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Abstract
Mechanical damage on the skin not only affects barrier function but also induces various immune responses, which
trigger or exacerbate skin inflammation. However, how mechanical damage-induced skin inflammation is regulated
remains incompletely understood. Here, we show that keratinocytes express the long-chain fatty-acid elongase Elovl6.
Mice deficient in Elovl6 showed higher levels of cis-vaccenic acid (CVA) in the epidermis and severe skin inflammation
induced by mechanical damage due to tape stripping than did wild-type mice. CVA accelerated tape stripping-
triggered keratinocyte death and release of danger-associated molecular patterns (DAMPs) such as high-mobility
group box 1 protein (HMGB-1) and IL-1α, which induced production of proinflammatory cytokines and chemokines IL-
1β and CXCL-1 by keratinocytes. Our results demonstrate that Elovl6 regulates mechanical damage—triggered
keratinocyte death and the subsequent dermatitis.

Introduction
The mechanical damage induced by physical forces—

including stretching, compression, and friction—on epi-
thelial and endothelial cells plays a critical role in tissue
homeostasis1,2. The mechanical damage not only affects
the barrier function of the skin but also induces various
immune responses3, which trigger inflammation at the
site of the stress on the skin. Moreover, mechanical
damage on the skin exacerbates the inflammation in
patients with inflammatory skin diseases. For example,
scratching of itching lesions exacerbates the skin inflam-
mation in atopic dermatitis (AD), which is called the itch-
scratch cycle3. In addition, scratching induces

development of new skin lesions in psoriasis, well-known
as the Koebner phenomenon4. However, how mechanical
damage-induced skin inflammation is regulated remains
incompletely understood.
Elongation of long-chain fatty acids family member 6

(Elovl6) is a rate-limiting microsomal enzyme that cata-
lyzes the elongation of saturated and monounsaturated
fatty acids5. Elovl6 elongates palmitate (PA) (C16:0) to
stearate (SA) (C18:0) and palmitoleate (POA) (C16:1n-7)
to cis-vaccenic acid (CVA) (C18:1n-7)5. Elovl6 is highly
expressed in the white adipose tissue and liver6. Elovl6 is
involved in metabolic diseases, such as insulin resistance7

and atherogenesis5, as well as inflammatory diseases,
including attenuated high-fat-diet-induced hepatic
inflammation8 and regulated bleomycin-induced pul-
monary fibrosis9. In addition, Elovl6 is highly expressed in
the skin6, which is one of the most lipid-enriched organs.
Lipids in the skin play crucial roles in homeostasis; they
are involved in epidermal permeability and barrier func-
tion10, the composition of microbiota11, epithelializa-
tion12, and inflammation13. In the current study, we
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examined whether long-chain fatty-acid composition
regulated by Elovl6 is involved in mechanical damage-
induced skin inflammation.

Results
Elovl6−/− mice show exacerbated mechanical damage-
induced skin inflammation
Tape stripping, which mimics scratching, is a well-

established method for inducing mechanical stress or
damage on the skin14. To investigate the role of Elovl6 in
mechanical damage-induced skin inflammation, we
established a mouse model of dermatitis by using repeated
tape stripping. After this treatment, erythema was more
severe in Elovl6−/− mice than in wild-type mice (Fig. 1a).
Moreover, the epidermis was thicker, and neutrophil and
macrophage infiltrations were significantly greater, as
analyzed by immunohistochemical studies, in Elovl6−/−

mice than in wild-type mice. In contrast, T cells and
dendritic cells were comparable between two genotypes of
mice (Fig. 1b–e). Since Elovl6 expression was higher in
the epidermis than in the dermis (Supplementary
Fig. S1A), we speculated that Elovl6 is expressed in ker-
atinocytes. Indeed, the epidermis in mice deficient in
Elovl6 specifically in the keratinocytes (Elovl6fl/fl K14-Cre
mice) showed significantly decreased Elovl6 expression
(Supplementary Fig. S1B). As in Elovl6−/− mice, Elovl6fl/fl

