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Mitochondria-associated ER membranes
(MAMs) and lysosomal storage diseases
Ida Annunziata1, Renata Sano2 and Alessandra d’Azzo1

Abstract
Lysosomal storage diseases (LSDs) comprise a large group of disorders of catabolism, mostly due to deficiency of a
single glycan-cleaving hydrolase. The consequent endo-lysosomal accumulation of undigested or partially digested
substrates in cells of virtually all organs, including the nervous system, is diagnostic of these diseases and underlies
pathogenesis. A subgroup of LSDs, the glycosphingolipidoses, are caused by deficiency of glycosidases that process/
degrade sphingolipids and glycosphingolipids (GSLs). GSLs are among the lipid constituents of mammalian
membranes, where they orderly distribute and, together with a plethora of membrane proteins, contribute to the
formation of discrete membrane microdomains or lipid rafts. The composition of intracellular membranes enclosing
organelles reflects that at the plasma membrane (PM). Organelles have the tendencies to tether to one another and to
the PM at specific membrane contact sites that, owing to their lipid and protein content, resemble PM lipid rafts. The
focus of this review is on the MAMs, mitochondria associated ER membranes, sites of juxtaposition between ER and
mitochondria that function as biological hubs for the exchange of molecules and ions, and control the functional
status of the reciprocal organelles. We will focus on the lipid components of the MAMs, and highlight how failure to
digest or process the sialylated GSL, GM1 ganglioside, in lysosomes alters the lipid conformation and functional
properties of the MAMs and leads to neuronal cell death and neurodegeneration.

Facts

● MAMs are discrete tethering sites between the ER
and mitochondria membranes with a defined
composition of lipids and proteins that resembles the
PM lipid rafts.

● MAMs serve as functional hubs for many
physiological processes that are influenced by the
specific distribution and local concentration of the
lipid components (i.e. cholesterol and gangliosides)

● Lipid contents limit the recruitment and clustering of
specific proteins at the MAMs, and influence their
biochemical properties and functions.

● Impaired lysosomal turnover and degradation of

GM1 in the LSD GM1-gangliosidosis alter the
molecular composition of the MAMs and Ca2+
signaling, resulting in ER-mitochondria-mediated
neuronal apoptosis.

Open questions

● Are there other genetic defects of lysosomal
catabolism that influence the function and structural
characteristics of the MAMs?

● Does deregulation of signaling pathways at the
MAMs, caused by their altered lipid composition,
underlie aspects of pathophysiology of lipid storage
diseases, especially with regard to
neurodegeneration?

● Are there differences in the lipid and protein makeup
of the MAMs depending on the cell types or
physiological state of the cells?

● How can we monitor and assess lipid redistribution
to the MAMs?
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Lysosomes and lysosomal storage diseases
The lysosome and the ubiquitin-proteasome systems

converge the bulk of cellular catabolism in virtually all
mammalian cells1–3. The dynamic interplay between these
catabolic machineries counterbalances the metabolic
needs of cells and ensures the homeostatic maintenance
of cell physiology. Lysosomes are delegated to the com-
partmentalized processing/degradation/recycling of long-
lived macromolecules that reach the organelles through
the biosynthetic, endocytic, phagocytic or autophagic
routes3. In addition, lysosomes have recently emerged as
central platforms for specialized cellular functions, such
as nutrient sensing, Ca2+ signaling, PM repair, cholesterol
trafficking, viral/bacterial infections and cell death2–7. The
constituents of these organelles include soluble and
membrane-bound hydrolytic enzymes, lysosomal integral
membrane proteins, ion channels and transporters, whose
expression is regulated in turn by transcriptional and
post-translational modifications that adapt their activities
and functions to the cell types and the metabolic status of
the cells3, 8. Activation of the lysosomal system may occur
under both physiologic and pathologic stimuli; the result
is multiform, and displays the involvement of lysosomes
in such fundamental processes as metabolic regulation,
nutrition, differentiation and cell defense3,8–10. A failure of
the lysosomal system to perform its functions results in
severe clinical conditions known as LSDs9,11–13.
The majority of LSDs are caused by deficient or defec-

tive activity of glycosidases. The natural substrates of
these enzymes comprise a wide array of glycoconjugates,
many of which are still unidentified, that are themselves
differentially expressed and distributed in different cell
types. Genetic mutations that impair their hydrolytic
capacity provoke a cascade of pathologic events that are
mostly triggered by the relentless accumulation of par-
tially unprocessed/degraded substrates in these orga-
nelles, leading to the characteristic appearance of swollen
lysosomes, the hallmark of these diseases. The hetero-
geneous composition of lysosomes and their ubiquitous
distribution account for the systemic clinical manifesta-
tions of LSDs14.
With a combined incidence of 1:5000 live births, this

