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Abstract
Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) poses a serious threat to the world’s public
health yet without a cure. Certain JEV-infected neural cells express a subset of previously identified intrinsic antiviral
interferon stimulated genes (ISGs), indicating brain cells retain autonomous antiviral immunity. However, whether this
happens in composited brain remains unclear. Human pluripotent stem cell (hPSC)-derived organoids can model
disorders caused by human endemic pathogens such as Zika virus, which may potentially address this question and
facilitate the discovery of a cure for JE. We thus generated telencephalon organoid and infected them with JEV. We
found JEV infection caused significant decline of cell proliferation and increase of cell death in brain organoid,
resulting in smaller organoid spheres. JEV tended to infect astrocytes and neural progenitors, especially the population
representing outer radial glial cells (oRGCs) of developing human brain. In addition, we revealed variable antiviral
immunity in brain organoids of different stages of culture. In organoids of longer culture (older than 8 weeks), but not
of early ones (less than 4 weeks), JEV infection caused typical activation of interferon signaling pathway. Preferential
infection of oRGCs and differential antiviral response at various stages might explain the much more severe outcomes
of JEV infection in the younger, which also provide clues to develop effective therapeutics of such diseases.

Introduction
Japanese encephalitis (JE) caused by Japanese encepha-

litis virus (JEV) is one of the most common viral inflam-
mation diseases, particularly in wide area of Asia. In
endemic countries, JE occurs primarily among children
aged less than 10 years. JEV infection induces non-cell
necrotic plaques accompanied by nodules of glia, edema,
bleeding, and inflammatory infiltration in multiple brain

regions, and usually cause serious neurologic sequelae
including the childhood morbidity and mortality1–5.
Although JE vaccine significantly controls the spread of
JE, no effective cure is available for the JEV-infected
patients. JE remains one of the most serious threats to
public health6.
During JEV infection, proinflammatory cytokines and

chemokines concertedly trigger neuronal damages. In
vitro assays indicate that JEV preferentially infects neural
precursor cells and glial cells, rather than neurons7.
Activated microglia and astrocyte secrete chemotactic
cytokines, which attract the inflammatory cells8. Innate
immune response plays an important role in defensing
against viral infection as well participates in the inflam-
matory response9. Upon viral infection, pattern recogni-
tion receptors (PRR) recognize the pathogen-associated
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molecular patterns (PAMPs) and then activates the
expression of interferons (IFNs), which then bind to
receptors on nearby cells and induce the expression of
waterfall of antiviral interferon stimulated genes (ISGs)10–12.
Unlike most cells, pluripotent embryonic stem cells

(ESCs) do not produce type I IFNs in response to
viral infection, and they respond weakly to exogenous
IFNs13, 14. Upon differentiation, neural stem cells, as well
as progenitors at various stages of differentiation express a
subset of genes previously classified as intrinsic ISGs for
antiviral protection, indicating differentiating and differ-
entiated cells retain autonomous antiviral immunity15.

However, in the developing brain, how the immune
response is activated upon viral infection, and how the
infection and immune response affect the cortical neu-
rogenesis remains unknown.
Lately, hPSC-derived three-dimensional (3D) organoids

can mimic developing organs such as brain16, retina17,
and pituitary gland18. In particular, organoids of entire
brain19, 20 and brain-region-specific organoids21 can
model specific human brain infectious diseases, such as
Zika virus infection22–25. Thus, for JEV infection, brain
organoids provide an ideal platform to study the patho-
genesis and the antiviral reaction it induced.
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Fig. 1 Generation of telencephalon cortical organoids from hESCs. a Schematic diagram of telencephalon cortical organoids derived from
hESCs. Phase images of sample at different stages are shown. Scale bars: 200 μm. b Morphology of cortical organoids in a plate at day 120 in vitro.
Scale bar: 1 cm. c Immunostaining of ventricular radial glia marker PAX6 (red) and neural progenitor cells marker SOX2 (green) in Hoechst-stained
(HO, gray) telencephalon cortical organoids at D60, indicating the presence of a VZ-like and oSVZ-like region organized around a lumen (white
dotted line). Scale bar: 50 μm. d, e Sample tiling images of immunostaining of oRGC markers HOPX (d) and FAM107A (e) in telencephalon cortical
organoids. Scale bars: 100 μm. f, g Temporal pattern of oRGC markers FAM107A (f) and HOPX (g) expression in different stages of cortical organoids.
Values represent mean ± SD, n= 3 for each point
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In this study, we generated telencephalon organoids and
infected these organoids with JEV. We hope to reveal
what category of cells JEV prefer to infect in organoid, and
how the JEV infection induces pathological alterations in
organoid spheres. Finally, we are also interested in how
the infected cells respond to the viral infection, particular
cells at different stages of neural differentiation.

