we observed that those mRNAs
were significantly enriched for the “MAPK signaling
pathway” and for the GO term “protein phosphorylation”
(Fig. 2a; Supplementary Fig. S1a). The conventional
MAPK family mainly comprises ERK1/2, JNK, and p38,
each of which is involved in a major signaling pathway. To
investigate the major pathway that is modulated by QKI-

5, we employed an siRNA-mediated knockdown of QKI-5
in GC1-spg cells and detected the total protein and the
phosphorylation levels of ERK1/2, JNK, and p38 MAPK
by Western blotting. The results revealed that QKI-5 was
knocked down by up to ~90% by siRNA-mediated silen-
cing. Compared with those in the control, the phos-
phorylation of p38 exhibited a significant decrease,
whereas the phosphorylation of ERK1/2 and JNK were
largely unaltered following QKI-5 knockdown (Fig. 2b,
Supplementary Fig. S1b). In contrast, the overexpression
of QKI5-Flag led to increased levels of p38
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Fig. 1 QKI-5 is highly expressed in the mouse testis. a Diagram of three major isoforms of the Qki gene, QKI-5, QKI-6, and QKI-7. b Relative
expression levels of Qki-5, Qki-6, and Qki-7 (from the cDNA of Germ cells, Sertoli cells and Leydig cells) as detected by qRT-PCR. The data represent the
mean ± SEM for three biological replicates that were normalized to the endogenous Actb control. c qRT-PCR analysis of the Qki-5mRNA expression in
adult normal mouse tissues. The data represent the mean ± SEM for three biological replicates that were normalized to the endogenous Gapdh
control. d Western blotting analysis of the QKI-5 protein expression in adult normal mouse tissues. GAPDH served as the loading control. e Western
blotting analysis of the QKI-5 protein expression in normal postnatal mouse testes at 1–8 weeks. TUBULIN served as the loading control; w, week. f
qRT-PCR analysis of the Qki-5 mRNA expression in the following 6 distinct germ cells: priSG-A, primitive type A spermatogonia; SG-B, type B
spermatogonia; plpSC, preleptotene spermatocyte; pacSC, pachytene spermatocyte; rST, round spermatid; elST, elongating spermatid. The data
represent the mean ± SEM for three biological replicates that were normalized to the endogenous Actb control. g Immunostaining of QKI-5 (red) in
adult normal mouse testis. The nuclei were stained with DAPI (blue). Scale bar, 50 μm
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phosphorylation (Fig. 2c, Supplementary Fig. S1c). These
results indicated that QKI-5 was mainly involved in the
p38 MAPK signaling pathway.

Previous reports have suggested a role for p38 MAPK
in the regulation of apoptosis. Given this model, we
examined the effect of QKI-5 knockdown on apoptosis

KEGG Pathway (Top 10) 

Adherens junction

MAPK signaling pathway
Jak-STAT signaling pathway

Insulin signaling pathway
Glutamatergic synapse

Osteoclast differentiation
mRNA surveillance pathway

Long-term depression
Glycerophospholipid metabolism

Chronic myeloid leukemia

0 10 155 20 25
Transcriptional domain coverage(%)

QKI-5

JNK

Phospho-JNK

ERK1/2

Phospho-ERK1/2

Phospho-P38

P38

TUBULIN

QKI-5
P38

Phospho-P38

TUBULIN

siN
C

siQ
KI

FLA
G-N

C

FLA
G-Q

KI-5
45 kDa

65 kDa

65 kDa

65 kDa

45 kDa

45 kDa

45 kDa

45 kDa

45 kDa

45 kDa

45 kDa

65 kDa

QKI-5-Flag

Etoposide: 0 hr 3 hr 6 hr 9 hr 12 hr

si
N

C
si

Q
K

I
P

I

Annexin V

P
er

ce
nt

ag
e 

of
 A

po
pt

os
is

 (%
)