group of over 70, individually rare, monogenic disorders
affect multiple organs, including the nervous system2,11.
While the genetic bases of the LSDs are relatively easy to
define, the age of onset and complexity of the symptoms
may depend on the type of LSD, the amount of residual
enzymatic activity, the biochemical properties of the sto-
rage material, and the cell types where the storage mostly
occurs12–14. Clinical signs may include coarse face, myo-
clonus, macular cherry red spot, hepatosplenomegaly,
cardiac and kidney involvement and dysostosis multiplex.
In addition, more than 70% of LSDs display an array of
neurological abnormalities, associated with severe

developmental delay, and psychiatric problems. The
complexity of the phenotypes has rendered the under-
standing of the pathogenesis particularly challenging but
also created a means for dissecting the biology of the
lysosomal system and more broadly for deciphering the
molecular effectors downstream of a single enzyme defi-
ciency and accumulated metabolites.
A subgroup of LSDs linked to defective catabolism of

lipids comprises the glycosphingolipidoses, NPC, and
Wolman disease15–18. Sphingolipids and their glycosylated
and sialylated derivatives, the GSLs and gangliosides, are
ubiquitous and abundant components of cellular mem-
branes in mammalian cells. Their amphipathic structure
includes a basic hydrophobic membrane moiety, cer-
amide, composed of sphingosine and fatty acid, and a
hydrophilic oligosaccharide chain that may contain one or
more sialic acid residues19,20. They are synthesized in the
ER, Golgi and trans Golgi network by the sequential
addition of carbohydrate residues to their backbone cer-
amide; they are then transferred via vesicular and non-
vesicular mechanisms to the outer leaflet of the PM21.
Degradation of these compounds occurs along the
endocytic route by the stepwise removal of individual
sugars by lysosomal exoglycosidases or membrane siali-
dases working in concert with activator proteins22.

Fig. 1 Membrane contact sites in Eukaryotes. Schematic
representation of an eukaryotic cell and its interorganellar membrane
contact sites. The vast network of the ER participates in multiple
membrane contact sites with the membranes of mitochondria
(MITO.), PM, early endosome (EE), lysosome (L) and Golgi. Additionally,
lysosomes can tether with mitochondrial and nuclear (Nu.)
membranes. EL endolysosomes; AV autophagyc vacuoles; EnV
endocytic vesicles; ExoV exocytic vesicles
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Membrane microdomains: MAMs and their lipid
raft-like characteristics
Mammalian membranes represent highly dynamic

structures that maintain cell integrity and govern a myriad
of cellular processes indispensable for the proper phy-
siology of cells and tissues. PM and intracellular mem-
branes are organized in discrete subdomains/
microdomains, sharing features of lipid rafts, that are
enriched in GSLs, cholesterol and ceramide. These
microdomains are also known as DRMs or GEMs23–25.
The type of lipids in these membrane microdomains
limits the recruitment and clustering of specific protein
components, creating functional cellular hubs for efficient
(lipid) shuttling, trafficking of ions and signaling
molecules26.
It is now well established that all intracellular organelles

are in a state of constant communication achieved at
MCS27–31. These membrane structures create a transitory
but efficient way of transferring or exchanging lipids and
other macromolecules between organellar membranes.
MCS are established by the tethering of membrane pro-
tein complexes and lipids, which maintain the two orga-
nelles in close proximity without undergoing fusion.
Considering the widespread ER network within cells, the
membranes of the ER cisternae can engage in multiple
contact sites with other organellar membranes, including

those of the mitochondria, the lysosomes, the Golgi
apparatus, the endosomes and the PM (Fig. 1)29,30,32,33.
These membrane microdomains are not randomly
assembled but are specified by the characteristics and
arrangement of the protein and lipid components they
embed at either tethering membranes. This configuration
allows for the compartmentalization of specific functions/
activities in a controlled milieu, and explains why MCS
between intracellular organelles have raft-like character-
istics (Fig. 2).
So far, the best studied of these contact sites are the one

formed between the membranes of the ER and the
mitochondria33–48. These membrane microdomains,
known as mitochondria associated ER-membranes or
MAMs, are now established as reversible tethers that co-
regulate and influence a variety of cellular processes, i.e.,
synthesis/transport of lipids and lipid intermediates, Ca2+