Results
Generation of telencephalon cortical organoids from
hESCs
We generate telencephalon cortical organoids from

human embryonic stem cell (hESC) lines H9 (WA09)
following a modified protocol26 (Fig. 1a). Telencephalon
cortical organoids grow in suspension for long term, reach
up to 2.5 mm in diameter after 120 days and remain viable
thereafter (Fig. 1b). In cortical organoids of day 35, well-
defined polarized neuroepithelial cells form structures
resembling neural tubes. These structures are composed
of nearly pure population of NESTIN+ SOX2+ neural
progenitor cells (NPCs) that also express adherent junc-
tion markers β-CATENIN (Supplementary Fig. 1a). Inside
the spheres near the lumen representing areas near the
ventricular surface, ventricular radial glia (vRG) marker
PAX6 and G2/M proliferation marker phosphohistone H3
(PH3) are expressed (Supplementary Fig. 1b), and the
PAX6+ SOX2+ NPCs in these VZ-like structures are
thought to be vRG cells (Fig. 1c). The VZ-like zone is
surrounded by an intermediate region rich in TBR2+ cells
resembling the subventricular zone (SVZ) (Supplemen-
tary Fig. 1c). Similarly, telencephalon cortical organoids
derived from other hESC lines such as Q-CTS-hESC-1
(a clinical-grade hESC line)27 also exhibit multiple pro-
genitor zones at day 45 (Supplementary Fig. 1d).
Human embryonic cerebral cortex possesses an

expanded SVZ, which is further divided into the internal
and outside parts named iSVZ and oSVZ, respectively.
The latter is unique in primates for the outer radial glial
cells (oRGCs) that produce most cortical neurons, by
either multiple symmetrical or asymmetric divisions28.
The oRG cells preferentially express genes associated with
extracellular matrix formation and cell migration, such as
TMEM14B, TNC, PTPRZ1, FAM107A, HOPX, and
LIFR29–31. In the hESC-derived cortical organoids,
HOPX+ SOX2+ oSVZ-like cells form a layer surrounding
the VZ-like layer at day 55 of culture (Fig. 1d), similarly,
another oRG marker FAM107A was also clearly expressed
in oSVZ (Fig. 1e). mRNA of FAM107A and HOPX in
cortical organoids at day 0, 15, 25, 35, 60, and 90 well
correlates the stages of organoid development (Fig. 1f, g).
Markers of all six neuronal subtypes are expressed in the
organoids accordingly (Supplementary Fig. 1e–h), such as
CUX1 and TBR1 of deep layer cortical neurons and
REELIN of Cajal-Retzius neurons (Supplementary

Fig. 1g). CTIP2, SATB2, and BRN2-expressing neurons
are also detected (Supplementary Fig. 1h). All data indi-
cate cortical organoids recapitulate the lamination of
human fetal neocortex and form multi-layer progenitor
zones including a prominent oSVZ layer that encom-
passes oRG progenitors.
Based on comparisons to published datasets of different

human fetal organs32 and of human cortical sub-regions,
Pearson’s correlation analysis show that organoids of days
90 and 190 well correlate to fetal brain and spinal cord,
particularly the prefrontal cortex (PFC), but not other
fetal somatic tissues (Supplementary Fig. 2a, b). Half of
the cells fire single or multiple action potentials upon
injection of depolarizing currents (Supplementary Fig. 2c,
d, n= 14), elicit voltage-gated sodium and potassium
currents (Supplementary Fig. 2e), fire spontaneous action
potentials (Supplementary Fig. 2f), and exhibit membrane
capacitance, membrane resistance (Supplementary
Fig. 2g, h), and hyperpolarized resting membrane poten-
tials around −50mV (Supplementary Fig. 2i).
Together, these results demonstrate that our cortical