K14-Cre mice also showed increased epidermal thickness
and neutrophil and macrophage infiltrations after tape
stripping compared with control mice (Fig. 1f, g) (Sup-
plementary Fig. S1C).
To investigate how Elovl6 suppressed mechanical

damage-induced skin inflammation, we examined the
expression levels of pro-inflammatory and anti-
inflammatory cytokines and chemokines, which were
reported to be potentially involved in dermatitis15. Among
them, transcript levels of Il1a, Il1b, Cxcl1, Cxc12, and
Cxcl3 in the epidermis were increased in both wild-type
and Elovl6−/− mice after tape stripping (Fig. 2a). More-
over, Elovl6−/− mice showed higher expression of Il1b,
Cxcl1, Cxc12, and Cxcl3 than did wild-type mice after
tape stripping (Fig. 2a). In accordance with these results,
the concentrations of IL-1β and CXCL-1 were sig-
nificantly higher in the culture supernatants of Elovl6−/−

epidermis harvested from mice after tape stripping than in
those from the wild-type epidermis (Fig. 2b). Together,
these results suggest that Elovl6 suppresses mechanical
damage-induced skin inflammation.

Elovl6−/− mice show increased keratinocyte death after
mechanical damage
Since fatty acids play an important role in skin barrier

function10, we next examined whether Elovl6 deficiency
affects barrier function by the transepidermal water loss
(TEWL) test. Although it was comparable between naive

wild-type and Elovl6−/− mice, Elovl6−/− mice showed
increased TEWL than did wild-type mice 6 h or later after
tape stripping (Fig. 3a). We found that the proportion of
dead keratinocytes (CD45.2− CD49f+ cells), as deter-
mined by propidium iodide (PI) staining by using flow
cytometry, were increased in Elovl6−/− mice more than in
wild-type mice 6 h after tape stripping (Fig. 3b, c), sug-
gesting that the increased keratinocyte death led to the
barrier dysfunction in Elovl6−/− mice. Together, these
results suggest that Elovl6 suppressed mechanical
damage-induced keratinocyte death and skin
inflammation.

CVA induces keratinocyte death
We then analyzed the fatty acid composition of the

epidermis of wild-type and Elovl6−/− mice. Elovl6−/−

mice had increased CVA levels and decreased OA, linoleic
acid (LA; C18:2n-6), and γ-linoleic acids (GLA; C18:3n-6)
than did wild-type mice (Fig. 4a). Elovl6−/− mice also
showed greater epidermal expression of the long-chain
fatty acid elongases Elovl1, Elovl3, and Elovl5 and of the
stearoyl-CoA desaturase Scd3 than did wild-type mice
(Fig. 4b). Among these, Elovl5 and Scd3 may influence
CVA generation through the elongation of POA (C16:1n-
7)16 and by the conversion of PA to POA17, respectively
(Supplementary Fig. S3).
Since CVA showed the most prominent change in

Elovl6−/− mice compared with wild-type mice, we
speculated that CVA might be involved in keratinocyte
death. To address this hypothesis, a human keratinocyte
cell line HaCaT or primary keratinocytes derived from
mice were cultured in the presence of CVA. We found
that CVA decreased the numbers of live cells of
HaCaT cells and primary keratinocytes in a dose-
dependent manner (Fig. 5a, b) and increased the pro-
portion of dead primary keratinocytes (Fig. 5c). In con-
trast, neither oleic acid (OA), PA, POA, SA, nor trans-
vaccenic acid (TVA) influenced the number of live pri-
mary keratinocytes after culture (Fig. 5d). In addition,
CVA decreased the number of live peritoneal macro-
phages as well (Supplementary Fig. S4A). CVA did not
affect the proliferation of HaCaT cells but instead
increased the number of dead cells compared with those
after the addition of OA (Fig. 5e), thus indicating that
treatment with CVA-induced cell death of HaCaT cells.
This cell death was not affected by triacsin C, an inhibitor
of long-chain acyl-CoA synthetases18 (Supplementary
Fig. S4B), suggesting that CVA itself, but not its meta-
bolites, induced death of HaCaT cells. Morphologic ana-
lyses under transmission electronic microscopy
demonstrated increased plasma membrane rupture
without blebbing in the keratinocytes after CVA treat-
ment (Supplementary Fig. S4C). In vivo, we found that
topical application of CVA, but not OA, at a dose of 45
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mM to the dorsal skin of wild-type mice increased the
proportion of dead keratinocytes (Fig. 5f). Anti-cleaved
caspase-9 (CC9) antibody did not stain CVA-treated dead
keratinocytes (Supplementary Fig. S4D). Together, these
results suggest that CVA induced non-apoptotic cell

