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Abstract
Associations between microRNAs (miRNAs) and human diseases have been identified by increasing studies and
discovering new ones is an ongoing process in medical laboratories. To improve experiment productivity, researchers
computationally infer potential associations from biological data, selecting the most promising candidates for
experimental verification. Predicting potential miRNA–disease association has become a research area of growing
importance. This paper presents a model of Extreme Gradient Boosting Machine for MiRNA-Disease Association
(EGBMMDA) prediction by integrating the miRNA functional similarity, the disease semantic similarity, and known
miRNA–disease associations. The statistical measures, graph theoretical measures, and matrix factorization results for
each miRNA-disease pair were calculated and used to form an informative feature vector. The vector for known
associated pairs obtained from the HMDD v2.0 database was used to train a regression tree under the gradient
boosting framework. EGBMMDA was the first decision tree learning-based model used for predicting miRNA–disease
associations. Respectively, AUCs of 0.9123 and 0.8221 in global and local leave-one-out cross-validation proved the
model’s reliable performance. Moreover, the 0.9048 ± 0.0012 AUC in fivefold cross-validation confirmed its stability. We
carried out three different types of case studies of predicting potential miRNAs related to Colon Neoplasms,
Lymphoma, Prostate Neoplasms, Breast Neoplasms, and Esophageal Neoplasms. The results indicated that,
respectively, 98%, 90%, 98%, 100%, and 98% of the top 50 predictions for the five diseases were confirmed by
experiments. Therefore, EGBMMDA appears to be a useful computational resource for miRNA–disease association
prediction.

Introduction
Emerging as a post-transcriptional regulator of gene

expressions, microRNAs (miRNAs) are short non-coding
RNAs of about 22 nucleotides in length found in a wide
range of species, including viruses, plants, and animals1–3.
Their regulatory mechanism involves base-pairing to sites

within the 3′ untranslated region (UTR) of their target
messenger RNAs (mRNAs)4,5. MiRNAs influence most
cellular pathways, including cell proliferation, differ-
entiation, death, and signal transduction4,6,7. Deficiencies
or excesses in miRNA expressions are correlated to
abnormal biological processes and hence human dis-
eases8. In particular, miRNA aberrances have a strong
association with various cancers and cancer-related pro-
cesses9,10. Chronic lymphocytic leukemia was one of the
first human cancers detected to be related to dysregula-
tion of miRNAs11. MiR-15 and miR-16 located at chro-
mosome 13q14 are frequently deleted in more than half of
B cell chronic lymphocytic leukemias. Since then, more
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associations between miRNAs and cancers have been
discovered. For instance, the commonly found dysregu-
lation of miR-200a, b, and c carries a potential role in the
pathogenesis and progression of conjunctival MALT
Lymphoma12. Another example is an upregulated
expression of miR-183 in prostate cancer cells and that
inhibiting it may benefit the prostate cancer treatment13.
Well-known databases storing these known associations
between miRNAs and diseases (not just cancers) include
HMDD v2.014, dbDEMC15, and miR2Disease16. But even
when combined, the databases are by no means exhaus-
tive; continuously there are experiments carried out and
literatures published to support new associations. The
major motivation of identifying novel disease-related
miRNAs is to facilitate diagnosis, progression, prognosis,
and treatment of complex diseases8,17. With the aid of the
large amount of available biological data, researchers
develop computational models to prioritize potential
disease-related miRNAs in terms of prediction scores and
experiment on ones with the highest association like-
lihood. This approach reduces the number of futile
experiments and saves researchers’ time and cost.
The past few years have witnessed significant progresses

in developing prediction models for potential
disease–miRNA associations. The models broadly fall into
the network analysis category or the machine learning
category. Most computational models were developed
under the assumption that functionally similar miRNAs
tend to be connected with phenotypically similar dis-
eases18–20. Jiang et al.21 presented one of the initial models
for predicting disease-related miRNAs. The miRNA
functional similarity network, the disease phenotype
similarity network, and the known disease–miRNA asso-
ciation network were integrated in the model and a dis-
crete probability distribution named hypergeometric was
used to score the potential miRNA–disease associations.
The drawback of the model was that it only considered
the neighbor information of each miRNA in the scoring
system. Incorporating global network similarity informa-
tion into the model would increase its accuracy. In an
HDMP model proposed by Xuan et al.22, the
miRNA–disease associations were combined with the
miRNA functional similarity, the disease semantic simi-
larity, and the disease phenotype similarity. Considering
each miRNA’s k most similar neighbors into the calcula-
tions yielded an improved accuracy compared to previous
models, because higher weights were assigned to miRNAs
in the same cluster or family. Nevertheless, HDMP failed
to make predictions for new diseases without known
related miRNAs. Making use of global similarity mea-
sures, not solely local similarity information, would
overcome the weakness of the model. Chen et al.23 pre-
sented a Random Walk with Restart model named
RWRMDA, seeking putative disease-related miRNAs with

similar functions to known disease-related miRNAs. The
model achieved a satisfactory accuracy via the application
of global similarity measures, but was still unable to work
for new diseases without any known related miRNAs.
Later, Xuan et al.24 further introduced a Random Walk
model named MIDP in which labeled nodes were given
higher transition weights than unlabeled nodes. The
model effectively exploited the prior information of nodes
and various ranges of topologies, and by controlling the
restart rate it alleviated the negative effect of noisy data. In
addition, the walk on the disease–miRNA network was
extended so that candidates for diseases without any
known related miRNAs could be predicted. Chen et al.25

also made such predictions possible and reliable by
releasing a novel model called WBSMDA. Not only did
the model use the miRNA functional similarity, disease
semantic similarity, and miRNA–disease associations but
also it calculated Gaussian interaction profile kernel
similarity for diseases and miRNAs. Another HGIMDA
model presented by Chen et al.26 had the same model
inputs but integrated the diseases/miRNAs similarities
with Gaussian interaction profile kernel similarities in a
slight different manner from WBSMDA. The new simi-
larity networks for diseases and miRNAs, together with
the miRNA–disease association network, were further
combined into a heterogeneous graph. An iterative pro-
cedure was implemented on the graph to infer potential
associations between a miRNA and a disease, even if they
had no known associations. A more recent MCMDA
model was published by Li et al.27. A matrix completion
algorithm was adopted in the model and of a high effi-
ciency in updating the lowly ranked miRNA–disease
matrix. Unlike some previous models requiring negative
associations, MCMDA only depended on the known
miRNA–disease associations.
Researchers have also developed models based on var-