organoids exhibit multi-layer progenitor zones and all six
neuronal subtypes, which resemble human cortical
development in vivo. In addition, the organoid develop-
ment is similar to fetal human cortical development at the
molecular level, as well as remaining neuronal electro-
physiological activity.

Modeling JEV infection with cortical organoids
To establish an in vitro model of JEV infection, we

induce human cortical organoids from H9-ESC line and
infect them with JEV virulent strain SA1433 at
different stages of cortical organoid culture. 8 days
infection on cortical organoids of day 24, as well as day 9
and day 55, all demonstrate that JEV tend to infect SOX2+

hNPCs (Fig. 2a and Supplementary Fig. 3a, b). JEV
infection causes overall smaller organoid and thinner
neuronal layer, possibly by activating cell apoptosis
(Fig. 2b, c). JEV also dose-dependently declines EdU+-
proliferating cells (Fig. 2d, e). Together, cortical organoid
allows for quantitative JEV exposure and infection, and
then induces cell death and hNPC proliferation
suppression.

JEV infect hNPCs and oRGCs
To examine the JEV infection profile in different human

neural cells, organoids are first dissociated into single cells
and differentiated to hNPCs and immature neurons,
respectively. After JEV (SA14) infection, a group of
SOX2+ hNPCs are JN1+ (JEV NS1 glycoprotein) (Sup-
plementary Fig. 4a). JN1+ TUJ1+ human immature neu-
rons also exist (Supplementary Fig. 4c). These data
indicate that hNPCs, as well as immature neurons, also
support the viral growth and produce extracellular
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infectious JEV virions from 3 days post-infection in vitro
(Supplementary Fig. 4b, d).
In cortical organoids of day 55, 81.42% of oRGCs (81.42

± 1.96%, n= 5 organoids) in the oSVZ are infected with
JEV. In that of day 90, 48.40% (48.40 ± 4.02%, n= 5
organoids) of oRGCs are FAM107A+ JN1+ (Fig. 3a, b). In
cortical organoids older than day 100, comparable to
PCW18, JEV prefers to infect GFAP+ astrocytes (Fig. 3c),
instead of PSD95+ mature neurons (Fig. 3d). In summary,
JEV prefers to infect younger NPCs, GFAP+ astrocytes,
and oRGCs in oSVZ.

Human cortical organoids gradually attain antiviral
immunity response
Infection of JEV generates distinct phenotypes in cor-

tical organoids of day 24 versus day 91. The former

usually exhibit much more severe outcomes with smaller
spheres, irregular surrounding tissue and reduced surface
(Fig. 4a). Accordingly, in older cortical organoids, virus
titers in supernatants are also much lower (Fig. 4b). These
data indicate that cortical organoids at early stages are
more susceptive to JEV.
Innate immune response is important for host defense

against viral infection during the early phase of infec-
tions34. JEV exposure does not cause IFN-β secretion in
organoids of day 24 (Fig. 4c). However, organoids of long-
term differentiation increase IFN-β protein level and
induce the expression of ISGs such as ISG56 (Fig. 4d) and
IFITM3 (Supplementary Fig. 5a), as well as ISG54 and
OAS1 (Supplementary Fig. 5b, c).
More importantly, the expression level of RIG-I, one of