death. Pretreatment with necrostatin-1 or necrosulfona-
mide, which are inhibitors of receptor-interacting protein
1 (RIP1) kinase and mixed lineage kinase domain-like
protein (MLKL), respectively, did not suppress the CVA-
induced death of keratinocytes (Supplementary Fig. S4E),
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Fig. 1 Elovl6−/− mice show exacerbation of dermatitis. a–e Representative gross findings (a), histology (hematoxylin and eosin staining) (b),
epidermal thickness (c), immunohistochemistry, and cellular quantification of infiltrated neutrophils (Ly6G), macrophages (F4/80), T cells (CD3), and
dendritic cells (CD11c) in the dorsal skin of wild-type (WT) (n= 6 or 8) and Elovl6−/− (n= 6 or 8) mice before and on day 9 after the start of tape
stripping (d, e). f, g Epidermal thickness (f) and numbers of infiltrated neutrophils (Ly6G), and macrophages (F4/80) in the skin (g) of Elovl6fl/fl (n= 5)
and Elovl6fl/flK14-Cre (n= 4) on day 9 after the start of tape stripping. Black bars indicate scale (50 μm) (b, d). Error bars indicate 1 SD; *, P < 0.05; **, P <
0.01, ***, P < 0.001. NS not significant, HPF high-power (400 × ) field. Data are representative of three (a–e) and two (f, g) independent experiments
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suggesting that the cell death due to CVA likely was not
necroptosis19. These combined results suggest that CVA
induced necrosis rather than programmed cell death of
keratinocytes. In addition, treatment with inhibitors of
oxidative stress (IM-54) or cyclophilin D (cyclosporine A)
did not influence the cell death (Supplementary Fig. S4E),
suggesting that the CVA-induced necrosis of

keratinocytes was independent of oxidative stress (IM-54)
or cyclophilin D-mediated changes in mitochondrial
permeability20.

CVA increased IL-1β, CXCL-1, CXCL-2, and CXCL3 production
Since CVA induced non-apoptotic cell death, we then

examined whether CVA increased the release of DAMPs
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from dead cells. The addition of CVA, but not OA, to
cultures of primary keratinocytes increased the con-
centrations of HMGB-1 and IL-1α in the supernatants
(Fig. 6a). Furthermore, stimulation of primary keratino-
cytes derived from wild type or Elovl6−/− mice in vitro and
of the epidermis from the either genotype of mice in vivo
with HMGB-1 or IL-1α induced Il1β, Cxcl1, Cxcl2, and
Cxcl3, and the expression levels of these cytokine tran-
scripts did not differ between both genotypes of mice
(Supplementary Fig. S5A, B). These results suggest that
CVA enhanced IL-1β, CXCL-1, CXCL-2, and CXCL-3
production by keratinocytes via HMGB-1 or IL-1α.
Indeed, we found that topical application of CVA, but not
OA, at a dose of 45mM to the dorsal skin increased the
expressions of Il1β, Cxcl1, Cxcl2, and Cxcl3 in the epi-
dermis (Fig. 6b). Finally, treatment with either antagonist
of IL-1 receptor or CXCR-2 intradermally and intraper-
itoneally reduced epidermal thickness and the number of
neutrophils and macrophages in the skin of Elovl6−/−

mice (Fig. 6c, d) (Supplementary Fig. S5C). Taken all
together, these results suggest that tape stripping triggered
keratinocyte death and release of HMGB-1 and IL-1α,

which then stimulated the surrounding live keratinocytes
to produce IL-1β, CXCL-1, CXCL-2, and CXCL-3, thus
exacerbating skin inflammation with acanthosis and infil-
tration of neutrophils and macrophages. Elovl6 deficiency
accelerated tape stripping-triggered keratinocyte death,
which possibly not only caused the skin barrier dysfunc-
tion but also increased the DAMPs release from the dead
keratinocytes, thus exacerbating dermatitis (Fig. 6e).