ious types of association networks, not just
miRNA–disease association network. Shi et al.28 carried
out hierarchical clustering on the known miRNA–disease
association network and reached a conclusion that a
disease is more likely to connect with miRNAs whose
target genes are related to that disease. Based on this, they
proposed a Random Walk model on a protein–protein
interaction network. Mork et al.29 devised an miRPD
model combining protein–disease interactions and
protein–miRNA interactions as predictors and outputting
potential disease-related miRNAs and disease-related
proteins. The intension of involving proteins in the out-
put was to facilitate the protein link between miRNAs and
diseases, allowing for more explicit design of verification
experiments. Pasquier et al.30 developed an MiRAI model
that concatenated five distinct matrices: (1) the
miRNA–disease association matrix, (2) the miRNA-
neighbor association matrix, whose edges were weighted
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by the genomic distance between two miRNAs, (3) the
miRNA–target association matrix, (4) the miRNA–word
association matrix, whose edges were weighted by the TF-
IDF weighting scheme on the associated documents for
the investigated miRNAs, and (5) the miRNA–family
association matrix. Then, the large matrix as a result of
the concatenation was input to Singular Value Decom-
position for dimensionality reduction. The cosine simi-
larity between an miRNA in the miRNA space and a
disease in the disease space was the association score for
this miRNA–disease pair.
As an alternative to the aforementioned network

analysis-based models, various machine learning-based
models have emerged to make sound predictions. Xu
et al.31 performed feature extraction based on the topol-
ogy information of a heterogeneous miRNA-target dys-
regulated network (MTDN). The network was the
combination of miRNA–target interactions and the
expression profiles of miRNAs and mRNAs in tumor and
non-tumor tissues. A support vector machine classifier
was constructed in MTDN to separate positive
miRNA–disease associations from negative ones. A lim-
itation persisting in the model, however, is that deter-
mining negative associations is difficult and even
impossible26. Therefore, the performance of the model
could be unstable given an inaccurate selection of nega-
tive samples. To address the problem, Chen et al.32 pro-
posed an RLSMDA model based on semi-supervised
learning framework. Notably, no negative samples were
required to fit the model. Subsequently, Chen et al.33

published an RBMMMDA model where a two-layered
(with visible and hidden units) undirected
miRNA–disease graph was built according to restricted
Boltzmann machine (RBM). RBMMMDA could predict
both novel miRNA–disease associations and the corre-
sponding association types, which was unique to other
models.
Over the time, the prediction accuracy of computational

models for predicting miRNA–disease associations is
continuously increasing. In search of a superior model
over previous ones, we developed a machine learning-
based model, Extreme Gradient Boosting Machine for
MiRNA-Disease Association prediction (EGBMMDA).
The input to the model was a feature vector for the
miRNA–disease pair (m(i),d(j)), obtained from feature
extraction on the miRNA functional similarity, the disease
semantic similarity, and the known miRNA–disease
associations. The vector covered statistical measures,
graph theoretical measures, and matrix factorization
results for (m(i),d(j)). The model’s output was an asso-
ciation score for this pair. Global and local leave-one-out
cross-validations (LOOCVs), fivefold cross-validation, and
five case studies were carried out to evaluate the perfor-
mance of EGBMMDA. HMDD v2.014 was used as the

training database for the model throughout the evaluation
(except for the fifth case study that was based on the older
version of HMDD). EGBMMDA consistently out-
performed previous models in every cross-validation and
a large proportion of the predicted miRNA–disease
associations were experimentally confirmed in each case
study. To our knowledge, no existing computational
models make use of decision trees to predict novel
miRNA–disease associations, and to date, EGBMMDA is
one of the very few models that achieved a global LOOCV
AUC greater than 0.9.

Results
Performance evaluation
The performance of EGBMMDA was evaluated by

LOOCV and fivefold cross-validation on the known
miRNA–disease association dataset retrieved from
HMDD v2.0 (ref. 14). The database recorded 383 diseases
and 495 miRNAs, which constituted 5430 known asso-
ciations. We implemented LOOCV under global and local
frameworks, plotted receiver operating characteristics
(ROC) curves, and used area under the ROC curve (AUC)
as the evaluation metric. As illustrated in Fig. 1,
EGBMMDA achieved AUC of 0.9123 in global LOOCV
and AUC of 0.8221 in local LOOCV, reflecting an effec-
tive prediction performance of the model. Figure 1 also
shows that EGBMMDA consistently outperformed the
models introduced in previous studies22–27,30,32. In global
LOOCV, MCMDA, HGIMDA, WBSMDA, RLSMDA,
and HDMP obtained AUCs of 0.8749, 0.8781, 0.8030,
0.8426, and 0.8366, respectively; in local LOOCV, they
exhibited AUCs of 0.7718, 0.8077, 0.8031, 0.6953, and
0.7702. RWRMDA and MIDP were not included in global
LOOCV comparison, because they were based on random
walk that was a local approach and could not simulta-
neously make predictions for all diseases. In addition,
global LOOCV was not applicable to MiRAI, either,
because the association scores given by this model were
highly positively correlated with the seed count (that is,
the number of known associated miRNAs) of a disease.
For a disease with more associated miRNAs, the asso-
ciation scores for its candidate miRNAs tended to be
higher, and vice versa. Therefore, the associations scores
obtained for different diseases were not comparable. The
AUCs in local LOOCV for RWRMDA, MIDP, and MiRAI
were 0.7891, 0.8196, and 0.6299, respectively. MiRAI had
a low AUC because the core to this method was colla-
borative filtering that suffers from the data sparsity pro-
blem. Our training dataset was sparse; it contained 383
diseases, of which the majority were associated with only a
few miRNAs. MiRAI became less performative when
evaluated on our dataset than when tested on 83 diseases
with at least 20 known associated miRNAs in the litera-
ture30. Since the AUCs for previous models were lower
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than that for EGBMMDA, we could consider the latter
model as an advancement in the exploration of reliable
miRNA–disease association prediction models. As for the
fivefold cross-validation result, the model achieved an
AUC of 0.9048± 0.0012. The 0.9048 mean value surpassed
MCMDA’s 0.8767, HDMP’s 0.8342, and WBSMDA’s
0.8185, and the 0.0012 standard deviation proved the
stability of EGBMMDA.

