Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase ASB3 downregulates antiviral innate immunity by targeting MAVS for ubiquitin-proteasomal degradation

Abstract

E3 ubiquitin ligases are very important for regulating antiviral immunity during viral infection. Here, we discovered that Ankyrin repeat and SOCS box-containing protein 3 (ASB3), an E3 ligase, are upregulated in the presence of RNA viruses, particularly influenza A virus (IAV). Notably, overexpression of ASB3 inhibits type I IFN (IFN-I) responses induced by Sendai virus (SeV) and IAV, and ablation of ASB3 restores SeV and H9N2 infection-mediated transcription of IFN-β and its downstream interferon-stimulated genes (ISGs). Interestingly, animals lacking ASB3 presented decreased susceptibility to H9N2 and H1N1 infections. Mechanistically, ASB3 interacts with MAVS and directly mediates K48-linked polyubiquitination and degradation of MAVS at K297, thereby inhibiting the phosphorylation of TBK1 and IRF3 and downregulating downstream antiviral signaling. These findings establish ASB3 as a critical negative regulator that controls the activation of antiviral signaling and describe a novel function of ASB3 that has not been previously reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASB3 expression induced by IAV infection.
Fig. 2: ASB3 negatively regulates type I IFN production.
Fig. 3: ASB3 deficiency enhances the type I IFN response.
Fig. 4: ASB3 specifically interacts with MAVS.
Fig. 5: ASB3 potentiates K48-linked polyubiquitination and degradation of MAVS.
Fig. 6: ASB3-mediated MAVS degradation at residue K297.
Fig. 7: Loss of ASB3 enhances in vivo antiviral immunity.
Fig. 8: ASB3 deficiency eliminates MAVS degradation in the lungs.
Fig. 9: A working model of ASB3 inhibition of antiviral immunity.

Similar content being viewed by others

Data availability

Full and uncropped western blots can be found in Supplementary Materials. All datasets analyzed in the study are available from the corresponding authors upon reasonable request.

References

  1. Zhu H, Zheng C. The race between host antiviral innate immunity and the immune evasion strategies of Herpes Simplex Virus 1. Microbiol Mol Biol Rev: Mmbr 2020;84:e00099–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev. 2009;227:54–65.

    Article  CAS  PubMed  Google Scholar 

  3. Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes Simplex Virus 1 Tegument protein VP22 abrogates cGAS/STING-mediated antiviral innate immunity. J Virol. 2018;92:e00841–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol. 2016;16:35–50.

    Article  CAS  PubMed  Google Scholar 

  5. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.

    Article  PubMed  Google Scholar 

  6. Seth R, Sun L, Ea C, Chen Z. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122:669–82.

    Article  CAS  PubMed  Google Scholar 

  7. Taubenberger J, Morens D. The 1918 influenza pandemic and its legacy. Cold Spring Harb Perspect Med. 2020;10:a038695.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mifsud E, Kuba M, Barr I. Innate Immune Responses to Influenza Virus Infections in the Upper Respiratory Tract. Viruses. 2021;13:2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang H, Dong Y, Bian Y, Xu N, Wu Y, Yang F, et al. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. Nat Commun. 2022;13:6288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, et al. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog. 2021;17:e1009300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu B, Zhang M, Chu H, Zhang H, Wu H, Song G, et al. The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat Immunol. 2017;18:214–24.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang W, Li X, Xu H, Gu X, Li S, Zhu L, et al. UBL7 enhances antiviral innate immunity by promoting Lys27-linked polyubiquitination of MAVS. Cell Rep. 2023;42:112272.

    Article  CAS  PubMed  Google Scholar 

  13. Xue Q, Zhu Z, Xue Z, Yang F, Cao W, Liu X, et al. NOG1 downregulates type I interferon production by targeting phosphorylated interferon regulatory factor 3. PLoS Pathog. 2023;19:e1011511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Bie J, Song C, Li Y, Zhang T, Li H, et al. SIRT2 negatively regulates the cGAS-STING pathway by deacetylating G3BP1. EMBO Rep. 2023;24:e57500.