the most important PRRs, is upregulated upon JEV
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infection in organoids of various stages (Fig. 4e, i),
and MDA5 is expressed at relatively low level (Supple-
mentary Fig. 5d), indicating the different roles of RIG-I
and MDA5 in responding to JEV infection in
organoids. The results are in agreement with previously
reported findings using transgenic mice model35. Toll-like
receptor (TLR) genes like TLR2, TLR3, and TLR7,
however, are not induced upon JEV infection (Supple-
mentary Fig. 5e-g). The gene expression level of IRF3
and IRF7 was not changed upon JEV infection (Supple-
mentary Fig. 5h, i). Interestingly, we found that ISG15 is
consistently expressed as RIG-I upon JEV infection in
brain organoids (Fig. 4f). Our results indicate that host
could recognize double-stranded RNA efficiently in
organoids at its early development stage. IRF9 and
phosphorylated-STAT1/2 could form the IFN-stimulated
gene factor 3 (ISGF3) to induce expression of IFN-
stimulated genes12, 36, 37. Interestingly, in JEV-infected
organoids, IRF9 and p-STAT1 are increasingly expressed
in more developed organoids upon JEV infection
(Fig. 4g–i), which are in agreement with our results that
the older cortical organoids have more effective antiviral
activity (Fig. 4b).

Discussion
Using hESC-derived cortical organoids, we revealed JEV

tend to infect astrocytes and oRGCs of the developing
human brain, inhibit cell proliferation, and induce cell
death. Antiviral immunity of human brain is gradually
established during development. These findings will help
to understand the pathology of brain viral infection which
in turn facilitate the development of effective therapeutics.
JEV infection causes irreversible brain damage, which

remains a challenging issue across the world38. Because of
the differential immune reactions between rodents and
human, and lack of human brain tissues to study viral
infection, very little is known about the pathology of JEV
infection in human brain, and no cure is available for such
kind of diseases. hESC-derived cortical organoids well
recapitulate features of developing human brain cortex
and are appropriate models to study a wide variety of
brain diseases including viral infection. Here for the first
time we establish a JEV infection model using hESC-
derived cortical organoids.
Using this model, we identify JEV preferentially infect

neural stem cells and oRGCs and cause brain develop-
mental defects and microcepholon. In our model, there
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were apoptotic phenomena of CAS3+ in JEV-uninfected
cells, at the same time, EdU+ cells were also observed in
some cells infected by JEV, which is similar to previously
reported in the organoids after ZIKV infection21, 23. We
speculated that the decreased proliferation and increased
apoptosis may be due to a secondary effect of virus-
triggered inflammatory response. Early virus infection
does not necessarily activate the cell apoptosis, so the
expression of cell proliferation gene may not be directly
inhibited. This interesting phenomenon has inspired us to
explore how viral infections affect cell replication cycles.

JEV infection generates various outcomes from mild
and transient symptoms to severely locomotive defects,
depending on the age of infection, implying that in
addition to the infection preference on brain cells, other
aspects also affect the final outcomes of JEV infection.
Innate immune response and other effect factors of the
signaling pathway are also activated variously39. We reveal
that JEV infection could upregulate the expression of
RIG-I effectively, and may in turn induce the expression
of IFN-β, following with activation of STAT1 and
downstream ISGs expression. With the activation of IFN
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signaling pathway, IRF9 and STAT1 cooperate with each
other to amplify the induction of late IFNs and ISGs
genes. On the other hand, ISG15 is independently asso-
ciated with the expression of IFN pathway, which is
induced after JEV infection in organoids at the early
developmental stage (Fig. 5). Consistently, recent studies
also demonstrate that intrinsically expressed ISGs can
protect stem cells against viral infection without activa-
tion of IFN signaling pathway15. It is possible that ISG15
has direct antiviral effect at different stage of develop-
ment. In our system, p-STAT2 has not been detected to
activate after JEV infection (Supplementary Fig. 5j, k).
However, STAT2 may be involved in the formation of tri-
complex or a homodimer, like unphosphorylated ISGF3
drives constitutive expression of ISGs to protect against
viral infections40–42. Here, IFN-β was detected by ELISA
only, because it has been reported that production and
function of other type I and type III interferons are similar
to that of IFN-β43–45. We also noted that it is very
necessary to identify the differences between other type I
or type III interferon and IFN-β in brain organoids in
further studies.
In our system, organoids of day 24 encompass abundant

NPCs. Certain genes in the upstream of IFN signaling

pathway are temporarily inactive in such NPCs, cause
refractory to IFN. Antiviral immunity is not only the
host’s own defense mechanism, but also an important
target for antiviral treatment. Our results show that IFN
signaling pathway is not appropriate for defensing JEV
infection at early developmental stage of brain cortical
organoids, but provide a direction for searching future
therapies. It is recently reported that mouse ESCs
(mESCs) use an IFN-independent RNA interference-
based mechanism for antiviral defense46, and RNAi is
confirmed to work as an antiviral immunity in mam-
mals47. Hence, there are more antiviral mechanisms that
could be validated using our human brain organoids
system.