dynamics/signaling, autophagy, mitochondrial shape and
size, apoptosis and energy metabolism35,46–54. These
functions of the MAMs are tightly interconnected, given
that changes in the topology and concentration of their
constituents can dramatically alter their homeostatic
control of specific ER and mitochondrial functions with
pathological effects that can lead to cell demise.
To date, there is still little understanding of the way the

turnover of membrane lipids, particularly GSLs and

Fig. 2 Schematic rendering of the contact sites between ER and mitochondria (MAMs), ER and PM (PAMs) and potentially ER and lysosomes (?) that
explain the redistribution and buildup of GM1 in the ER membranes and the consequent activation of the apoptotic process leading to neuronal cell
death in β-gal−/− mice
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cholesterol, by lysosomal hydrolases can modulate the
local concentration of these constituents at the MAMs
and, in turn, their function. However, the prediction is
that defective lysosomal catabolism of lipids, causing the
buildup of these compounds at the PM and in lysosomes,
may provoke their redistribution to the limiting mem-
branes of other organelles and eventually alter the lipid
composites of MCS. In this review, we will give a specific
example of how impaired degradation of the sialylated
GSL, GM1, due to deficiency of the lysosomal enzyme β-
Gal (Table 1) in the neurodegenerative LSD GM1-gang-
liosidosis, provokes the redistribution of this ganglioside
to the ER membranes, which, in turn, changes its local
concentration within MAMs and alters MAM’s functions
(Fig. 2).

Lipid synthesis at the MAMs
Phospholipids
Since the discovery of the MAMs and the identification

of their role in maintaining intracellular Ca2+ home-
ostasis35,36,47,49,52,55, a large body of experimental work
has implicated these specific microdomains in both phy-
siological and pathological processes. One of the funda-
mental functions of the MAMs is the coordinated
biosynthesis of phospholipids and their transport35. This
is because, beside the ER, other intracellular organelles,
including the mitochondria, lack the ability to synthesize
de novo their phospholipids and rely on the ER as their
only source56. On these premises, the close proximity of
the ER and the mitochondria at the MAMs (~10–30 nm)
provides an insulated environment against the hydro-
philicity of the cytosol, and favors the bi-directional, non-
vesicular lipid transfer at these microdomains57. This
exchange in trans is evidenced in the metabolism of PS
and PC, that has been shown to occur in part at the
MAMs35,58. In mammalian cells two PS synthases, PSS1
and PSS2 (Table 1), are present at high concentrations in
the MAMs, where they produce PS by base-exchange of
the head groups of PC or PE with serine in a Ca2+

dependent manner58. These reactions promote the release
of Ca2+ into the ER, an ATP dependent process35,58. PSS1
and PSS2 localize at the ER face of the MAMs, opposite to
the PS-decarboxylase (Table 1), which is located at the
mitochondrial side59. Their strategic position creates a
gradient of PS concentration that facilitates the transfer of
PS from the MAMs to the mitochondrial inner mem-
brane. The latter is a rate-limiting step for PS conversion
into PE by the decarboxylase. Alternatively, PE is gener-
ated by acylation of lyso-PE, a reaction that also occurs in
the MAMs60–62. Within these contact sites PE can then
undergo conversion into PC by three consecutive
methylation reactions catalyzed by the methyltransferase
PEMT (Table 1), also localized at the MAMs62,63. This set
of enzymatic reactions ensures the controlled supply ofTa
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phospholipids to the mitochondria, which is necessary for
maintaining mitochondrial membrane integrity, especially
following fusion and fission of the organelles64–66. Nota-
bly, the ablation of either PSS1 or PSS2, but not both
enzymes, in mice is compatible with life, despite the
reduction of serine exchange activity and overall tissue
reduction of PS67; instead, silencing of PS-decarboxylase
reduces mitochondrial PE content, and results in mito-
chondrial dysfunction and lethality in embryos68.
The active transfer of phospholipids by multiprotein

complexes has also been shown to occur at the MAMs,
although so far only in the budding yeast and not in
mammalian cells. In yeast, genetic screenings have iden-
tified macromolecular protein complexes that tether the
ER and mitochondrial membranes at contact sites, and
possibly coordinate the trafficking of phospholipids and
phospholipid intermediates between the two organelles.
One of these complexes, named ERMES45,65,69, (Table 1)
was found by screening for yeast mutants that failed to
grow unless they expressed a synthetic fusion protein that
artificially created contact sites between the two orga-
nellar membranes. ERMES comprises the two mito-
chondrial outer membrane proteins Mdm10 and Mdm34,
the integral ER membrane protein Mmm1 and the cyto-
solic protein Mdm1245,70–73. In addition, Gem1, the yeast
ortholog of the mitochondrial Rho GTPases 1 and 2,
Miro1 and Miro270, and more recently Lam674,75