Discussion
Previous reports demonstrated that Elovl6−/− mice had

increased PA level and decreased OA level in the lung and
liver of Elovl6−/− mice compared with wild-type mice7,9.
Consistently, we found that OA level was also decreased
in the epidermis. Unlike the previous reports, however,
PA was not increased in the epidermis. Instead, Elovl6−/−

mice had increased CVA levels and decreased linoleic acid
(LA; C18:2n-6) and γ-linoleic acids (GLA; C18:3n-6) in
the epidermis. Although the biologic function of CVA has
been poorly understood, we showed that CVA induced
cell death of keratinocytes triggered by mechanical
damage. It remains unclear whether the aberrant
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composition of fatty acids other than CVA is also involved
in keratinocyte death in Elovl6−/− mice.
Previous studies have demonstrated that, compared

with OA and SA, both CVA and TVA (dose, 30 μM)
significantly suppress the growth of HT-29 tumor cells
after culture for 9 days21. Moreover, CVA leads to greater
hydrolysis of phosphoinositides in the plasma membrane
than does TVA21. In the present study, we showed that
CVA at concentrations of 200 μM or greater induced the
death of primary keratinocytes, thus suggesting that 200
μM is the minimal dose required to damage the plasma
membrane sufficiently to induce necrosis in vitro. In
addition, given that TVA did not induce keratinocyte
death, the cytotoxic effect of CVA may be structure-
dependent. Whereas trans-unsaturated fatty acids have a
linear structure and can be packed regularly in the plasma
membrane, cis-unsaturated fatty acids, such as OA and
CVA, which have a characteristic angular kink, may dis-
tort the structure of the lipid bilayer and thus destabilize
the plasma membrane22. Therefore, we speculate that
incorporation of CVA into the plasma membrane
creates a bulky three-dimensional structure compared
with those associated with other cis-monounsaturated

fatty acids and thus induces cell death by disrupting the
plasma membrane. Further studies are required to
determine the detailed mechanism of CVA-induced cell
death.
Fatty acids reportedly play important roles in mod-

ulating the severity of dermatitis in mouse models. For
example, a high-fat diet enriched with oleic acid impairs
contact hypersensitivity responses to trinitro-
chlorobenzene and fluorescein isothiocyanate23. In addi-
tion, oral administration of docosahexaenoic acid leads to
the generation of regulatory T cells, which thus attenuate
dinitrochlorobenzene-induced dermatitis24. Moreover,
topical or oral application of linoleic acid and TVA, which
are enriched in milk fat, decreases the severity of
ovalbumin-induced dermatitis25.
AD is one of the most common skin diseases with Th2-

dominant immune responses and is characterized by
pruritic and eczematous skin lesions. Mechanical damage,
such as scratching, increases the severity of AD by
diminishing the epidermal barrier function and produc-
tion of pro-inflammatory cytokines3,26. The lipids in the
stratum corneum, the outermost layer of the epidermis,
are crucial for the barrier function of the skin. The
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amount of ceramides with very long-chain fatty acids is
decreased in the stratum corneum in AD patients27 and
the chain length of fatty acids of ceramide is negatively
correlated with impaired barrier function in AD
patients28. Consistently, Elovl1−/− and Elovl4−/− mice,
both of which demonstrate a global decrease in ceramides
with very long-chain fatty acids in the stratum corneum,
show impaired barrier function29,30.
The lipids are also involved in the aberrant immune