Case studies
We carried out five case studies to demonstrate how

accurately EGBMMDA could predict novel miRNA–disease
associations. In all five case studies, a high proportion of
the potential disease-related miRNAs were experimentally
confirmed, implying that EGBMMDA made reliable pre-
dictions. The first three cases studies concerned with
Colon Neoplasms (CN), Lymphoma, and Prostate Neo-
plasms (PN), and known miRNA–disease associations
from HMDD v2.0 were used as the training samples for
the model. All candidate miRNAs for the investigated
disease were ranked by their association scores. A
candidate miRNA was defined as a miRNA unasso-
ciated with the investigated disease according to
HMDD v2.0. Subsequently, the top 10 and 50 candi-
dates were used as the prediction lists and validated
against another two prominent miRNA–disease asso-
ciation databases dbDEMC15 and miR2Database16 as

well as other experimental literatures. Because only
candidate miRNAs were ranked and validated, there
was no overlap between the training samples and the
prediction lists.
CN is most frequently diagnosed in developed coun-

tries. It has been estimated that in 2017 in the United
States there will be 135,430 newly diagnosed CN cases
and 50,260 deaths caused by CN34. In CN tumor cells,
dysregulation of miRNAs has been observed to have the
potential of serving as diagnostic biomarkers for CN35.
Current candidate biomarkers for CN include miR-126
and miR-145 that inhibit the growth of CN cells by tar-
geting the phosphatidylinositol 3-kinase signaling and the
insulin receptor substrate-1, respectively36,37. But they
may not be sufficient. Novel sensitive biomarkers are
increasingly in demand and can be useful for improving
CN detections38. Thus, we took CN as a case study for
EGBMMDA and prioritized the disease-related miRNAs
(see Table 1). As a result, 9 of the top 10 and 43 of the top
50 potential CN-associated miRNAs were confirmed by
experimental findings in dbDEMC and/or miR2Disease.
In addition, six of the rest seven unconfirmed miRNAs
were verified by more recent literatures than the data-
bases. MiR-150 was reported to function as a key reg-
ulator in the tumorigenesis and progression of CN by
targeting c-Myb39; miR-92a played a critical role in the
CN development and an anti-miR-92a antagomir could

Fig. 1 Performance comparisons between EGBMMDA and eight previous disease–miRNA association prediction models (RLSMDA, MiRAI, MCMDA,
HGIMDA, WBSMDA, MIDP, RWRMDA, and HDMP) in terms of ROC curve and AUCs based on local and global LOOCV, respectively. As a result,
EGBMMDA achieved AUCs of 0.9123 and 0.8221 in the global and local LOOCV, surpassing all the previous models
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lead to the apoptosis of CN cells40; miR-199a-3p, the 3p
arm of the pre-miRNA for miR-199a, exhibited a higher
expression in CN tissues, resulting a significantly lower
survival rate for the patients41; miR-142-3p, the 3p arm of
the pre-miRNA for miR-142, could suppress the CN cell
growth via downregulating three CN-associated proteins
CD133, Lgr5, and ABCG242; an inverse correlation
observed between the levels of miR-101 and the EP4
receptor protein in CN suggested that miR-101 might
serve as a therapeutic target for the cancer43; miR-146b,
with its expression inhibited, would lead to a high CsSR
protein receptor level and reduce CN proliferation44.
Consequently, 49 out of the top 50 potentially CN-related
miRNAs were confirmed by either dbDEMC and miR2-
Disease or other experimental studies.

Lymphoma are mainly categorized into either Hodgkin
lymphomas (HL) or non-Hodgkin lymphomas (NHL). In
the United States in 2017, there are expected to be 8260
new HL patients and 72,240 NHL patients and a total
number of 20,140 deaths34. An example of miRNAs
associated with lymphoma is mir-19a, whose expression is
upregulated in normal lymph nodes of canine B-cell
lymphomas (a subtype of NHL)45. We took Lymphomas
as the second case study and implemented EGBMMDA
for predicting Lymphomas-related miRNAs. The results
showed that 9 out of the top 10 potential miRNAs and 42
out of the top 50 potential miRNAs were confirmed by
experimental literatures in dbDEMC and miR2Disease
(see Table 2). In addition, three of the rest eight unverified
miRNAs were verified by more recent literatures.

Table 1 Prediction of the top 50 predicted miRNAs associated with Colon Neoplasms based on known associations in
HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-29a dbDEMC;miR2Disease hsa-let-7c dbDEMC

hsa-mir-29b dbDEMC;miR2Disease hsa-mir-222 dbDEMC

hsa-let-7a dbDEMC;miR2Disease hsa-mir-199a 23292866

hsa-mir-143 dbDEMC;miR2Disease hsa-mir-29c dbDEMC

hsa-mir-150 25230975 hsa-mir-19a dbDEMC;miR2Disease

hsa-mir-15a dbDEMC hsa-mir-142 23619912

hsa-mir-16 dbDEMC hsa-mir-181a dbDEMC;miR2Disease

hsa-mir-21 dbDEMC;miR2Disease hsa-mir-125a dbDEMC;miR2Disease

hsa-mir-1 dbDEMC;miR2Disease hsa-mir-196a dbDEMC;miR2Disease

hsa-mir-133a dbDEMC;miR2Disease hsa-mir-141 dbDEMC;miR2Disease

hsa-mir-146a dbDEMC hsa-mir-133b dbDEMC;miR2Disease

hsa-mir-155 dbDEMC;miR2Disease hsa-mir-10b dbDEMC;miR2Disease

hsa-mir-200b dbDEMC hsa-mir-181b dbDEMC;miR2Disease

hsa-mir-200c dbDEMC;miR2Disease hsa-mir-182 dbDEMC;miR2Disease

hsa-mir-20a dbDEMC;miR2Disease hsa-mir-183 dbDEMC;miR2Disease

hsa-mir-210 dbDEMC hsa-mir-192 dbDEMC;miR2Disease

hsa-mir-221 dbDEMC;miR2Disease hsa-mir-195 dbDEMC;miR2Disease

hsa-mir-223 dbDEMC;miR2Disease hsa-mir-200a Unconfirmed

hsa-mir-31 dbDEMC;miR2Disease hsa-mir-203 dbDEMC;miR2Disease

hsa-mir-92a 21883694 hsa-mir-205 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-34b dbDEMC;miR2Disease

hsa-mir-18a dbDEMC;miR2Disease hsa-mir-93 dbDEMC;miR2Disease

hsa-mir-19b dbDEMC;miR2Disease hsa-let-7e dbDEMC

hsa-mir-34a dbDEMC;miR2Disease hsa-mir-101 22353936

hsa-let-7b dbDEMC;miR2Disease hsa-mir-146b 26178670

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either database
studies or PMIDs of other experimental literatures
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Experimental data have shown that miR-193b experi-
enced attenuation in cutaneous T-cell lymphoma46; by
repressing miR-125b-5p (the 5p arm of the pre-miRNA
for miR-125b), the Lymphoma cells would be sensitized to
anticancer agents such as bortezomib47; the over-
expression of miR-146b-5p (the 5p arm of the pre-miRNA
for miR-146b) would prevent the cells of diffuse large B-
cell lymphoma from growing48. Therefore, 45 out of the
top 50 potentially lymphoma-related miRNAs were ver-
ified by either dbDEMC and miR2Disease or other
experimental studies.
PN is the second most common cancer diagnosed in