Materials and methods
Maintenance of human embryonic stem cells cultures
hESC lines H9 (WA09) and clinical-grade hESC

(Q-CTS-hESC-1) were cultured feeder-freely on Matrigel
(BD Biosciences) coated 6-well plates in complete
Essential 8 medium (GIBCO, Thermo Fisher Scientific).
The colonies were manually passaged with 0.5 mM EDTA
(Invitrogen; pH= 8) every 4–6 days and maintained at
37 °C with 5% CO2. All stem cell lines used in this study
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were regularly tested and maintained mycoplasma-free
and with verified normal karyotype.

Culture of human telencephalon cortical organoids
To generate suspended cellular aggregates of pluripotent

cells, hESCs were cultured feeder-free on Matrigel-coated
surface with Essential 8 medium. In brief, hESCs were
exposed to a low concentration of dispase for 5–8min.
Suspended colonies were subsequently transferred into
ultra-low-attachment plates, within medium containing
50% NIM (DMEM/F12, N2 supplement (Invitrogen;
100×), non-essential amino acids (Invitrogen; 100×), Glu-
taMAX (Invitrogen; 100×), Heparin (Sigma; 2 µg/ml)) and
50% Essential 8 medium. For the first 24 h (day 0), the
medium was supplemented with 10 μM ROCK inhibitor
Y-27632 (Merck). To reduce tissue heterogeneity and pre-
pattern organoids towards the dorsal telencephalon fate,
we pre-patterned embryoid bodies to the fate of a specific
brain region. IWR-1-endo (Merck, 5 µM) and SB-431542
(Merck, 5 µM) were added to the NIM medium in the first
6 days (day 1–day 7). On day 8 of the protocol, floating
neurospheroids were transferred to neural medium (NM)
containing Neurobasal, B-27 supplement (Invitrogen; 50×)
and GlutaMAX, which was supplemented with 10 ng/ml
FGF-basic (Peprotech) and 20 ng/ml EGF (Peprotech) with
every other day medium change (day 8–day 22). To pro-
mote neural progenitors to differentiate to neurons,
organoids subsequently cultured in NM with 10 ng/ml
BDNF (Peprotech), 10 ng/ml GDNF (Peprotech), 10 ng/ml
IGF-1 (Peprotech), and 20 ng/ml NT3 (Peprotech) starting
at day 23. Medium changes every 3 or 4 days. From
beginning of differentiation culture, all EBs and organoids
were maintained at 37 °C with 5% CO2.

Histology and immunofluorescence
Cells and organoids were all fixed with 4% (w/v) par-

aformaldehyde (Sigma) and 4% sucrose in phosphate-
buffered saline (PBS). Organoids were then incubated in
30% (w/v) sucrose solution overnight at 4 °C. Next,
organoids were placed in tissue base molds and embedded
within O.C.T. compound (Tissue-Tek, Hatfield, PA) at
−20 °C. Organoids blocks were then stored at −80 °C or
used for cryosectioning to obtain 20 μm slices using
freezing microtome (Leica). The cryosections were
washed with washing buffer (1× PBS, 0.3% Triton-100) for
three times (5 min for each time) at room temperature
(RT), then fixed with 4% paraformaldehyde in PBS
for 15 min and blocked in PBS buffer containing 10%
donkey serum and 0.3% Triton X-100 (Sigma) for 1 h at
RT, followed by the incubation with the primary anti-
bodies at 4 °C overnight with 5% donkey serum and 0.15%
Triton X-100. The cryosections were incubated with
secondary antibodies containing 5% donkey serum and
0.15% Triton X-100 for 1 h. Nuclei were counterstained