0 hr 3 hr 6 hr 9 hr 12 hr

siNC
siQKI

10

0

20

30

40

50

*

**

**
QKI-5

Phospho-P38

TUBULIN

P38

Cleaved PARP

Cleaved caspased-3

Etoposide:   +     +    +    +     +      +    +    +     +      +
Time (hr):   0     3    6    9    12      0    3    6     9     12

siNC siQKI

45 kDa

15 kDa
100 kDa

45 kDa

45 kDa

65 kDa

a b c

d

e f

Fig. 2 Knockdown of QKI-5 inhibits apoptosis in GC1-spg cells via inhibiting the p38 MAPK signaling pathway. a KEGG pathway enrichment
analysis of the QKI-5-binding mRNAs as determined by an RIP-microarray in adult mouse testis. b Western blotting analysis of the phosphorylation
and total levels of ERK1/2, JNK, and p38 MAPK in siNC and siQKI GC1-spg cells. TUBULIN served as the loading control. c Western blotting analysis of
the phosphorylation and total levels of p38 MAPK in the normal control and QKI-5 overexpression GC1-spg cells. TUBULIN served as the loading
control. d Representative flow cytometry plots for the apoptosis assays in siNC and siQKI GC1-spg cells following treatment with etoposide (100 μM)
for the indicated time. e Statistical plots of the percentage of apoptotic cells as determined by flow cytometry in siNC and siQKI GC1-spg cells
following treatment with etoposide (100 μM) for the indicated time. The data represent the mean ± SEM of three biological replicates. (*) p < 0.05, (**)
p < 0.01, t-test. f Western blotting analysis of apoptosis-related proteins, cleaved caspase-3 and cleaved PARP, and p38 MAPK in siNC and siQKI GC1-
spg cells following treatment with etoposide (100 μM) for the indicated time. TUBULIN served as the loading control
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in GC1-spg cells after treatment with etoposide using
fluorescence-activated cell sorter (FACS) analysis.
Notably, we found that the percentages of total apop-
totic cells with QKI-5 knockdown (siQKI) and the
normal control (siNC) cells both increased in response
to treatment with etoposide in a time-dependent fash-
ion, whereas the knockdown of QKI-5 led to a sig-
nificant decrease of ~5–9% during 6–12 h compared
with the normal control (Fig. 2d, e). Furthermore,
Western blotting showed that QKI-5 knockdown
diminished the expression level of cleaved caspase-3,
cleaved PARP and p38 phosphorylation for the specified
periods of time (Fig. 2f). Taken together, these obser-
vations suggest that the knockdown of QKI-5 inhibits
cell apoptosis via inhibiting the p38 MAPK signaling
pathway.

Identification of lncRNAs binding to QKI-5 in the mouse
testis
We further investigated whether lncRNAs could bind to

QKI-5 in the mouse testis. Notably, our microarray ana-
lysis identified 5922 lncRNAs that bind to QKI-5 (Sup-
plemental Table S4). The lncRNAs binding to QKI-5 were
ranked and shown in Fig. 3a (including the top 20
lncRNAs in the NONCODE database). QKI-5 has been
reported to interact with target RNAs via a specific QRE.
Considering this notion, we reasoned that the lncRNAs
that bind to QKI-5 may contain the QREs as well. We
screened the QREs of the top 20 lncRNA candidates by
the database of RNA-binding protein specificities
(RBPDB, http://rbpdb.ccbr.utoronto.ca). A preliminary
QRE screening indicated that 13 lncRNA candidates
(65%) contained one or more of the QREs (Fig. 3b). RIP-
PCR was performed to further confirm the physical
interactions between 13 lncRNA candidates and QKI-5
(Fig. 3c, Supplemental Fig. S2a).
To systematically prioritize the 13 lncRNA candidates

for a functional follow-up, we employed RT-PCR to
detect the expression profiles of the 13 lncRNA candi-
dates. Of note, we observed that the lncRNA NON-
MMUT074098.2 (original ID in NONCODE v5.0),
named Lnc10 (mentioned below), was mainly expressed
in the mouse testis and exhibited a similar high
expression pattern with QKI-5 (Fig. 3d). Accumulating
evidence suggests that lncRNAs are more likely biolo-
gically significant if they are expressed in a tissue-
specific pattern. Given this notion, we reasoned that
Lnc10 binding to QKI-5 may play a potential significant
role during mouse spermatogenesis. Collectively, these
results demonstrate that lncRNAs, including QRE,
could interact with QKI-5 in the mouse testis, and Lnc10
binding to QKI-5 emerged as the most promising
lncRNA candidate for a subsequent functional investi-
gation of mouse spermatogenesis.