males, with 161,360 new incidences and 26,730 deaths
projected in the United States in 201734. As indicated by
studies49–51, miRNAs might complement existing PN

detection methods as potential diagnostic biomarkers and
promote the understanding of the cancer susceptibility at
the genetic level. For instance, miR-221/222, miR-143/
145, miR-23b/27b/24-1, and miR-1/133a experienced
frequent downregulations in PN tissues and were viewed
as tumor suppressors51. We took PN as the third case
study and fitted EGBMMDA accordingly. Nine out of the
top 10 and 45 out of the top 50 putative PN-associated
miRNAs received biological verification by dbDEMC and
miR2Disease (see Table 3). In addition, four of the rest
five unsupported miRNAs were verified by more recent
literatures. MiR-203 was indicated by a study52 as an anti-
metastatic miRNA in PC, intervening the advancement of
the cancer via repressing a cohort of premetastatic targets;
miR-93 was commonly overexpressed in PC patients and

Table 2 Prediction of the top 50 predicted miRNAs associated with Lymphoma based on known associations in HMDD
database

miRNA Evidence miRNA Evidence

hsa-mir-196a dbDEMC hsa-mir-223 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-25 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-26b dbDEMC

hsa-let-7a dbDEMC hsa-mir-31 dbDEMC

hsa-mir-141 dbDEMC hsa-mir-34b dbDEMC

hsa-mir-143 dbDEMC hsa-mir-429 Unconfirmed

hsa-mir-145 dbDEMC hsa-mir-93 dbDEMC

hsa-mir-1 dbDEMC hsa-let-7e dbDEMC

hsa-mir-133a dbDEMC hsa-mir-125b 23527180

hsa-mir-103a Unconfirmed hsa-mir-146b 24931464

hsa-mir-106a dbDEMC hsa-mir-148a dbDEMC

hsa-mir-10b dbDEMC hsa-mir-196b Unconfirmed

hsa-mir-151a Unconfirmed hsa-mir-219 dbDEMC

hsa-mir-152 dbDEMC hsa-mir-27a dbDEMC

hsa-mir-181b dbDEMC hsa-mir-27b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-183 dbDEMC hsa-mir-30b dbDEMC

hsa-mir-191 dbDEMC hsa-mir-30c dbDEMC

hsa-mir-192 dbDEMC hsa-mir-338 dbDEMC

hsa-mir-193b 22235305 hsa-mir-34a dbDEMC

hsa-mir-194 dbDEMC hsa-mir-378a Unconfirmed

hsa-mir-195 dbDEMC hsa-mir-7 dbDEMC

hsa-mir-204 dbDEMC hsa-mir-100 dbDEMC

hsa-mir-205 dbDEMC hsa-mir-214 dbDEMC

hsa-mir-221 dbDEMC hsa-mir-99a dbDEMC

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either database
studies or PMIDs of other experimental literatures
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worked collectively with miR-106b and miR-375 to
attenuate Capicua levels and facilitate PC progression53; a
reduction or loss of miR-146b expression was suggested
as an omen of PC invasion by the literature54; miR-486-
5p, the 5p arm of the pre-miRNA for miR-486, stagnated
the migration and invasion of PC by lowering the protein
expression of Snail, a key regulator of the
epithelial–mesenchymal transition for cancer metas-
tasis55. Provided these recent literature and database evi-
dences, 49 out of the top 50 potentially PC-related
miRNAs were verified.
Apart from predicting miRNAs for the three specific

diseases, we also included in the supplementary materials
a complete ranking list of potential miRNAs for all dis-
eases in HMDD v2.0 (see Supplementary Table 1). The

table consists of three columns: the disease’s name, the
miRNA’s name, and their predicted association score.
To demonstrate the applicability of EGBMMDA to

diseases having no known associated miRNAs, we carried
out the fourth case study for Breast Neoplasms (BN) by
removing all the known BN-related miRNAs in HMDD.
This removal ensured that predicting candidate miRNAs
for BN would only utilize the information of other dis-
eases with known related miRNAs and the similarity
information of diseases and miRNAs. There were 202
negated known BN-related miRNAs; and all 495 miRNAs
in HMDD v2.0 were used as candidates. We ranked the
candidates in terms of their predicted scores and validated
the top 50 ones against HMDD v2.0 dbDEMC and
miR2Disease. As a result, all 50 miRNAs were confirmed

Table 3 Prediction of the top 50 predicted miRNAs associated with Prostate Neoplasms based on known associations in
HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-125a dbDEMC;miR2Disease hsa-mir-34c dbDEMC