(Table 1), have been shown to be part of and to regulate
the ERMES complex. It is noteworthy that Lam6 contains
a START domain (see below) and has the ability to bind
and transfer sterol across intracellular contact sites76;
hence, Lam6 may exert a similar task within the ERMES
complex. However, while the role of this complex in
tethering ER and mitochondria has been demonstrated, its
function in phospholipid transport remains controversial
because of apparently contradictory results reported in
the literature. In one study, ERMES was shown to mediate
lipid exchange between ER and mitochondria45, while in
another study the transport of PS between these orga-
nelles was shown to be ERMES- and Gem1-
independent77. These authors argued that the altered
lipid profiles of cells lacking ERMES45 were caused by
defects in mitochondrial morphology, rather than in
phospholipid metabolism77. Furthermore, all components
of the ERMES complex, with the exception of Gem1 and
Lam6, lack obvious homologs in higher eukaryotes; for
this reason it is still under debate whether an ERMES-like
complex exists in mammalian cells70.
Recently, an array-based genetic interaction screen,

aimed to discover genes required for phospholipid
exchange at the MAMs78, revealed that yeast mutants
missing multiple proteins of another complex, EMC
(Table 1), had defects in PS transfer to mitochondria,
reduced number of contact sites and compromised

mitochondrial function. The EMC complex contains six
conserved proteins, EMC1–6, and interacts with TOM578.
This large multiprotein complex represents another
tethering structure between ER and mitochondrial
membranes that transfers phospholipids independently of
ERMES78. However, while Lam6 and the EMC proteins
do have metazoan orthologs, it is still unclear whether
these orthologs effectively function as regulators of ER-
mitochondria contact sites in mammalian cells, and
whether they facilitate lipid shuttling. In addition, we
cannot exclude that physical flipping of the lipids may
occur between the juxtaposed membranes if they are in
sufficiently close proximity.

Defective phospholipid synthesis in the MAMs of Cln8
deficient mice
Interestingly, already two decades ago Vance et al79.

examined the role of the MAMs in the metabolism of
phospholipids, particularly PS, using the mouse model of
the motor neuron disorder, neuronal ceroid lipofuscinosis
or NCL. NCLs, also referred to as CLNs80, are a group of
at least 14 congenital neurodegenerative disorders with
onset in infancy, adolescence, or young adulthood,
depending on the gene involved and the severity of the
clinical symptoms81. These diseases are characterized by
progressive psychomotor deterioration, epilepsy, and
blindness81. Their histopathology hallmark is the accu-
mulation in neurons and other cell types of the auto-
fluorescent lipopigment, lipofuscin82. NCLs are caused by
mutations in different genes, encoding soluble lysosomal
enzymes (i.e., cathepsin D, PPT1, TPP1) or (non-lysoso-
mal) integral membrane proteins (Table 1)80. One
example of the latter group is CLN8, a transmembrane
protein that is localized in the ER membranes or shuttles
between the ER and Golgi compartments, and is thought
to take part in lipid synthesis and transport83. Deficiency
of CLN8 is linked to one of the late infantile variants of
NCLs, and is associated with increase in glyceropho-
spholipids containing polyunsaturated fatty acyl chains,
such as PS and PE, and reduced concentrations of cer-
amide, galactosyl- and lactosylceramide, sulfatides and
fatty acyl chain-containing molecular species84. A homo-
zygous mutation in the orthologous mouse gene (Cln8)
was identified in a naturally occurring NCL model, the
motor neuron degeneration (mnd) mouse85. Using
MAMs isolated from the liver of these animals, Vance
et al79. demonstrated that the levels and activity of
PEMT2 and other two key enzymes for the synthesis of
phospholipids (CTP and PS synthase)86(Table 1) were
greatly reduced. Although these reduced activities did not
hamper the import of phospholipids into the mitochon-
dria nor the PS metabolism, other proteins normally
present in mitochondria partially redistributed to micro-
somes, suggesting intrinsic defects of the MAMs in the
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mutant mice79. Nearly 10 years later, by analyzing the
neurodegenerative events occurring in specific brain
regions of the same mouse model at different stages of
disease progression, two groups of investigators reported
variable activation of effectors of ER-stress-mediated
apoptosis and inflammation87, as well as defective mito-
chondria buffering capacities of neurons88. Together these
studies support the idea that deregulated activity/function
of the MAMs relative to lipid synthesis and transport
could be a major contributor of neurodegeneration and
disease progression in CNL8 deficiency.