Depletion of Lnc10 promotes apoptosis in GC1-spg cells
via activating the p38 MAPK signaling pathway
To further confirm the interaction between QKI-5 and

Lnc10, we performed RNA pull-down assay in GC1-spg
cells by antisense probes that were designed against
endogenous Lnc10. A qRT-PCR analysis of the RNA
species captured from the RNA pull-down assay revealed
a significant enrichment of Lnc10 (Fig. 4a). The Western
blotting analysis showed that QKI-5 proteins could be
pulled down by the antisense probes but not by the sense
probes (Fig. 4b). Additionally, we detected the interaction
between QKI-5 and Lnc10 from purified fractions of germ
cells (SG-B and pacSC) as well (Supplemental Fig. S3a, b).
Lnc10 resides on chromosome X in mice and is composed
of five exons; it spans nearly 20.6 kilobases (kb) according
to an analysis with the UCSC Genome Browser (Fig. 4c).
The Coding Potential Calculator 2.0 (CPC 2.0) compu-
tational algorithm predicted that Lnc10 has a low coding
potential and was labeled as a noncoding RNA, similar to
HOTAIR, which is a well-defined lncRNA (Fig. 4c). We
then examined the subcellular localization of Lnc10 by
cell fractionation followed by qRT-PCR. The results
suggest that Lnc10 is mainly localized in the nucleus, and
this is consistent with the localization of the QKI-5 pro-
tein (Fig. 4d; Supplemental Fig. S2b).
To assess the expression pattern of Lnc10 during mouse

spermatogenesis, we initially performed qRT-PCR with
cDNA derived from postnatal mouse testes. The results
revealed that Lnc10 was stage-specific; a higher transcript
level was detected in postnatal day 10 (P10) mouse testes,
whereas both newborn and adult mouse testes expressed
low levels (Fig. 4e). We then investigated the cell type
specificity of Lnc10 in Germ cells, Sertoli cells and Leydig
cells. A qRT-PCR analysis suggested that Lnc10 was
mainly expressed in germ cells, a similar expression pat-
tern to that of QKI-5 (Fig. 4f). We further detected the
expression dynamics of Lnc10 in distinct germ cell and
the results showed that the expression of Lnc10 was
comparable in priSG-A and SG-B. Then, a gradual decline
was observed in plpSC and pacSC, and the level drama-
tically reduced in rST and elST (Fig. 4g). These results
indicate that Lnc10 is stage-specific in mouse spermato-
genesis and that Lnc10 is predominantly expressed in
spermatogonia and spermatocytes.
Taking into account the regulatory function of QKI-5

on the p38 MAPK signaling pathway and apoptosis, we
further determined whether Lnc10 binding to QKI-5 was
likewise involved in the p38 MAPK signaling pathway and
apoptosis. We knocked down Lnc10 via the LncRNA
Smart Silencer composed of 3 antisense oligonucleotides
(ASO) in GC1-spg cells and examined the effect of
knockdown of Lnc10 on the regulation of the p38 MAPK
and apoptosis. Notably, we observed a dramatic ~70%
reduction in the expression of Lnc10 by ASO-mediated
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silencing (Fig. 4h). In addition, the percentage of total
apoptotic cells with Lnc10 knockdown (ASO-Lnc10) and
the normal control (ASO-NC) both increased after
treatment with etoposide in a time-dependent fashion,
while the knockdown of Lnc10 caused a substantial
increase of ~8.3–17% over 3–9 h compared with the
normal control (Fig. 4i, j). Furthermore, Western blot-
ting showed that the Lnc10 knockdown activated the
p38 MAPK and promoted the expression of cleaved
caspase-3 and cleaved PARP after treatment with

etoposide (Fig. 4k). To prove the specificity of p38
MAPK activation in the induction of apoptosis in this
system, we treated ASO-Lnc10 cells with SB203580, a
p38 MAPK inhibitor, and then detected cleaved caspase-
3, cleaved PARP and the phosphorylation levels of p38
by Western blotting. We observed that such treatment
could at least in part revert the effect of ASO-Lnc10 (Fig.
4k). These data demonstrate that the knockdown of
Lnc10 promotes apoptosis in GC1-spg cells via activat-
ing the p38 MAPK signaling pathway.
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Lnc10 inhibits the QKI-5 downstream p38 MAPK signaling
pathway by binding to QKI-5 in GC1-spg cells
To further investigate whether there was a special