hsa-mir-196a dbDEMC hsa-mir-9 dbDEMC

hsa-mir-141 miR2Disease hsa-mir-26a dbDEMC;miR2Disease

hsa-mir-133b dbDEMC hsa-mir-206 dbDEMC

hsa-mir-181b dbDEMC;miR2Disease hsa-let-7f dbDEMC;miR2Disease

hsa-mir-182 dbDEMC;miR2Disease hsa-let-7g dbDEMC;miR2Disease

hsa-mir-195 dbDEMC;miR2Disease hsa-let-7i dbDEMC

hsa-mir-200a dbDEMC hsa-mir-486 27877055

hsa-mir-203 21159887 hsa-mir-122 Unconfirmed

hsa-mir-205 dbDEMC;miR2Disease hsa-mir-218 dbDEMC;miR2Disease

hsa-mir-34b dbDEMC hsa-mir-24 dbDEMC;miR2Disease

hsa-mir-93 26124181 hsa-mir-29a dbDEMC;miR2Disease

hsa-let-7e dbDEMC hsa-mir-29b dbDEMC;miR2Disease

hsa-mir-101 dbDEMC;miR2Disease hsa-let-7a dbDEMC;miR2Disease

hsa-mir-146b 21980038 hsa-mir-143 dbDEMC;miR2Disease

hsa-mir-148a miR2Disease hsa-mir-150 dbDEMC

hsa-mir-27a dbDEMC;miR2Disease hsa-mir-15a dbDEMC;miR2Disease

hsa-mir-30a miR2Disease hsa-mir-16 dbDEMC;miR2Disease

hsa-mir-7 dbDEMC hsa-mir-21 dbDEMC;miR2Disease

hsa-mir-100 dbDEMC;miR2Disease hsa-mir-1 dbDEMC

hsa-mir-214 dbDEMC;miR2Disease hsa-mir-133a dbDEMC

hsa-let-7d dbDEMC;miR2Disease hsa-mir-146a miR2Disease

hsa-mir-106b dbDEMC hsa-mir-155 dbDEMC

hsa-mir-15b dbDEMC hsa-mir-126 dbDEMC;miR2Disease

hsa-mir-124 dbDEMC hsa-mir-17 miR2Disease

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs. The evidences for the associations were either database
studies or PMIDs of other experimental literatures
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by these databases (see Table 4). Lastly, in the fifth case
study, we assessed the performance of EGBMMDA
trained by the older version of HMDD to see whether the
model worked properly on a different dataset. This ver-
sion of HMDD contained 1395 associations between 271
miRNAs and 137 diseases. Esophageal Neoplasms (EN)
was chosen as the investigated disease. The predicted
scores for candidate miRNAs were ranked and 49 out of
the top 50 potentially EN-related miRNAs were con-
firmed by experimental findings recorded in dbDEMC,
miR2Disease and HMDD v2.0 (see Table 5).

Discussion
Identifying novel miRNA-disease associations promotes

the understanding of disease pathogenesis from the

perspective of miRNAs and benefits the treatment of
diseases. In this study, we presented the computational
model EGBMMDA under the hypothesis that functionally
similar miRNAs are likely to be related to similar diseases.
For biomedical researchers, identifying novel
miRNA–disease associations enhances their under-
standing towards the molecular mechanisms of diseases at
the miRNA level and benefits the development of disease
diagnostic biomarkers and therapeutic tools. Our model
could be a valuable complement to experimental methods
for discovering miRNA–disease connections: researchers
could use EGBMMDA to computationally infer the
miRNAs that were potentially associated with the disease
of interest, then rank these miRNAs by association scores,
and finally choose the most promising associations for

Table 4 Prediction of the top 50 predicted miRNAs associated with Breast Neoplasms based on known associations in
HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-499a HMDD hsa-mir-132 dbDEMC;HMDD

hsa-mir-204 dbDEMC;miR2Disease;HMDD hsa-mir-137 dbDEMC;HMDD

hsa-mir-26b dbDEMC;HMDD hsa-mir-206 dbDEMC;miR2Disease;HMDD

hsa-mir-95 dbDEMC hsa-mir-23a dbDEMC;HMDD

hsa-mir-219 dbDEMC;HMDD hsa-mir-212 dbDEMC

hsa-mir-342 dbDEMC;HMDD hsa-mir-125a dbDEMC;miR2Disease;HMDD

hsa-mir-433 dbDEMC hsa-let-7a dbDEMC;miR2Disease;HMDD

hsa-mir-424 dbDEMC hsa-mir-141 dbDEMC;miR2Disease;HMDD

hsa-mir-153 dbDEMC;HMDD hsa-mir-143 dbDEMC;miR2Disease;HMDD

hsa-mir-181c dbDEMC hsa-mir-150 dbDEMC

hsa-mir-140 dbDEMC;HMDD hsa-mir-133b dbDEMC;HMDD

hsa-mir-328 dbDEMC;miR2Disease;HMDD hsa-mir-106a dbDEMC

hsa-mir-372 dbDEMC hsa-mir-10b dbDEMC;miR2Disease;HMDD

hsa-mir-373 dbDEMC;miR2Disease;HMDD hsa-mir-126 dbDEMC;miR2Disease;HMDD

hsa-mir-708 HMDD hsa-mir-181b dbDEMC;miR2Disease;HMDD

hsa-mir-326 dbDEMC;HMDD hsa-mir-182 dbDEMC;miR2Disease;HMDD

hsa-mir-302b dbDEMC;HMDD hsa-mir-183 dbDEMC;HMDD

hsa-mir-320a HMDD hsa-mir-192 dbDEMC

hsa-mir-506 HMDD hsa-mir-195 dbDEMC;miR2Disease;HMDD

hsa-mir-516a HMDD hsa-mir-200a dbDEMC;miR2Disease;HMDD

hsa-mir-184 dbDEMC hsa-mir-200b dbDEMC;miR2Disease;HMDD

hsa-mir-134 dbDEMC hsa-mir-200c dbDEMC;miR2Disease;HMDD

hsa-mir-32 dbDEMC hsa-mir-203 dbDEMC;miR2Disease;HMDD

hsa-mir-325 dbDEMC hsa-mir-205 dbDEMC;miR2Disease;HMDD

hsa-mir-30b dbDEMC;HMDD hsa-mir-223 dbDEMC;HMDD

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs
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biological confirmation. In this manner, experiments
could be more effective and productive. The informative
feature vector I for the miRNA–disease pair (m(i),d(j)) was
constructed via feature extraction on the miRNA func-
tional similarity, the disease semantic similarity, and the
known miRNA–disease associations, and was fed into the
model for prediction. The result was the association score
for this pair. The higher the score for miRNA m(i) and
disease d(j) was, the more likelym(i) was associated with d
(j). Desirable evaluation outcomes were obtained from
both cross-validations (LOOCV and fivefold) and case
studies on CN, Lymphoma, PN, BN, and EN. EGBMMDA
outperformed eight earlier models MiRAI, MCMDA,
HGIMDA, MIDP, WBSMDA, RLSMDA, HDMP, and
RWRMDA. We believe that it is the first decision tree

learning-based computational model applied to predicting
potential miRNA–disease associations.
Three factors contributed to the reliable performance of

EGBMMDA. First, heterogeneous datasets including the
miRNA functional similarity, the disease semantic simi-
larity, and known miRNA–disease associations were
merged into a feature vector I for learning the model. The
vector I included the statistical measures (such as sum,
mean, histogram distributions of similarity scores), the
graph theory-related measures (such as neighbor count,
betweenness, closeness and eigenvector centrality, and
Page-Rank scores of miRNA/disease adjacency matrices),
and matrix factorization of the miRNA–disease associa-
tion network. Consequently, EGBMMDA took the
advantage of the exhaustive information about each