Cholesterol and ceramide
Other essential lipids at the mitochondrial membranes

are cholesterol and ceramide (Fig. 2). As it is the case for
the phospholipids, cholesterol and ceramide are imported
into the mitochondria where they serve as structural
components of the membranes or as precursors for the
synthesis of steroid hormones89. These lipids are pro-
duced at least in part in the MAMs, and this accounts for
the activities of the cholesterol synthetic enzymes and
ceramide synthase being higher in the MAMs than in the
ER or mitochondria, respectively57,64.
Basal storage of cholesterol in the form of cholesteryl

esters is maintained predominantly through the activity of
ACAT (Table 1)90. This enzyme catalyzes the esterifica-
tion of insoluble, membrane-bound cholesterol into
cholesteryl ester, which is subsequently incorporated into
lipid droplets, thereby preventing the buildup of toxic
cholesterol at the membranes. ACAT and its enzymatic
activity are enriched in MAMs, and in fact, this enzyme
has been used as a reliable marker of these micro-
domains35. Under stress or other pathological conditions,
the flux of cholesterol may change dramatically due to
either augmented hydrolysis of stored cholesteryl esters,
increased uptake of plasma cholesterol, or transport of
free cholesterol into the mitochondria. The ensuing
accumulation of cholesterol within the MAMs is at the
basis of severe disease conditions including Alzheimer’s
disease, steatohepatitis, and cancer91–94, each of whom
have been linked to altered signaling pathways occurring
at the MAMs.
Similarly, changes in ceramide levels in the MAMs may

occur under pathological stimuli. For instance, upon
radiation both ceramide synthesis and ceramide levels
increase exclusively in the MAMs, but not in the ER and
the mitochondria95, albeit the implications of this phe-
nomenon are unknown. We can postulate, however, that
the increased pool of ceramide in the MAMs creates a
reservoir of this lipid, which can be readily transferred
into the mitochondria for the initiation of an apoptotic
process, if the pathogenic insult persists. Together these
observations suggest that enrichment of lipid synthetic
enzymes at the MAMs may serve the purpose of

compartmentalizing the transfer of lipid pools into the
mitochondria, thereby limiting the toxic effects of lipid
overload in this organelle.
Cholesterol is not only synthesized in the MAMs, but

also uses these microdomains for its transport into the
mitochondria96. This process occurs under acute stress
condition or when there is the need for increased cho-
lesterol transfer into the mitochondria, for instance dur-
ing the synthesis of steroid hormones. The latter process
is catalyzed by the sequential action of a set of steroido-
genic enzymes, one of which, StAR (Table 1), is rate
limiting for the subsequent biosynthetic reactions96. As
mentioned earlier, StAR contains a START domain that is
required for the binding to and transport of cholesterol.
The mode of activation of this enzyme is unusual because
the 37 kDa StAR precursor is first translocated into the
MAMs, where it binds cholesterol and interacts with
VDAC2, a prerequisite for its processing into a 32 kDa
intermediate97. This form is then imported into the
mitochondrial matrix as a fully active 30 kDa cholesterol-
bound protein by a complex formed by TOMM22 and
VDAC2 (Table 1)97. VDAC2 appears to be a key player in
this process, because, in its absence, the amount of
mitochondrial StAR is reduced and the protein cannot be
efficiently loaded onto the MAMs. Consequently, a
reduced amount of cholesterol is imported into the
mitochondria, which eventually affects the synthesis of
steroids. Also in this example, the MAMs act as functional
hubs for the pathways of cholesterol transport and
steroidogenesis97.
The actual lipid composition of the MAMs has gained

special attention in recent years52,98,99. Several studies
have revealed that specific types of lipids are embedded
and concentrate in these microdomains, rendering the
composition of the tethering membranes topologically
different from that of the reciprocal ER and mitochondrial
membranes. The gathering of lipids at the MAMs, and the
modulation of their local concentration, change the
structure of these contact sites and their ability to recruit
specialized protein assemblies, ultimately altering the
MAMs’ physiological functions and activities. For exam-
ple, sigma-1 receptor, a structural component of the
MAMs100 that participates in Ca2+ signaling, associates
within the raft/GEM fraction of the MAMs with ceramide
and cholesterol98,99. The high levels of cholesterol within
the MAMs, which is 5–7 times higher than that in the ER,
and the accumulation of ceramide at the same sites have
been shown to cause partitioning of sigma-1 receptor to
the raft/GEM subdomain of the MAMs98. Instead, depletion
of either lipid from the MAMs relocates the sigma-1
receptor from the MAMs to the ER membrane, likely
altering Ca2+ signaling99. It was also demonstrated that
reducing cholesterol concentration within the MAMs with
MBCD, a circular oligosaccharide used to extract cholesterol
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from membranes98, significantly increases MAMs copur-
ification with mitochondria, suggesting that cholesterol may
also act as a negative regulator of MAMs formation.