with Hoechst 33342 DNA dye (Life Technologies, 1: 1000)
at RT for 10min and mounted on glass slides. Images
were taken on a Carl Zeiss LSM710 confocal microscope
and processed using ZEN 2012 software. The following
primary antibodies were used for immunofluorescence:
PAX6 (Santa Cruz Biotechnology; mouse, 1:100), human-
SOX2 (R&D; goat, 1:1000), TBR2 (Abcam; rabbit, 1:500),
Phospho-Histone H3 (Cell Signaling Tec; rabbit, 1:500),
CTIP2 (Abcam; rat, 1:500), BRN2 (Santa Cruz; goat,
1:200), TBR1 (Abcam; rabbit, 1:200), SATB2 (Abcam;
rabbit, 1:100), CUX1 (Santa Cruz; rabbit, 1:200), REELIN
(Millipore; mouse, 1:300), FAM107A (Sigma; rabbit,
1:200), HOPX (Santa Cruz; rabbit, 1:200), JEV NS1 gly-
coprotein, JN1 (Abcam; mouse, 1:20), Cleaved Caspase-3
(Cell Signaling Tec; rabbit, 1:1000).

Organoid slice preparation for electrophysiology
Organoid slices were prepared by embedding organoids

in 4% low melting point agarose cooled to approximately
32 °C. Slices (250 μm) were sectioned using a vibratome
(7000 smz 2, Campden Instruments, Loughborough, UK)
in ice-cold cutting ACSF, and then stored at RT in arti-
ficial cerebral spinal fluid, containing: NaCl 125mM, KCl
2.5 mM, MgCl2 1 mM, NaH2PO4 1.25 mM, CaCl2 2 mM,
NaHCO3 25 mM, D-glucose 25mM (290–310mosm/kg,
pH 7.4). ACSF was oxygenated (95% O2, 5% CO2). Slices
were let recover for at least 60 min prior to electro-
physiological recordings. All chemicals were obtained
from Sigma.

Patch-clamp recordings
Whole-cell current-clamp recordings were performed

at 22 °C in artificial cerebral spinal fluid, bubbled with
95% O2 and 5% CO2. Borosilicate glass electrodes
(resistance 6–10 MΩ) were filled with an intracellular
solution containing 135 mM potassium gluconate,
7 mM NaCl, 10 mM HEPES, 2 mM MgATP, 0.3 mM
Na2GTP, and 2 mM MgCl2, adjusted to pH 7.4 with
KOH. Cell visualization and patch pipette micro-
manipulation were performed by video microscopy,
employing a 40× water-immersion objective mounted
on an upright microscope equipped with infrared dif-
ferential interference contrast (Nikon, Eclipse fn1,
Japan). Intracellular membrane electrical potentials
were recorded in current-clamp mode, using a Multi-
clamp 700B amplifier (Molecular Devices, Palo Alto,
CA, USA). Data were digitized at 10 kHz with a 2 kHz
low-pass filter. Data were analyzed using Clampfit 10.6
(Axon Instruments). For voltage-clamp recordings, cells
were held at −70 mV.

Cell lines and viruses
BHK-21 cells were cultured in DMEM (Thermo

Fisher Scientific) supplemented with 10% FBS and 1% P.S.
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at 37 °C in 5% CO2. C6/36 cells were cultured in RPMI
1640 (Thermo Fisher Scientific) supplemented with 10%
FBS at 30 °C in 5% CO2. Strain SA14 was from the Chi-
nese National Institute for Food and Drug Safety and it
was propagated in C6/36 cells cultured in RPMI 1640
with free FBS. Virus stocks were stored in aliquots at
−80 °C. Virus titers were determined by plaque-forming
assay in BHK-21 cells. Briefly, BHK-21 cells were seeded
in a 12-well plate for 24 h, and then cells were infected
with diluted viruses for 1 h. Viral supernatant was
replaced with DMEM containing 1% low melting agarose
and 1% FBS. Viral plaques were developed at 3 d.p.i. (day
post-infection).