Table 5 Prediction of the top 50 predicted miRNAs associated with Esophageal Neoplasms based on known associations
in the older version of the HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-20a dbDEMC;HMDD hsa-mir-34a dbDEMC;HMDD

hsa-mir-221 dbDEMC hsa-let-7c dbDEMC;HMDD

hsa-mir-155 dbDEMC;HMDD hsa-mir-29b dbDEMC

hsa-mir-146a dbDEMC;HMDD hsa-mir-19b dbDEMC

hsa-mir-222 dbDEMC hsa-mir-126 dbDEMC;HMDD

hsa-mir-150 dbDEMC;HMDD hsa-mir-206 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-9 dbDEMC

hsa-mir-143 dbDEMC;HMDD hsa-mir-96 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-141 dbDEMC;HMDD

hsa-mir-125b dbDEMC hsa-mir-132 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-373 dbDEMC;miR2Disease

hsa-mir-133a dbDEMC;HMDD hsa-mir-451 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-211 dbDEMC

hsa-mir-92a HMDD hsa-mir-142 dbDEMC

hsa-mir-15a dbDEMC;HMDD hsa-mir-494 dbDEMC

hsa-mir-18a dbDEMC hsa-mir-30c dbDEMC

hsa-let-7d dbDEMC hsa-mir-302c dbDEMC

hsa-mir-200b dbDEMC hsa-mir-10a dbDEMC

hsa-mir-29a dbDEMC hsa-mir-34b dbDEMC;HMDD

hsa-mir-19a dbDEMC;HMDD hsa-mir-377 dbDEMC

hsa-mir-145 dbDEMC;HMDD hsa-mir-184 Unconfirmed

hsa-let-7b dbDEMC;HMDD hsa-mir-23b dbDEMC

hsa-let-7a dbDEMC;HMDD hsa-mir-106b dbDEMC

hsa-let-7e dbDEMC hsa-mir-199a dbDEMC;HMDD

hsa-mir-223 dbDEMC;miR2Disease;HMDD hsa-mir-196a dbDEMC;miR2Disease;HMDD

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs
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miRNA–disease pair. Second, the model was based upon a
scalable tree boosting system56. While in this study
EGBMMDA was fitted by thousands of instances with
more than a hundred feature dimensions, it actually had
the potential of dealing with even larger datasets. Third,
the tree boosting system was fundamentally an ensemble
machine learning algorithm where each split made during
the tree growth was an optimal operation that combined
with all other splits to minimize the total loss function.
Therefore, the finished tree was able to make accurate
predictions.
Nevertheless, limitations exist in the model. Unlike

another machine learning-based RLSMDA model,
EGBMMDA required its training data to have both
positive and negative samples. To resolve this issue, we had
randomly selected a subset of unknown miRNA–disease
associations as negative instances. Though the fivefold
cross-validation results indicated EGBMMDA to be a
relatively stable model with a 0.0012 standard deviation of
AUCs, to what extent incorrectly chosen negative samples
would affect the model’s prediction accuracy deserves
further investigation. Moreover, more reliably calculated
disease similarity and miRNA similarity could improve
the performance of the model. We expect more biologi-
cally relevant information to be available in the future to
refine the similarity measures. In addition, more experi-
mentally confirmed miRNA–disease associations would
help eliminate the bias of the learning algorithm for
EGBMMDA. Moreover, our current analysis did not
include the tissue specific expression of miRNAs, so it was
difficult to examine how much of our model’s prediction
ability was attributed to the abundance of miRNA and
mRNA in the respective tissue. We would consider this
issue in future research. Lastly, the three databases used in
this study had variable quality because they were created
at various times, under different methodologies and from
diverse data sources. We expect newer and more com-
prehensive databases to be released in the future, so that
both evaluating computational models and predicting
novel miRNA–disease associations would become more
reliable.

Materials and methods
LOOCV and fivefold cross-validation
To evaluate the prediction accuracy of EGBMMDA, we

implemented global and local LOOCV frameworks. Using
cross-validations as the evaluation scheme for computa-
tional models is the standard practice in the field of
miRNA–disease association prediction. This scheme has
been adopted in many previous studies21–25,27,31. In global
LOOCV, each known miRNA–disease association was left
out in turn as test association. All the other known
associations were regarded as seeds, while those
miRNA–disease pairs without any evidence (including the

left-out pair) to prove their associations were considered
as candidates. It is worth mentioning that throughout the
cross-validations and case studies in performance eva-
luation, each time of fitting an EGBMMDA model, seeds
were used as positive training samples and an equal
number of samples were randomly selected as negative
training examples from the pool of unknown associations.
This operation guaranteed a balanced training dataset
with half positive and half negative instances. The pre-
dicted score for the test association was ranked relative to
the scores for candidates and, if its ranking was above a
given threshold, we obtained a successful prediction made
by the model. Local LOOCV, in contrast, focused on
rankings of miRNAs for a specific disease. For the disease
d(i), each known miRNA related to it was left out in turn
as the test miRNA. All the other known disease-related
miRNAs (including ones for diseases other than disease d
(i)) were regarded as seeds, whereas those without any
evidence to confirm their associations with disease d(i)
(including the left-out miRNA) were considered as can-
didates. The predicted score for the test miRNA m(j) was
ranked relative to the scores for candidate miRNAs; and if
the ranking exceeded a given threshold, the model was
rendered to correctly predict the m(j)–d(i) association. In
short, the difference between global and local LOOCV
was whether all diseases were considered simultaneously
in the ranking or not. Although we did not set the
threshold score for a positive association prediction in our
study, various ranking thresholds were applied in cross-
validations. We ranked the test sample and candidates in
terms of their association scores. The test sample would
be a positive prediction if it was ranked above a threshold,
and a negative prediction otherwise. The true positive rate
(TPR, sensitivity) and the true negative rate (FPR, 1-spe-
cificity) were calculated corresponding to each ranking
threshold, so that enough points would be obtained to
plot the ROC curve. Sensitivity denotes the proportion of
test samples whose rankings are higher than the thresh-
old, whereas specificity means the percentage of candi-
dates whose rankings are lower than the threshold. From
the ROC curve, we calculated the evaluation metric AUC.
To further evaluate the stability of EGBMMDA, we

implemented fivefold cross-validation where the known
miRNA–disease associations were randomly partitioned
into five equally-sized subsets. Four subsets were regarded
as training samples to learn the model and the other
subset was used as the test samples. Similar to the case of
global LOOCV, the known miRNA–disease associations
were seeds and the miRNA–disease pairs without known
association evidences were candidates. The predicted
scores of the test samples were ranked against the scores
of candidates. The fivefold CV procedure was randomly
repeated for 100 times to acquire a more accurate esti-
mate of the EGBMMDA prediction performance.
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Human miRNA–disease associations
The human miRNA–disease association dataset used to

train EGBMMDA was retrieved from HMDD v2.014,
covering 5430 experimentally confirmed associations
between 495 miRNAs and 383 diseases (see Supplemen-
tary Table 2). Variables nm and nd denoted the number of
miRNAs and diseases, respectively; and an nm× nd
adjacency matrix (a network graph made up of miRNAs
and diseases as vertices) was established to better repre-
sent miRNA–disease associations. An entity A(m(i),d(j))
equaled 1 if miRNA m(i) had a verified connection to
disease d(j) and 0 otherwise.