association of mutual regulation between Lnc10 and the
QKI-5 protein, we initially performed a knockdown or
overexpression of QKI-5 in GC1-spg cells. As a result, we
found no significant differences in Lnc10 levels after the
knockdown or overexpression of QKI-5 (Fig. 5a, b). Pre-
vious reports indicated that QKI was involved in the
stability of some targeting mRNAs. Given this notion, we
employed qRT-PCR to detect the stability of Lnc10
transcripts after the knockdown of QKI-5 following by
treatment with actinomycin D to block new RNA synth-
esis. However, we observed that the knockdown of QKI-5
had no significant effects on the half-time of Lnc10 (Fig.
5c). Additionally, Western blotting showed that the
knockdown of Lnc10 following treatment with Cyclo-
heximide (CHX) to block protein translation had no
influence on the expression level of QKI-5 (Fig. 5d). These
results implied that Lnc10 represented a “bona fide”
binding target for QKI-5 protein.
LncRNAs have been found to exert their regulatory

roles by acting competitively with functional proteins.
Considering this action, we hypothesized that Lnc10 may
modulate the p38 MAPK signaling pathway via compe-
titively binding to QKI-5. To test this possibility, we
examined the effect of Lnc10 overexpression on the
activation of p38 MAPK and apoptosis (Fig. 5e). Western
blotting showed that the expression level of cleaved
caspase-3 and p38 phosphorylation in Lnc10-over-
expressing cells (pcDNA3.1-Lnc10) were significantly
lower than those in the normal control (pcDNA3.1)
during 3–9 h; this indicates that the overexpression of
Lnc10 inhibited the p38 MAPK and apoptosis, which was
consistent with the loss of function roles of QKI-5 (Fig.
5f). We next determined whether the simultaneous
knockdown of QKI-5 was able to rescue the apoptotic
phenotype and activation of p38 MAPK induced by the

loss of Lnc10. Notably, we observed that the expression
level of cleaved caspase-3 and p38 phosphorylation in
both Lnc10 and QKI-5 knockdown cells was substantially
lower than those in the normal control; this suggests that
the simultaneous knockdown of QKI-5 at least in part
revert the effect of ASO-Lnc10 (Fig. 5g). Taken together,
these findings demonstrate that Lnc10 inhibits the p38
MAPK signaling pathway and apoptosis via binding to
QKI-5.

Depletion of Lnc10 causes spermatogenesis abnormalities
by promoting germ cell apoptosis in vivo
To further functionally characterize Lnc10 in mouse

spermatogenesis in vivo, we performed a small hairpin
RNA (shRNA)-mediated knockdown by adeno-associated
virus (AAV9) via a seminiferous tubule microinjection. A
qRT-PCR analysis showed that the expression of Lnc10
was reduced by at least 50% at 4 weeks after the micro-
injection with AAV9-shLnc10-RFP (Fig. 6a). In addition,
we found that the average weight of Lnc10-depleted testes
was ~20% lower than that of shCtrl testes (Fig. 6b, c). To
further characterize the phenotypes of Lnc10-depleted
testes, we next examined the testis tissue morphology
using H&E stained sections. The results showed that the
Lnc10-depleted testes exhibited severe morphological
defects and a dramatic cell loss in the seminiferous
tubules (Fig. 6d). Notably, the thickness of the semi-
niferous epithelium was substantially reduced by ~50%,
but there was no significant change in the diameter of the
seminiferous tubules compared with that of the shCtrl
testis (Fig. 6e). Immunostaining for PNA, an acrosomal
marker, also revealed a deficiency of germ cells in Lnc10-
depleted testis (Fig. 6f).
As Sertoli cells were also infected by AAV9, we exam-

ined the immunostaining for Wilms Tumor 1 (WT1), a
Sertoli cell marker, but detected no significant differences
in terms of the localization and number of WT1+ cells
between the shCtrl and Lnc10-depleted testes; this