Sialylated glysoshingolipids: gangliosides
Other quantitatively minor, but important lipids for the

function of the MAMs, are the gangliosides, the major
class of acidic GSLs, containing one or more sialic acid
residues. Gangliosides are structural components of the
outer leaflet of PM and the nuclear envelop, where they
segregate, together with cholesterol and other sphingoli-
pids, into raft microdomains102–104. They are particularly
abundant in the nervous system, where they account for
approximately 10–12% of the total lipid contents of neu-
ronal membranes102–104, whereas they occur at relatively
low levels in other tissues. Their diversity and structural
complexity suggest that gangliosides are not biologically
redundant, but have unique functions. Beside exhibiting
receptor or co-receptor function for cytokines, toxins,
viruses and bacteria19,105–107, gangliosides are key signal-
ing molecules that take part in biological processes as
pivotal as cellular recognition and adhesion, receptor
signal transduction, Ca2+ signaling, growth regulation,
and differentiation101,103,107. Gangliosides are also
important messengers of the adaptive responses to stress,

including apoptosis. Under stress conditions that cause an
increase of their intracellular concentration, gangliosides
can tilt the homeostatic balance towards the induction of
an apoptotic program (Fig. 3)52,108. In addition to their
role at the PM, there is now experimental evidence that
gangliosides can reside at the MAMs, where their effect
on often opposite cell fate decisions again depends on
their local concentration, structural characteristics and
sugar modifications. However, it is not yet clear whether
gangliosides directly perturb membrane composition and
permeability, or they influence the recruitment/function
of membrane proteins.

MAM’s localized GD3 and autophagy
The disialogaglioside GD3 has been first described as a

tumor associated antigen, because it was found over-
expressed in multiple tumors109,110. Since those early stu-
dies, GD3 has been shown to induce mitochondrial
apoptosis in several cell types, including human hemato-
poietic cells, epithelial cells and neural cells111,112. GD3
appears to exert this function when localized in the raft/
GEM microdomains of the mitochondrial membrane
(Figs. 2 and 3), where it associates with VDAC1 and the
fission protein hFis1 to form a structural complex that
recruits two of the Bcl-2 family of proteins, t-Bid and Bax

Fig. 3 Schematic representation of a single MAM, depicted as a functional hub for the aberrant transfer of Ca2+ between ER and
mitochondria, leading to ER- and mitochondria- mediated neuronal cell death in GM1-gangliosidosis. The figure also lists the principal
effectors of the apoptotic process described in Tessitore et al., 2004108 and Sano et al., 200952
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(Table 1). Once formed, this multimolecular complex trig-
gers mitochondria depolarization and apoptosis. In support
of these findings is the observation that disruption of lipid
microdomains in isolated mitochondria by MBCD rescues
the mitochondria depolarization induced by GD3113.
Besides its role in apoptosis, recently GD3 has also been

implicated in the formation of autophagosomes, because
it was shown to physically interact with MAP1LC3/LC3
(Table 1)114,115. In a follow-up study, the same group has
demonstrated that specifically in the raft/GEM fraction of
the MAMs, GD3 is associated with two important effec-
tors of autophagosome’s formation, AMBRA1 and WIPI1
(Table 1)116. These authors further showed that under
starvation-induced autophagy the concentration of GD3
increases within the microdomains, which favors the
interaction of this ganglioside with the chaperon calnexin,
another resident protein of the MAMs that interacts with
AMBRA1 andWIPI1. Thus, following autophagic induction,
an increased amount of GD3 clusters together with
AMBRA1, WIPI1 and calnexin in the lipid-enriched fraction
of the MAMs; these results point to an active
role for this ganglioside in the early phases of the autophagic

process, specifically at these membrane microdomains. In
contrast, reducing the levels of GD3 by inhibition of gang-
lioside synthesis hinders the initiation of autophagy116. Thus,
as it is the case for other lipids, modulation of the ganglio-
sides’ concentration in the MAMs greatly influences the
coordinated regulation of autophagy116.