MiRNA functional similarity
MiRNA functional similarity scores were calculated

under the assumption that functionally similar miRNAs
are more likely to connect with phenotypically similar
diseases57. We downloaded the scores from http://www.
cuilab.cn/files/images/cuilab/misim.zip and constructed
an nm× nm miRNA functional similarity matrix FS
where an entity FS(m(i),m(j)) represented the similarity
score between miRNA m(i) and m(j).

Disease semantic similarity
Disease semantic similarity scores were computed

according to the methodology adopted in he literature22.
A disease can be described by a Directed Acyclic Graph
(DAG) in which the nodes represent the disease and its
ancestor diseases and a directed edge from a parent node
to a child node represents the relationship between the
two nodes. The contribution of disease t in DAG(d(i)) to
the semantic value of disease d(i) was defined by

Dd ið Þ tð Þ ¼ �log
the number of DAGs including t

the number of diseases

� �
ð1Þ

which meant that a more specific disease t should make a
greater contribution to the semantic value of the investi-
gated disease d(i). The semantic value of d(i) was given by
the summation of all the contributions from ancestor
diseases and disease d(i) itself

DV d ið Þð Þ ¼
X

t2D d ið Þð Þ
Dd ið Þ tð Þ ð2Þ

where D(d(i)) was the node set in DAGd(i) including node
d(i) itself. It should be obvious that two diseases sharing
larger part of their DAGs tended to have a higher
semantic similarity score. Therefore, the semantic simi-
larity between disease d(i) and d(j) could be defined as
follows:

SS d ið Þ; d jð Þð Þ ¼
P

t2D d ið Þð Þ\D d jð Þð Þ Dd ið Þ tð Þ þ Dd jð Þ tð Þ
� �

DV d ið Þð Þ þ DV d jð Þð Þ ð3Þ

where SS was an nd× nd disease semantic similarity
matrix.

EGBMMDA
The EGBMMDA model was implemented by integrat-

ing the miRNA–disease association matrix A, the miRNA
functional similarity matrix FS and the disease semantic
similarity matrix SS. Specifically, the implementation
involved two steps as depicted in Fig. 2: the feature
engineering step where the three matrices were merged
into a feature vector I and the regression tree growing step
where a regression tree was grown based on I and under
the gradient boosting framework. The scripts for the
complete implementation of EGBMMDA are available at
http://www.escience.cn/system/file?fileId=91170.
There were three types of vectors constructed during

feature engineering (see Table 6), similar to those intro-
duced by the literature58. Type 1 features included the
statistical measures summarized for each individual
miRNA/disease in A, FS, and SS. For the miRNA m(i)/
disease d(j), n.obs denoted the number of observed asso-
ciations in the corresponding ith row/jth column of A;
ave.sim denoted the average of all similarity scores,
namely, the average of the ith/jth row of FS/SS; hist.sim
denoted the histogram feature where the range of simi-
larity scores [0, 1] was segmented into n bins (n= 5 in this
study) and we counted the proportion of similarity scores
for m(i)/d(j) that fell into each bin.
Type 2 features covered graph theory-related statis-

tics for nodes in FS/SS. An edge between two nodes
existed if their similarity score exceeded the mean value
of all entities in FS/SS. In this way, we built the
unweighted graph version of FS/SS, and from which we
extracted with respect to each node: (1) num.nb, the
number of its neighbors; (2) k.sim, similarity values of
its k-nearest neighbors (k= 10 in this study); (3) k.ave.
feat, its average of Type 1 features among the k-nearest
neighbors; (4) k.w.ave.feat, its average of Type 1 fea-
tures among the k-nearest neighbors weighted by the
similarity values; (5) bt,cl,ev, its respective betweenness,
closeness, and eigenvector centrality; (6) pr, its Page-
Rank score.
Type 3 features focused on each miRNA-disease pair (m

(i),d(j)) in the association matrix A. We carried out matrix
factorization (mf) of A and recorded the latent vectors for
m(i) and d(j). In addition, we further included the number
of associations between m(i) and d(j)’s neighbors (deno-
ted by m.d.ave) and the number of associations between d
(j) and m(i)’s neighbors (denoted by d.m.ave). Further-
more, the betweenness m.d.bt, closeness m.d.cl, and
eigenvector m.d.ev centralities and Page-Rank scores m.d.
pr for m(i) and d(j) were also calculated to make full use
of A.
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A composite feature vector was produced by con-
catenating these three feature types and used to train
EGBMMDA. The feature vector for the (m(i),d(j)) pair
had the general form of

feature vector for m ið Þ; d jð Þð Þ ¼

Type 1 of m ið Þ
Type 1 of d jð Þ
Type 2 of m ið Þ
Type 2 of d jð Þ

Type 3 of m ið Þ; d jð Þð Þ

2
6666664

3
7777775

ð4Þ

EGBMMDA grew the regression tree by following a
greedy-growth-and-post-pruning process. The model
took the feature vector I as input and output the tree splits
based on I and the corresponding leaf scores W. The
parameter set included the maximum tree depth P, the
shrinkage rate η, the minimum loss reduction required to

partition a leaf node of the tree γ, and the L2 regulariza-
tion rate λ. Throughout this study, we used P= 6, γ= 0, λ
= 1 based on the default parameter set of the extreme
gradient boosting training package implemented accord-
ing to Chen et al.56. The package is available at https://
github.com/dmlc/xgboost. In addition, we used η= 1 to
impose no step-size shrinkage on the boosting process, as
with the literature58. All the parameters could be opti-
mized via cross-validation. The algorithm first grew the
tree in a top-down manner to the maximum depth P
specified by the user, creating a 2P number of nodes, and
then pruned all the leaf splits with negative gains in a
bottom-up order (see Fig. 3). The criterion for splitting a
leaf node was based on a gain in loss reduction equation.
According to the literatures56,58,59, the derivation of the
equation is illustrated as follows.