(see figure on previous page)
Fig. 4 Depletion of Lnc10 promotes apoptosis in GC1-spg cells via activating the p38 MAPK signaling pathway. a qRT-PCR analysis of the
enrichment efficiency of a biotinylated antisense probe specifically targeted to Lnc10. Actb mRNA served as the negative control. The data represent
the mean ± SEM. b RNA pull-down analysis of the binding of Lnc10 to QKI-5 in GC1-spg cells as detected by a Western blotting assay. c Schematic
annotation of the Lnc10 genomic locus on chromosome X via the UCSC Genome Browser. The blue rectangles represent the exons. The coding
potential of Lnc10 was predicted by the Coding Potential Calculator (CPC2.0) program. The lncRNA HOTAIR was used as a noncoding RNA control.
QKI-5 mRNA was used as a coding RNA control. d qRT-PCR analysis of the subcellular localization of Lnc10 by the fractionation of GC1-spg cells. U6
RNA served as a positive control for nuclear gene expression. Actb mRNA served as a positive control for cytoplasmic gene expression. e qRT-PCR
analysis of the Lnc10 expression in normal postnatal mouse testis for the indicated time. The data represent the mean ± SEM. f qRT-PCR analysis of
the Lnc10 expression in cDNA from germ cells, Sertoli cells and Leydig cells. The data represent the mean ± SEM. g qRT-PCR analysis of the Lnc10
expression in 6 distinct germ cells. The data represent the mean ± SEM. h qRT-PCR analysis of Lnc10 knockdown mediated by ASO targeted to Lnc10.
The data represent the mean ± SEM. i Representative flow cytometry plots of apoptosis assays in ASO-NC and ASO-Lnc10 GC1-spg cells treated with
etoposide (100 μM) for the indicated time. j Statistical plots of the percentage of apoptotic cells determined by flow cytometry in ASO-NC and ASO-
Lnc10 GC1-spg cells treated with etoposide (100 μM) for the indicated time. The data represent the mean ± SEM. (*) p < 0.05, t-test. kWestern blotting
analysis of apoptosis-related proteins, cleaved caspase-3 and cleaved PARP, and p38 MAPK in ASO-NC and ASO-Lnc10 GC1-spg cells treated with
etoposide (100 μM) or SB203580 (10 μM) for the indicated time. TUBULIN served as the loading control
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suggests that AAV9 infection had no influence on the
maintenance of Sertoli cells (Fig. 6g). Given the functional
roles of Lnc10 in apoptosis in vitro, a TUNEL assay was
then carried out to evaluate the effect of Lnc10 depletion
on germ cell apoptosis in vivo. Notably, we observed a
significant increase in the number of apoptotic germ cells
in Lnc10-depleted testes. Based on the morphology and
position in the seminiferous epithelium, the TUNEL-
positive cells were mainly in the spermatogonia and
spermatocytes, but few Sertoli cells were TUNEL-positive
(Fig. 6h). Collectively, these in vivo functional data reveal
that Lnc10 depletion leads to spermatogenesis defects,
which are at least partially attributed to the promotion of
apoptosis in germ cells.

Discussion
Accumulating evidence has documented that QKI,

which is extremely conserved from Drosophila to mam-
mals, has diverse roles during physiological and patholo-
gical processes32. However, the precise regulatory roles of
QKI in male germline development remain largely elusive.
It has been reported that QKI-5 can selectively interact
with multiple RNA species, such as pre-mRNA, micro-
RNA, and circRNA, by binding to the QREs located in the
target RNAs. Given this model, it is of great interest for us
to ask whether there is a class of lncRNAs, including QRE,
which can physiologically interact with QKI-5 and plays
an important role in spermatogenesis. Through the inte-
grated analysis of RIP-microarray and biological
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verification, we found that some lncRNAs contained one
or more QREs, which were located in their primary RNA
sequences. There were also some lncRNAs without a
QRE, and these lncRNAs may not directly bind to QKI-5,
but indirectly. To some extent, these observations illu-
minate the binding relationships between QKI-5 and
lncRNAs.
A widely proposed hypothesis is that lncRNAs may

exert their functions through specific interactions with
functional proteins, such as LncmyoD33, LncTCF734, and
Lnc-DC35. Given the lncRNA-protein interactions in
association with protein functions, it is tempting to
speculate that Lnc10 binding to QKI-5 may have an effect
on the regulatory function of QKI-5. Of interest, we found
that Lnc10 depletion promoted germ cell apoptosis via the
activation of p38 MAPK, whereas the simultaneous
knockdown of QKI-5 in part revert the effect induced by
the loss of Lnc10. Indeed, lncRNAs that inhibit protein
regulatory functions through competitive binding have
been reported, such as Malat136, Gomafu18, and lnc-
Lsm3b19. It is an attractive possibility that Lnc10 inhibits
the regulatory function of QKI-5 through competitive
binding, although further investigations are required to
determine the precise mechanism. These observations of
the Lnc10-QKI-5-p38 MAPK regulatory axis may broaden
the known regulatory roles of QKI-5. Since QKI-5 is
widely expressed in multiple tissues, involved in organ
development, and the lncRNA-QKI-5 interaction is
associated with the regulatory function of QKI-5, it will be
of great interest to identify QKI-5-binding lncRNAs in
other systems.
In fact, a number of lncRNAs have been systematically