Interferon β detection by ELISA
Interferon β in supernatant of cultured brain organoids

was measured by an ELISA Kit (PBL Assay Science). The
experiment was performed according to the kit’s manual.
Standard samples for the generation of a standard curve
were also provided in the kit. Samples were diluted to the
range of quantification of the kit using the dilution buffer.
Optical density (OD) was measured at 450 nm with a
microplate reader (Backman).

Western blotting
Samples were lysed using by RIPA (Thermo Fisher

Scientific) containing protease inhibitor (Roche). Protein
were quantified and 10 μg of each lysate were loaded per
lane of a NuPAGE™ 4–12% Bis–Tris Protein Gel (Thermo
Fisher Scientific). Samples were separated on 200 V for
45min. Then protein samples were then transferred to
Puro Nitrocellulose Blotting Membranes (PALL) on
200mA for 2 h. The membrane was blocked in 3% BSA in
Tris-based saline with Tween 20 (0.1% TBST) buffer for
1 h and followed by incubating with primary antibodies
overnight at 4 °C. Next day, membranes were washed
three times and then incubated with HRP-conjugated
secondary antibodies for 1.5 h at RT. Protein bands were
visualized using SuperSigna West Pico PLUS Chemilu-
minescent Substrate (Thermo Fisher Scientific) and blot
images were captured by Automatic chemiluminescence
image analysis system (Tanon). The dilution of antibodies
used in Western blotting is as followed: phospho-STAT1
(Ser727) (CST, #8826), phospho-STAT2 (Tyr690) (CST,
#4441), RIG-I (CST, #4200), anti-GAPDH-ChIP Grade
(Abcam, ab9485) 1:1000.

Genome quantification by SYBR green qRT-PCR
Total RNAs were isolated from brain organoids using

Trizol (Qiagen). Gene expression levels were quantified by
one-step SYBR green qRT-PCR (TAKARA), normalized
against GAPDH. The primers used in this paper and
primer sequence for qRT-PCR are shown below.

IRF-3-F AGAGGCTCGTGATGGTCAAG

IRF-3-R AGGTCCACAGTATTCTCCAGG

IRF-7-F GCTGGACGTGACCATCATGTA

IRF-7-R GGGCCGTATAGGAACGTGC

ISG54-F AAGCACCTCAAAGGGCAAAAC

ISG54-R TCGGCCCATGTGATAGTAGAC

ISG56-F TTGATGACGATGAAATGCCTGA

ISG56-R CAGGTCACCAGACTCCTCAC

OAS1-F CTGACFCTGACCTGGTTGTCT

OAS1-R CCCCGGCGATTTAACTGAT

IFITM3-F CATCCTCATGACCATTCTGC

IFITM3-R TCAGTGATGCCTCCTGATCT

STAT1-F CAGCTTGACTCAAAATTCCTGGA

STAT1-R TGAAGATTACGCTTGCTTTTCCT

STAT2-F CCAGCTTTACTCGCACAGC

STAT2-R AGCCTTGGAATCATCACTCCC

IRF9-F GCCCTACAAGGTGTATCAGTTG

IRF9-R TGCTGTCGCTTTGATGGTACT

RIGI-F CTGGACCCTACCTACATCCTG

RIGI-R GGCATCCAAAAAGCCACGG

ISG15-F GAGAGGCAGCGAACTCATCT

ISG15-R CTTCAGCTCTGACACCGACA

FAM107A-F GCAGCGTGTCCTAGAGCAC

FAM107A-R CCGCAGGTTTTCCCTGACT

HOPX-F GAGACCCAGGGTAGTGATTTGA

HOPX-R AAAAGTAATCGAAAGCCAAGCAC

Quantification and statistical analysis
Statistical analyses were performed using Prism 6 soft-

ware (GraphPad Prism). For all experiments with error
bars, data were presented as the mean ± SEM or ± SD.
The unpaired two-tailed Student’s t test was used to cal-
culate statistical significance between two groups with p
values. Comparisons among three groups or more, sta-
tistical significance were made using two-way ANOVA
analyses. A value of p < 0.05 was considered to be sig-
nificant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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