Fig. 2 Flowchart of potential miRNA–disease association prediction based on the computational model of EGBMMDA
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EGBMMDA was an ensemble model where regression
trees were used as functions in a gradient boosting fra-
mework, which trained a sequence of weak learners fk to
collectively make a predicted score ŷi in a functional form
like this

ŷi ¼
XK
k¼1

fk xið Þ; fk 2 F ð5Þ

where xi was the input vector, K was the number of
regression functions, and F was the space of all possible
fks. The objective function for learning the set of fks was
given by

min
fk

Xn
i¼1

l yi; ŷið Þ þ
XK
k¼1

Ω fkð Þ ð6Þ

where l was a loss function between the observed value yi
and predicted value ŷi and Ω in the regularization term
penalized the model complexity to avoid overfitting. The
model was trained iteratively and additively: at the tth
iteration, a new function ft selected from F was added to
the ensemble to predict ŷ tð Þ

i . ŷ tð Þ
i was the prediction for the

ith instance at the tth iteration. The selection of ft should

optimize the tth objective function as

min
ft

Xn
i¼1

l yi; ŷ
tð Þ
i

� �
þ
Xt

j¼1

Ω fj
� �

ð7Þ

which could alternatively be rewritten as

min
ft

Xn
i¼1

l yi; ŷ
t�1ð Þ
i þ ft xið Þ

� �
þ
Xt

j¼1

Ω fj
� �

ð8Þ

Usually the addition of ft was multiplied by a shrinkage
parameter η to avoid overfitting. To simplify the optimi-
zation of (9), the loss function l was expanded according
to the second-order Taylor series
f xð Þ ¼ f að Þ þ f

0
að Þ

1! x� að Þ þ f
00
að Þ

2! x� að Þ2. Let x be
ŷ t�1ð Þ
i þ ft xið Þ and a be ŷ t�1ð Þ

i , the objective function
reduced to

min
ft

Xn
i¼1

l yi; ŷ
t�1ð Þ
i

� �
þ gift xið Þ þ 1

2
hif

2
t xið Þ

� 	
þ
Xt

j¼1

Ω fj
� � ð9Þ

where gi ¼ δ
ŷ t�1ð Þ
i

l yi; ŷ
t�1ð Þ
i

� �
was the first derivative of l

and hi ¼ δ2
ŷ t�1ð Þ
i

l yi; ŷ
t�1ð Þ
i

� �
was the second derivative of l.

Removing the constant terms in (10) gave

min
ft

Xn
i¼1

gift xið Þ þ 1
2
hif

2
t xið Þ

� 	
þ Ω ftð Þ ð10Þ

Table 6 Feature vector extracted from the miRNA functional similarity matrix, the disease semantic similarity matrix,
and the known miRNA–disease association matrix

Type 1 features for each

miRNA/disease

n.obs For the miRNA m(i)/disease d(j), the number of observed associations in the corresponding ith row/jth

column of A

ave.sim The average of all similarity scores, namely, the average of the ith/jth row of FS/SS

hist.sim The range of similarity scores [0, 1] was segmented into n bins and we counted the proportion of

similarity scores for m(i)/d(j) that fell into each bin

Type 2 features for each

miRNA/disease

num.nb Number of neighbors of a node in the unweighted graph version of FS/SS

k.sim The similarity values of the k-nearest neighbors of a node

k.ave.feat The average of Type 1 features among the k-nearest neighbors of a node

k.w.ave.feat The average of Type 1 features among the k-nearest neighbors of a node weighted by the similarity

values.

bt,cl,ev Betweenness, closeness, eigenvector centrality of a node

pr Page-Rank score of a node

Type 3 features for each

miRNA–disease pair

mf Latent vectors for the miRNA and the disease, obtained by matrix factorization of A

m.d.ave The number of associations between an miRNA and a disease’s neighbors

d.m.ave The number of associations between a disease and an miRNA’s neighbors

m.d.bt,m.d.cl,

m.d.ev

Betweenness, closeness, eigenvector centrality of a node

m.d.pr Page-Rank score of a node
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The algorithm iteratively added a function ft that opti-
mized (10) for each iteration. In EGBMMDA, ft was given
by a series of discrete functions. The feature vectors xi
were divided into T regions and each region was assigned
an independent weight. The mapping of xi to the indices
of the regions was defined by q : Rd ! 1; 2; 3; ¼ ;Tð Þ and
the vector w denoted the weight for each region. There-
fore, ft should be

ft xð Þ ¼ wq xð Þ ð11Þ
Moreover, the regularization term of (11) was defined

by

Ω ftð Þ ¼ γT þ 1
2
λ
XT
j¼1

w2
j ð12Þ

where γ and λ were the trade-off parameters. Equation
(13) penalized both the number of regions T and the sum

of squared weight w2
j for each region to avoid overfitting.

The implication of (12) and (13) was that the algorithm
would search for the optimal segmentation structure q
and weight vector w. This corresponded to the optimi-
zation over the tree structure and node scores when
growing the regression tree. By denoting the instance set
in Region j as Ij ¼ ijq xið Þ ¼ jð Þ and substituting (12) and
(13) into (11), the objective function for each iteration
became

min
ft

Xn
i¼1

gift xið Þ þ 1
2
hif

2
t xið Þ

� 	
þ γT þ 1

2
λ
XT
j¼1

w2
j

¼ min
wj

XT
j¼1

X
i2Ij

gi

0
@

1
Awj þ 1

2

X
i2Ij

hi þ λ

0
@

1
Aw2

j

2
4

3
5þ γT

ð13Þ

Taking the derivatives of (14) with respect to wj and
equating them to zero gave the optimal weight w�

j of

Fig. 3 Tree growing algorithm. The algorithm first grew the tree in a top-down manner to the maximum depth specified by the user, creating a
2depth number of nodes, and then pruned all the leaves with negative gains in a bottom-up order
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region j

w�
j ¼ �

P
i2Ij giP

i2Ij hi þ λ
ð14Þ

The optimal objective function value could be obtained
by plugging (15) back into (14)

L̂ tð Þ qð Þ ¼ � 1
2

XT
j¼1

P
i2Ij gi

� �2

P
i2Ij hi þ λ

þ γT ð15Þ

We used IL and IR ðIL ∪ IR ¼ IÞ to denote the instance
sets of left and right sub-nodes of a node split. The gain in
loss reduction of (15) resulted from the split was hence

gain inΔL̂ ¼ 1
2

P
i2IL gi

� �2

P
i2IL hi þ λ

þ
P

i2IR gi
� �2

P
i2IR hi þ λ

�
P

i2I gi
� �2
P

i2I hi þ λ

2
64

3
75� γ ð16Þ

which was the gain in loss reduction equation and utilized
as the criterion for splitting leaf nodes during the tree
growth.
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