response in AD patients. Previous reports demonstrated
increased arachidonic acid and its bioactive lipid-mediator
metabolites, such as prostaglandin D2 (PGD2) and

leukotriene B4 (LB4) in the AD lesion31–33. Whereas
PGD2 induced Th2 cell recruitment34, LB4 promoted
activation and recruitment of inflammatory cells, includ-
ing neutrophils, eosinophils, monocytes/macrophages,
and T cells35. Recently, Berdyshev E. et al. showed that
Th2-related cytokines IL-4 and IL-13 downregulated
Elovl6 expression in human keratinocytes, and Elovl6
expression was indeed downregulated in the lesion of
AD36.
On the other hand, psoriasis is characterized by well-

demarcated scaly erythema and plaque, whose lesions
show hyperproliferation of keratinocytes and neutrophil
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and analyzed by flow cytometry for PI-positive (i.e., dead) CD45.2−CD49f+ keratinocytes. Error bars indicate SD. **P < 0.01, ***P < 0.001. NS not
significant, OA, oleic acid, CVA cis-vaccenic acid, PA palmitate, SA stearate, POA palmitoleate, TVA trans-vaccenic acid. Data are representative of more
than two independent experiments
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infiltration37. The skin lesions of psoriasis are triggered
or exacerbated by mechanical damage, which is well-
known as the Koebner phenomenon4. Abnormal fat
metabolism is also an important factor in the patho-
genesis of psoriasis38. In addition, alterations in epi-
dermal lipids, such as increased phospholipids,
triacylglycerols, and cholesterol and decreased phos-
phatidylinositol and phosphatidylserine, are observed in

the epidermis of psoriasis patients39. Our study revealed
that dysregulated fatty acid composition by Elovl6
deficiency in keratinocytes accelerated tape stripping-
triggered keratinocyte death, which exacerbated skin
inflammation, thus suggesting that Elovl6 may play
important roles in the pathogenesis of AD and psoriasis
through suppressing mechanical damage-induced skin
inflammation.
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Fig. 6 CVA increased IL-1β, CXCL-1, CXCL-2, and CXCL-3 production. a Enzyme-linked immunosorbent assay of HMGB-1 (n= 4 per group) and
cytokine bead array of IL-1α (n= 3 per group) in the supernatant of cultured primary keratinocytes 10 h after initiation of stimulation with 300 μM of
OA or CVA. b Quantitative RT-PCR analysis of Il1β, Cxcl1, Cxcl2, and Cxcl3 in the epidermis of wild-type mice 6 h after topical application of ethanol
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of PBS (n= 10 and 12, respectively), an IL-1 receptor antagonist (n= 9 and 8, respectively), or a CXCR-2 antagonist (n= 5 and 4, respectively) daily for
9 days, from the beginning on the day of tape stripping. The skin was then analyzed for epidermal thickness by histology (hematoxylin and eosin
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pathway from mechanical damage onto the skin to inflammation. Error bars indicate SD; *P < 0.05; **P < 0.01, ***P < 0.001; NS not significant, OA oleic
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Experimental procedures
Mice
Elovl6−/− mice on the C57BL/6J background were

described previously7. C57BL/6J mice raised under spe-
cific pathogen-free conditions were purchased from Clea
Japan (Tokyo, Japan). K14-Cre on the B57BL/6 back-
ground were purchased from Jackson Laboratories (Bar
Harbor, ME, USA). Elovl6fl/fl mice were crossed with K14-
Cre transgenic mice to generate Elovl6-knockout mice
specifically in keratinocytes (Elovl6fl/fl K14-Cre). Mice
between 8 and 10 weeks of age were used for the
experiments. All experiments were performed in accor-
dance with the guidelines of the animal ethics committee
of the University of Tsukuba Animal Research Center.

Tape stripping
Mechanical damage-induced dermatitis was generated,

as previously described40. In brief, a 2.5 × 2.5-cm area of
the dorsal skin was shaved and tape-stripped 20 times by
using adhesive tape (Johnson and Johnson); a 1 × 1-cm
piece of sterile gauze moistened with 100 μl of PBS was
placed on the shaved skin and secured with transparent
bio-occlusive tape (Tegaderm Roll, 3M, Maplewood,
Minnesota, USA) to prevent the mice from licking the
area. These procedures were repeated every other day
until analysis.