GM1-gangliosidosis: GM1 at the MAMs and
neurodegeneration
Another sialylated GSL identified as a structural com-

ponent of the MAMs, albeit present at very low con-
centration under physiological conditions, is GM1. GM1
is one of the most abundant gangliosides present in the
adult neuronal membranes, and is the only ganglioside
shown to bind Ca2+ and to modulate Ca2+ flux across
membranes (Figs. 2 and 3)52,102,108,117,118.
Accumulation of GM1 above its physiological threshold

occurs in GM1-gangliosidosis, a generalized, neurode-
generative LSD caused by deficiency of the GM1-cleaving
enzyme β–Gal119. This very severe condition affects
primarily infants, but milder cases, with a longer survival,
occur in adolescents and adults119. The early onset form

Fig. 4 Ultrastructural abnormalities in the CNS of β-Gal−/− mice. Transmission electron microscopy of spinal cord neurons from 3-month-old β-
Gal−/− and β-Gal+/+ mice shows evidence in the affected mouse of an expanded lysosomal compartment with enlarged lysosomes filled with
membranous material due to accumulation of GM1-ganglioside. Scale bars: 1 μm; lover right panel 0.5 μm. Adapted from the original article Tessitore
et al., 2004108 with the permission of Elsevier
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of GM1-gangliosidosis presents with growth retardation,
progressive neurologic deterioration, due to extensive
brain atrophy, visceromegaly, and skeletal dysplasia.
Abnormal amounts of GM1 and, to a lesser extent
its asialo-derivative GA1, accumulate in the brain, and
oligosaccharides derived from glycoproteins and keratan
sulfate are excreted in the urine. Beta-Gal–/– mice, an
authentic model of GM1-gangliosidosis120, develop a
severe, generalized nervous system disease, resulting in
tremors, ataxia and abnormal gait, which culminates with
rigidity and paralysis of the hind limbs120.
Neurons, the primary affected cells of the disease,

undergo massive, age-dependent accumulation of both
GM1 and GA1120. This phenotype is accompanied by
profound histopathological changes throughout the CNS,
associated with progressive expansion of the lysosomal
compartment as the animals age (Fig. 4). Degenerating
neurons filled with lysosomes containing membranous
material and remnants of the ER and ribosomes are
emblematic of the disease (Fig. 4). Neuronal cell death is
followed by micro- and astrogliosis, a sign of an elicited
widespread CNS inflammation121–123. In β-Gal–/– mice
impaired lysosomal degradation of GM1 in neurons is

accompanied by the abnormal redistribution of this
ganglioside from the PM and lysosomes to the ER
membranes (Fig. 2). Studies seeking for a pathogenic
mechanism that would link the neuronal cell death to the
primary storage product, revealed that the abnormal GM1
levels at the ER membranes led to depletion of the ER Ca2
+ store, followed by activation of an UPR123. Initially eli-
cited as survival mechanism via upregulation of ER-
resident chaperones and folding catalysts, such as BiP
(Table 1), and inhibition of protein synthesis124, pro-
longed UPR activation under a persistent pathologic sti-
mulus causes permanent damage and triggers an ER
stress-mediated apoptotic program125. In β-Gal−/− brain
and spinal cord, upregulation and activation of the UPR
molecular effectors responsible for cell survival (e.g., BiP)
is associated with increased levels of the transcription
factor ATF6, the proapoptotic mediator CHOP, the
phosphorylated form of the kinase JNK2, and the cleaved,
active form of caspase-12, and culminates with apoptosis
(Fig. 3 and Table 1)108. Activation of the UPR appeared to
be directly downstream of GM1 accumulation in the ER
membranes, because reducing the levels of de novo syn-
thesized GM1 reverted UPR activation108.

