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The Zen of XEN: insight into differentiation,
metabolism and genomic integrity
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From fertilization to implantation
Fertilization of the mouse egg takes place in the oviduct,

and following rounds of cell divisions the blastocyst forms
and is comprised of three cell lineages. The epiblast
houses naive or preimplantation embryonic stem cells
(ESCs), which express OCT4, NANOG, REX1, and
FGF41. Once implanted into the uterine wall, naïve ESCs
differentiate towards primed ESCs and continue to
express OCT4 and NANOG, alongside FGF5 and T1.
Collectively, cells of the epiblast give rise to the embryo
proper. As for extraembryonic lineages, the trophecto-
derm, which gives rise to the placenta, is made up of
trophoblast stem cells (TSCs)-expressing CDX21. The
third lineage consist of cells that form extraembryonic
endoderm (XEN), which express GATA4, GATA6, SOX7,
and SOX172. XEN cells differentiate into parietal or
visceral endoderm cells, and are essential for the survival
and patterning of the embryo2,3. Despite the many studies
that have focused on the derivation, maintenance, and
differentiation of naïve and primed ESCs, fewer have
addressed these in regard to extraembryonic lineages,
specifically XEN cells.

Mammalian embryos transition through distinct
metabolic profiles
Our understanding of stem cells and their ability to self-

renew and differentiate is corroborated by changes in
global gene and protein expression, and the epigenetic
modifications. Although these “–omic” approaches pro-
vide invaluable insight into the various characteristics that
stem cells share, or what makes them unique from other

cells, one common feature is their pluripotency, which is a
topic of ongoing investigation. In the past decade, atten-
tion has shifted towards understanding the metabolic
landscape of early mammalian embryos4. Glucose meta-
bolism provides ATP for energy expenditure and sub-
strates for anabolism that assists in modulating the
epigenome. While most somatic cells use mitochondrial
oxidative phosphorylation (OXPHOS) to generate ATP,
Otto Warburg discovered that, despite having sufficient
oxygen levels for OXPHOS metabolism, cancer cells rely
on glycolysis to produce ATP5. This phenomenon, termed
the Warburg effect, also occurs in stem cells6, where naïve
ESCs utilize glycolysis and OXPHOS to generate ATP,
while primed ESCs are exclusively glycolytic despite
having structurally mature mitochondria5. Surprisingly,
the appearance of these mitochondria in primed ESCs
would suggest that they are capable of using OXPHOS,
but detailed analysis has revealed that these cells express
low levels of cytochrome c oxidase, thus reducing mito-
chondrial respiratory capacity7. As for extraembryonic
lineages, we know TSCs use OXPHOS metabolism to
generate ATP for energy8, and to power the Na+,
K+–ATPase pump for blastocoel formation9, but we need
a better understanding of the metabolic profile(s) in XEN
cells to paint a complete picture of the events taking place
in early development.

The metabolic state of XEN cells
Our best understanding of the metabolic landscape of

XEN cells comes from proteomic analysis10. Rate-limiting
enzymes in glycolysis, including hexokinase 2 and glucose
transporter 1, are downregulated during XEN induction;
however, other enzymes remain unchanged or are ele-
vated10. In fact, we have shown that lactate dehydrogenase
A (LDHA), which catalyzes the conversion of pyruvate to
lactate, is upregulated in embryo-derived XEN cells, while
LDHB, which catalyzes the reverse reaction, is
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downregulated (unpublished data). Additionally, XEN
induction is accompanied by an increase in the levels of
enzymes involved in the TCA cycle and electron transport
chain (ETC), yet mitochondrial biogenesis proteins are
downregulated10. These seeming discrepancies suggest
that the metabolome of XEN cells might be more complex
than that of ESCs and TSCs, and thus further detailed
interrogation is warranted.

Factors influencing metabolism, differentiation,
and stem cell quality
F9 embryonal carcinoma stem-like cells differentiate

into primitive endoderm when treated with retinoic acid
(RA) and to parietal endoderm when treated with RA and
dibutyryl cAMP4. Our studies and those of others show
that this differentiation is accompanied by an increase in
GATA6, SOX7, and SOX17, and the decrease of plur-
ipotency genes including, OCT4, REX1, and NANOG4.
We recently reported that F9 cells differentiate to a XEN-
like state and this occurs regardless of their passage
number11. However, it is surprising that the metabolic
profile between the early- and late-passage populations
differed dramatically. Early-passage cells transitioned
from OXPHOS metabolism towards glycolysis, whereas
the opposite was seen in late-passage cells. Further

examination revealed that there was dysregulation in ETC
enzyme stoichiometry in the differentiated late-passage
cells, which resulted in the increase in mitochondrial ROS
levels. Also, late-passage cells had accumulated chromo-
somal abnormalities when compared to early-passage
cells, and whether changes in the metabolic profile pre-
ceded these chromosomal abnormalities or vice versa
remains to be determined (Fig. 1)11.

Significance and future directions
Our report in Cell Death Discovery is the first to shed

light on the metabolic profile of XEN-like stem cells and
how their passaging influences differentiation and meta-
bolism. Mechanistically, the pluripotency potential
between the early- versus late-passage populations
remains unaltered despite major differences in metabolic
states, karyotypes, expression of cell cycle regulators, and
proliferation rates. These differences are significant and
shed invaluable light as to why it is crucial to determine as
many physiological parameters of a stem cell population
prior to moving forward its utility as a therapeutic tool for
regenerative medicine.
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