Cytokine measurement of epidermis or cultured
keratinocytes
Dorsal skin samples before and after tape stripping were

resected from adult mice and incubated in RPMI medium
in the presence of dispase II (3 mg/ml) (Wako Pure
Chemical, Osaka, Japan) for 1 h at 37 °C under 5% CO2.
The epidermis was then separated from the dermis under
a stereomicroscope. Samples of the epidermis (diameter,
4 mm) were cultured in 50 μl of DMEM containing 10%
FBS in a 96-well plate at 37 °C under 5% CO2 for 24 h and
the concentrations of IL-1β, CXCL-1, TNFα, and IL-10 in
the culture supernatants were measured by using cyto-
metric bead arrays (CBA) (BD Biosciences) according to
the manufacturer’s protocol. The skin of newborn mice
(younger than 3 days old) was incubated in CnT-07
medium (CELLnTEC Advanced Cell Systems) in the
presence of dispase II (1 mg/ml) (CELLnTEC Advanced
Cell Systems) at 4 °C for 16 h. The epidermis was isolated
from the skin and incubated in Accutase (CellnTEC
Advanced Cell Systems) at room temperature for 20min.
Keratinocytes collected were maintained in CnT-07
medium (CELLnTEC Advanced Cell Systems) according
to the manufacturer’s protocol, and then stimulated with
long-chain fatty acids at 37 °C under 5% CO2 for 10 h. The
culture supernatants were analyzed for IL-1α and HMBG-
1 by flow cytometry using cytokine beads array (CBA) and
for HMGB-1 using an ELISA KIT II (Shino-test

Corporation). Keratinocytes were also stimulated with IL-
1α or HMGB-1 at 37 °C under 5% CO2 for 3 h and ana-
lyzed for Il1b and Cxcl1 by quantitative real-time PCR
analysis (qRT-PCR).

Histology
For histologic analysis, mouse skin was fixed in 10%

formalin, embedded in paraffin, sectioned, and stained
with hematoxylin and eosin. For immunohistochemical
analyses, paraffin-embedded sections were deparaffinized
in xylene and rehydrated before antigen retrieval by
boiling in citrate buffer (0.01M citrate containing 0.5%
Tween 20, pH 6.0). The sections were incubated in 10%
bovine serum albumin in PBS at room temperature for 1 h
and then stained with rat anti-Ly6G antibody (RB6-8C5,
1:250 dilution; Abcam), rabbit anti-F4/80 antibody
(D2S9R, 1:100 dilution; Cell Signaling Technology), rabbit
anti-CD3 antibody (SP7, 1:500 dilution; Abcam), or rabbit
anti-CD11c antibody (N418, 1:100 dilution; Cell Signaling
Technology) overnight at 4 °C, followed by biotinylated
anti-rat IgG antibody or anti-rabbit IgG antibody (1:500;
Vector Laboratories) and Vectastatin ABC reagent (Vec-
tor Laboratories) at room temperature for 60 mins and 30
mins, respectively. Finally, the sections were stained with
DAB Peroxidase Substrate Kit before imaging (Vector
Laboratories). For analyses of epidermal thickness or cell
number, 18 randomly selected sites were evaluated by
using microscopy (MZ-X710, Keyence, Osaka, Japan) and
its associated software.