identified in the testes of multiple species. A recent study
has revealed critical functions of testis-specific lncRNAs
in late Drosophila spermatogenesis37. Additionally, the
knockout of an ultraconserved lncRNA, THOR, produces
fertilization defects in zebrafish38. These findings indicate
that lncRNAs may play similar functional roles in male
germline development across multiple animal species.
However, most lncRNAs have not been functionally
characterized in vivo in mouse models. Thus, we

performed a shRNA-mediated knockdown by AAV9 to
investigate the functional role of Lnc10 in vivo39. Our
study demonstrated that the depletion of Lnc10 caused
spermatogenesis abnormalities by promoting germ cell
apoptosis, which was consistent with the regulatory
effects in vitro.
In summary, this study determines the regulatory role of

QKI-5 in male germline development which is involved in
the p38 MAPK signaling pathway and germ cell apoptosis.
Then, we reveal that the Lnc10-QKI-5 interaction is
associated with the regulatory function of QKI-5, which
inhibits the downstream p38 MAPK pathway and germ
cell apoptosis (Fig. 6i). This in vivo functional study
indicates that Lnc10 causes spermatogenesis abnormal-
ities by promoting germ cell apoptosis. Thus, our study
provides a potential strategy to characterize the biological
significance of the lncRNA-RBP interaction in male
germline development.

Materials and methods
Cell culture and reagents
The distinct germ cell types were isolated from the

testes of ICR mice. GC1-spg cell lines were purchased
from the American Type Culture Collection (ATCC,
Manassas, USA) and cultured in Dulbecco’s modified
Eagle’s medium (Gibco, NY, USA) supplemented with
10% fetal bovine serum (FBS; Gibco, NY, USA) and 1%
penicillin-streptomycin (Invitrogen, CA, USA) at 37 °C
with 5% CO2. For cell treatment, 100 μM Etoposide
(Selleckchem, Houston, TX, USA) was incubated with
cells for the periods of time. Actinomycin D (5 μg/mL)
was purchased from AMRESCO. Cycloheximide (CHX,
100 μg/mL) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). SB203580 (10 μM) was purchased from Sell-
eck Chemicals (Houston, TX, USA).

Plasmid constructs
The cDNA of QKI-5 was PCR-amplified and subcloned

into p3XFLAG-CMV™-14 EXPRESSION VECTOR using
ClonExpress II One Step Cloning Kit (Vazyme Biotech,
Nanjing, China), named Flag-QKI-5. The cDNA of Lnc10

(see figure on previous page)
Fig. 6 Depletion of Lnc10 causes spermatogenesis abnormalities by promoting germ cell apoptosis in vivo. a qRT-PCR analysis of the shRNA-
mediated Lnc10 knockdown by AAV9. The data represent the mean ± SEM. (**) p < 0.01, t-test. b, c Testis morphology and the average weight from
the shCtrl and shLnc10 mice. The data represent the mean ± SEM (n= 5). (*) p < 0.05, t-test. d H&E staining of testis sections from the shCtrl and
shLnc10 mice. Scale bar, 50 μm. e Statistical plots of the diameter of the seminiferous tubules (Top) and the thickness of the seminiferous epithelium
(bottom) from the shCtrl and shLnc10 mice. The data represent the mean ± SEM of at least 50 seminiferous tubules from 3 mice. (****) p < 0.0001, (n.
s.) p > 0.05, t-test. f Immunostaining of testis cryosections from the shCtrl and shLnc10 mice for PNA (green) and RFP (red). The nuclei were stained
with DAPI (blue). Scale bar, 50 μm. g Immunostaining of testis sections from the shCtrl and shLnc10 mice for WT1 (green). The nuclei were stained
with DAPI (blue). Scale bar, 50 μm. h TUNEL assay on testis sections from the shCtrl and shLnc10 mice. Left: representative staining images; Right:
quantification of apoptotic cells in seminiferous tubules. The data represent the mean ± SEM of at least 100 seminiferous tubules from 3 mice. (****) p
< 0.0001, t-test. Scale bar, 50 μm. i Proposed working model for Lnc10 inhibiting QKI-5 downstream p38 MAPK signaling pathway and apoptosis by
binding to QKI-5
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was PCR-amplified and subcloned into pcDNA3.1 (+)
vector using ClonExpress II One Step Cloning Kit
(Vazyme Biotech), named pcDNA3.1-Lnc10.