Fig. 5 GM1 accumulation in the GEMs alters MAMs dynamics. a Representative electron micrographs of mitochondria isolated from β-Gal+/+ and
β-Gal−/− brains showed larger areas of juxtaposition between ER and mitochondria in the β-Gal−/− preparations compared to the WT. b TLC analysis
of lipids from the purified MAMs, and the Triton-extracted (Triton extr. MAMs) and Triton-insoluble fractions (GEMs) of the MAMs demonstrated the
buildup of GM1 in all β-Gal−/− fractions. c Increased levels of phosphorylated IP3R1, VDAC1, and GRP75 were detected in the GEMs extracted from β-
Gal−/− brains compared to β-Gal+/+ brains. Adapted from the original article Sano et al., 200952 with the permission of Elsevier
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The intrinsic ability of GM1 to bind Ca2+ and its
redistribution in the ER membranes suggested that this
ganglioside could reside also in the MAMs. At this loca-
tion, GM1 accumulation could perturb the topology of
the microdomains and their Ca2+ buffering capacity.
Transmission electron microscopy analyses of crude
mitochondria isolated from β-Gal–/– mouse brains indeed
identified an increased number of ER remnants juxta-
posed to mitochondrial membranes, compared to those
from the WT samples (Fig. 5). This indicated that GM1
accumulation in the ER membranes fostered the forma-
tion of more contact sites between ER and mitochondria.
Moreover, MAMs isolated from β-Gal–/– brains36,52 con-
tained substantially higher levels of GM1 than WT
MAMs52, and the amount was even greater in the purified
raft/GEM fractions of the MAMs (Fig. 5). These findings
unequivocally proved that GM1 is a normal constituent of
these lipid microdomains, albeit present in minuscule
amounts, and accumulates in these microdomains from β-
Gal–/– MAMs. These studies have established the exis-
tence of rafts/GEMs microdomains within the MAMs and
demonstrated that under disease conditions the increased
concentration of GM1 at the GEMs facilitates the for-
mation and constitutive activation of a Ca2+ pore com-
posed of the IP3R1, VDAC1 and GRP75 (Figs. 2 and 5;
Table 1)52. Remarkably, the observation that the phos-
phorylated and active form of the IP3R1 (P-IP3R1) is
enriched in the β-Gal–/– GEMs, and co-precipitates with
GM1 (Fig. 5) suggests that GM1 accumulation alters the
dynamics of the lipid microenvironment, and favors the
partitioning of IP3R1 in an active conformation into these

microdomains. Concomitantly, the high levels of VDAC1
and GRP75 observed in the β-Gal–/– GEMs (Fig. 5), fur-
ther potentiates the activity of the Ca2+ megachannel
composed by these proteins. These pathological changes
in the composition of the β-Gal–/– MAMs promotes the
continuous Ca2+ flux into the mitochondria, which ulti-
mately leads to mitochondria Ca2+ overload (Figs. 2 and
3). The net result of these events affects the bioenergetic
activities of the mitochondria, and activates the mito-
chondrial intrinsic apoptotic pathway (Fig. 3)52. Signs of
mitochondrial dysfunction include mitochondria depo-
larization, opening of the PTP and mitochondrial mem-
brane permeabilization, which together contribute to
mitochondria-mediated apoptosis downstream of GM1
accumulation in the MAMs/GEMs (Fig. 3). Treatment of
β-Gal−/− cells with MBCD, that efficiently extracts GM1
from the MAMs, rescues the opening of the PTP, the
dissipation of the potential, and the apoptotic process
(Fig. 6). Taken together these studies underscore the
significance of the MAMs/GEMs microdomains in pre-
serving physiological ER homeostasis and mitochondrial
bioenergetics activity.

Conclusions and perspectives
In eukaryotic cells membrane-enclosed organelles,

albeit individually entrusted to different functions, are
highly dynamic and in constant communication with one
another (Fig. 1). Their regulated interplay occurs at
membrane tethering sites embedded in an active cytos-
keletal network, whose formation creates the most effi-
cient setting for the cell to respond quickly to certain

Fig. 6 Schematic rendering of the effects of MBCD on MAMs/GEMs in GM1-accumulating cells. MBCD efficiently extracts GM1 from these
microdomains and, in turn, reverts mitochondrial Ca2+ overload and apoptosis
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physiological or pathological cues. The contact sites
between the ER and mitochondria or MAMs are a good
example of these functional hubs that control funda-
mental processes of the corresponding organelles by
limiting or enhancing the bidirectional transfer of mole-
cules and ions. The fact that the MAMs embed sub-
domains enriched in cholesterol and GM1, similar to the
lipid rafts of the PM, emphasizes the direct involvement of
these constituents in the regulated trafficking of mole-
cules and ions between the two organelles, which can tilt
the cell fate towards survival or apoptosis. Thus, it is not
surprising that changes in the MAM’s lipid composition/
concentration in response to pathological conditions, as
in GM1-gangliosidosis, lead to cell death. Many funda-
mental questions on the biology of the MAMs remain
unanswered. For instance, it is still a matter of debate
whether variations in the lipid and/or protein signature of
the MAMs exist in different cell types or in response to
physiologic/pathologic stimuli. What is clear is that spe-
cific lipid combinations within the MAMs dictate the
recruitment and activity of distinct sets of proteins. It will
be of great interest to understand if in other LSDs, like
NPC, the failed egression of cholesterol from lysosomal
membranes and its accumulation in intracellular mem-
branes also affect the raft/GEM subdomain of the MAMs.
If this would be the case, we could anticipate that
impaired activity of the MAMs could represent a major
contributing factor to disease pathogenesis, especially in
lipid storage diseases.
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