Cell death and proliferation analyses
Primary keratinocytes from neonatal epidermis, pre-

pared as described above, or human HaCaT cells were
maintained in CnT-07 medium, as described above, and
DMEM with 10% FBS, respectively, at 37 °C under 5%
CO2. Peritoneal macrophages were harvested by lavage of
the peritoneal cavity and suspended in DMEM containing
10% FBS. Primary keratinocytes, HaCaT cells, and peri-
toneal macrophages were seeded onto 48-well plates at a
density of 1 × 105 cells and 2 × 105 cells/well, respectively.
After incubation at 37 °C for 2 h, the cells were washed
with PBS three times to remove unattached cells and
stimulated with different concentrations of free fatty acids
dissolved in ethanol (final dose of 100–500 μM), including
oleic acid (OA), palmitic acid (PA), stearic acid (SA),
palmitoleic acid (POA) (Wako Pure Chemical), trans-
vaccenic acid (TVA), or cis-vaccenic acid (CVA) (Sigma-
Aldrich).
The number of live cells was counted using 0.4% trypan

blue (Thermo Fisher Scientific). For proliferation assay,
these cells were stained or not with 10 μM of CFSE
(Invitrogen) for 5 min at 37 °C before fatty acid stimula-
tion, according to the manufacturer's instructions. Cells
were then stained with propidium iodine (PI) and

Nakamura et al. Cell Death and Disease          (2018) 9:1181 Page 9 of 11

Official journal of the Cell Death Differentiation Association



analyzed for PI-positive and PI-negative cell populations
and CFSE dilution by flow cytometry. For the analysis of
cell death in vivo, skin tissue was incubated in 0.5%
trypsin (Wako) in PBS, and separated into epidermis.
Epidermal cells were stained with CD45.2 (clone:104, BD
Pharmingen), CD49f (clone: GoH3, Miltenyi Biotec), and
PI, and then analyzed by flow cytometry.

Cytokine stimulation
Primary mouse keratinocytes were stimulated with

bovine HMGB-1 (Chondrex, Redmond, Washington,
USA) or mouse IL-1α (Miltenyi Biotec, Bergisch Glad-
bach, Germany). For stimulation of keratinocytes in vitro,
primary keratinocytes were stimulated with 500 ng/ml of
bovine HMGB-1 or mouse IL-1α. For stimulation of
keratinocytes in vivo, 200 ng of bovine HMGB-1 or mouse
IL-1α in 50 μl of PBS was injected intradermally.

Fatty acid composition
Lipids from the mouse epidermis were extracted by

using the method of Bligh and Dyer41. In brief, epidermis
was extracted with chloroform/methanol (1:2, v/v) solu-
tion. One molar NaCl solution and chloroform were
added to break the monophase and incubated on ice for
10min. After centrifugation at 300 G for 5 min, aqueous
solution was discarded and the phase of chloroform was
evaporated using nitrogen gas. Following the addition of
acetonitrile/6 N HCl (90/10, v/v), samples were incubated
at 100 °C for 45min. Finally, liquid–liquid extraction42

with ethyl acetate was performed and the reconstituted
samples were injected into an optimized LC/MS/MS
system. The relative abundance of each fatty acid was
quantified by gas chromatography.

Transepidermal water loss (TEWL) test
TEWL was measured on the dorsal skin of wild-type

and Elovl6−/− mice between 8 and 10 weeks of age by
Tewameter® TM 300 (Integral) before and after tape
stripping30. Measurements were performed in triplicate
for each mouse.

Antagonist treatment
To neutralize the IL-1 receptor, mice received 200 μl of

the IL-1 receptor antagonist anakinra (10 mg/ml)
(Kineret, Swedish Orphan Biovitrum) intradermally and
300 μl of the same concentration of the antagonist intra-
peritoneally daily during the induction of dermatitis by
the mechanical stress or OVA treatment. To block
CXCR-2, mice received 200 μl of a CXCR-2 antagonist
(0.25 mg/ml in PBS containing 1% DMSO) (SB225002,
Cayman Chemical, Ann Arbor, Michigan, USA) intra-
dermally and 150 μg of the same antagonist (0.5 mg/ml in
PBS containing 1% DMSO) intraperitoneally daily during
the induction of dermatitis by the mechanical stress.

Statistical analyses
Statistical analyses were performed by using an

unpaired, two-tailed Student’s t test (GraphPad Prism 6,
GraphPad Software, La Jolla, USA). A P value less than
0.05 was considered to be statistically significant.
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