Transient transfection
Plasmids were transiently transfected into GC1-spg cells

with Lipofectamine 3000 Transfection Reagent (Invitro-
gen) according to the manufacturer’s instructions. The
siRNA specific to murine QKI-5 (forward: GAACA-
GAGCAGAAAUCAAAtt; reversed: UUUGAUUU-
CUGCUCUGUUCaa) and silencer negative control
siRNA were transfected into GC1-spg cells using Lipo-
fectamine RNAiMAX Transfection Reagent (Invitrogen).
LncRNA Smart Silencer (RiboBio, Guangzhou, China)
specific to murine Lnc10 and Smart Silencer control were
transfected into GC1-spg cells using Lipofectamine
RNAiMAX Transfection Reagent (Invitrogen).

Western blotting and antibodies
Total cell and tissues lysates were prepared in 1 ×

sodium dodecyl sulfate buffer. Cell or Tissue lysates were
subjected to SDS/PAGE and transferred onto a PVDF
membrane. The protein levels were quantified by densi-
tometry using AlphaEaseFC software. The following
antibodies were used for Western blotting analysis. The
anti-QKI-5 (#AB9904) was purchases from Millipore
Company (MA, USA). The anti-JNK (#9252), phospho-
JNK (#9255), ERK1/2 (#9102), phospho-ERK1/2 (#9101),
P38 (#9212), phospho-P38 (#9211), cleaved caspase-3
(#9664), cleaved PARP (#9548), TUBULIN (#2128) were
purchases from Cell Signaling Technology (Danvers,
MA, USA).

Immunostaining
The testes dissected from mice was fixed in 4% paraf-

ormaldehyde for 24 h and then incubated in sucrose-PBS
solution (10% sucrose for 1 h, 20% sucrose for 1 h, and
30% sucrose overnight) at 4 °C. Frozen sections were cut
to a thickness of 7 μm using the Leica CM1950 (Leica,
Solms, Germany). Cryosections were washed in PBS and
permeabilized with PBS containing 0.5% Triton X-100.
The slides were blocked with 5% BSA and then incubated
with primary antibody at 4 °C overnight. AlexaFluor™
conjugated secondary antibody was added for 1 h at room
temperature. Finally, the slides were mounted with
SlowFade™ Gold Antifade Mountant with DAPI (Invitro-
gen) and observed under LSM 780 confocal microscope
(Zeiss, Germany) for fluorescent signal analysis.

Total RNA isolation and quantitative real-time PCR
Total RNA was extracted from cell or tisue using Trizol

reagent according to manufacturer’s instructions and
quantified using the NanoDrop 2000 spectrophotometer
(Thermo Scientific). Total RNA (1 μg) was reverse-

transcribed to cDNA using RevertAid First Strand
cDNA Synthesis Kit (Thermo Scientific). Quantitative
real-time PCR was performed in Step One ABI real-time
PCR System through PowerUp SYBR Green Master Mix
(Applied Biosystems, Foster City, CA, USA). The primers
used for qRT-PCR were listed in Supplemental Table S1.

RNA immunoprecipitation (RIP)
The testes were homogenized in ice-cold PBS using a

homogenizer and were resuspended in 800 μl lysis buffer
(10 mM Tris, pH 7.5, 100mM NaCl, 2.5 mM MgCl2,
0.05% NP-40, 1.5 mM DTT, 1× Protease Inhibitor Cock-
tail and 200 U/ml RNase Inhibitor). After the lysates were
centrifuged at 12,000 rpm for 15 min, the supernatants
were precleared with protein A beads (Roche, Mannheim,
Germany) in lysis buffer. Then, the preclear lysates were
used for RIP with anti-QKI-5 and rabbit isotype control
IgG antibodies. RNA-IP was carried out for 4 h at 4 °C.
The beads were washed four times with wash buffer,
followed by extraction with proteinase K (20 mg/μl)
master mix (2.5 μl proteinase K, 0.5 μl 20% SDS, 100 μl
wash buffer) at 55 °C for 15min. The RNA for each RNA-
IP sample was extracted with acid phenol/chloroform and
was treated with DNase I. The RNA sample was used for a
lncRNA microarray assay or a reverse transcription assay.

Agilent mouse lncRNA Microarray assay
The RNA for the RNA-IP sample was quantified by the

NanoDrop ND-2000 (Thermo Scientific), and the RNA
integrity was assessed using an Agilent Bioanalyzer 2100
(Agilent Technologies). Sample labeling, microarray
hybridization and washing were performed based on the
manufacturer’s standard protocols, provided by the
Shanghai Oebiotech Co Ltd (Shanghai, China). Briefly, the
total RNA was transcribed to double-stranded cDNA,
synthesized into cRNA and labeled with Cyanine-3-CTP.
The labeled cRNAs were hybridized onto the microarray.
After washing, the arrays were scanned by the Agilent
Scanner G2505C (Agilent Technologies). Feature
Extraction software (version 10.7.1.1, Agilent Technolo-
gies) was used to analyze the array images to obtain the
raw data. GeneSpring was utilized to finish the basic
analysis with the raw data. The raw data were normalized
with the quantile algorithm. Differentially expressed
mRNAs or lncRNAs were then identified by their fold
change. The threshold that was set for the up-regulated
genes was a fold change >=2.0. The QKI-5 binding
mRNAs were listed in Supplemental Table S3. The QKI-5
binding lncRNAs were listed in Supplemental Table S4;

RNA pull-down Assay
For RNA pull-down assay in GC1-spg cells, we designed

8 tiled antisense probes covering the sequence of Lnc10
using an online design tool (http://www.
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singlemoleculefish.com/). Probes were synthesized and
labeled with Biotin at 3′ end (Invitrogen). RNA pull-down
assay was performed according to a previously published
protocol40. The probe sequences used for RNA pull-down
in GC1-spg cells are listed in Supplemental Table S2.
For RNA pull-down assay in isolated type B spermato-

gonia and pachytene spermatocyte, we used the Pierce™
Magnetic RNA-Protein Pull-Down Kit (Thermo Scien-
tific) according to manufacturer’s instructions.

Cell apoptosis assay
For GC1-Spg cell apoptosis detection, FITC Annexin V

Apoptosis Detection Kit I (BD Pharmingen, San Diego,
CA, USA) was used to stain cells according to manu-
facturer’s instructions. Apoptotic cells were determined
by FACS analysis (BD Pharmingen).
For cell apoptosis in the testicular sections, apoptosis

was evaluated via a terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) assay using In
Situ Cell Death Detection Kit (Roche) following the
manufacturer’s instructions.

Isolation of Nuclear and Cytoplasmic RNAs
Germ cells (1 × 106) were collected from the testis.

Nuclear and cytoplasmic RNA fractions were isolated
from Germ cells using the PARIS isolation kit (Thermo
Scientific) according to the manufacturer’s instructions.
Small nuclear RNA U6 and Actb were used as positive
controls for nuclear and cytoplasmic RNAs, respectively.

Isolation of Germ cells, Sertoli cells and Leydig cells
The isolation of germ cells, Sertoli cells and Leydig cells

was performed according to a previously described
protocol41,42.

Microinjection of virus particles
Virus particles were introduced into the seminiferous

tubules via the efferent duct in 3-week-old ICR male mice.
Approximately 15 μL of virus particles containing 0.04%
Trypan blue solution (Sigma-Aldrich) were injected into
the seminiferous tubules using a glass microcapillary
pipette with a tip diameter of 40 μm. One testis was
injected with AAV9-shCtrl-RFP; the contralateral testis
was injected with AAV9-shLnc10-RFP. All animal
experiments were performed with the approval of the
Research Ethics Committee of Peking Union Medical
College.

Statistical analysis
All experiments were performed at least in triplicate

and the values were presented as means ± SEM. Student’s
t-test (two-tailed) was performed to analyze the data. P-
value of <0.05 was considered to be statistically
significant.
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