    Article  CAS  PubMed  Google Scholar 

  15. Yang E, Huang S, Jami-Alahmadi Y, McInerney G, Wohlschlegel J, Li M. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes. PLoS Pathog. 2022;18:e1010743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang W, Liu F, Che Z, Wu M, Tang Z, Liu J, et al. ASB3 knockdown promotes mitochondrial apoptosis via activating the interdependent cleavage of Beclin1 and caspase-8 in hepatocellular carcinoma. Sci China Life Sci. 2019;62:1692–702.

    Article  CAS  PubMed  Google Scholar 

  17. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci USA. 2021;118:e2015416118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Y, Li R, Tan Z, Shi J, Fu Y, Song Y, et al. E3 ubiquitin ligase ASB8 negatively regulates interferon via regulating TBK1/IKKi homeostasis. Mol Immunol. 2020;121:195–203.

    Article  CAS  PubMed  Google Scholar 

  19. Chung A, Guan Y, Yuan Z, Albina J, Chin Y. Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol. 2005;25:4716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yilong Z, Chenxi H, Lin W, Baoxue G. Post-translational regulation of antiviral innate signaling. Eur J Immunol. 2017;47:1414–26.

    Article  Google Scholar 

  21. Gluschko A, Farid A, Herb M, Grumme D, Krönke M, Schramm M. Listeria monocytogenesMacrophages target by two discrete non-canonical autophagy pathways. Autophagy. 2022;18:1090–107.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng M, Kanyema M, Sun Y, Zhao W, Lu Y, Wang J, et al. African Swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting Tollip to promote STING autophagic degradation. J Virol. 2023;97:e0192322.

    Article  PubMed  Google Scholar 

  23. Andreas P, Oliver S, Choon Ping T, Tanja IN, Peter L, Friedemann W, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science. 2006;314:997–1001.

    Article  Google Scholar 

  24. Huang L, Che Z, Liu F, Ge M, Wu Z, Wu L, et al. ASB3 promotes hepatocellular carcinoma progression by mediating DR5 ubiquitination in TRAIL resistance. FASEB J 2024;38:e23475.

    Article  CAS  PubMed  Google Scholar 

  25. Mu L, Han Z, Yu S, Wang A, Chen D, Kong S, et al. Pan-cancer analysis of ASB3 and the potential clinical implications for immune microenvironment of glioblastoma multiforme. Front Immunol. 2022;13:842524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du W, Lu Z, Ye W, Fu X, Zhou Y, Kuang C, et al. The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer. 2017;36:11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Ye G, Liu X, Xue M, Zhou Q, Zhang L, et al. Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis. Cell Rep. 2022;41:111469.

    Article  CAS  PubMed  Google Scholar 

  28. Wenxin W, Wei Z, Elizabeth SD, Leland J, Ming-Hui B, Jordan Z, et al. RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells. Virology 2015;482:181–8.

    Article  Google Scholar 

  29. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6:981–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Xiong T, Yao S, Wei M, Chen M, Lin D, et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nat Commun. 2020;11:5536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu K, Tian H, Deng H. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Sci Adv. 2020;6:eabd0276.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sang-Uk S, Hyung-Joon K, Joo-Hye S, Young-Ho B, Baik Lin S, Taro K, et al. MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection. J Virol. 2010;84:12713–22.

    Article  Google Scholar 

  33. Qiao-Qiao H, Yu H, Longyu N, Sheng R, Gang X, Feiyan D, et al. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat Commun. 2023;14:5343.

    Article  Google Scholar 

  34. Zhang X, Zhu C, Wang T, Jiang H, Ren Y, Zhang Q, et al. GP73 represses host innate immune response to promote virus replication by facilitating MAVS and TRAF6 degradation. PLOS Pathog. 2017;13:e1006321.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Hou P, Pan W, He W, He DC, Wang H, et al. DDIT3 targets innate immunity via the DDIT3-OTUD1-MAVS pathway to promote Bovine Viral Diarrhea Virus replication. J Virol. 2021;95:e02351–20. https://doi.org/10.1128/jvi.02351-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Céline C, Naima Z, Alain P, Dominique G, Nicolas B, Aimé V, et al. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol. 2012;10:44.

    Article  Google Scholar 

  37. Chiang C, Pauli E, Biryukov J, Feister K, Meng M, White E, et al. The human Papillomavirus E6 Oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol. 2018;92:e01737–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Chen L, Lin D, Chen S, Tsao Y, Guo H, et al. NLRP12 regulates anti-viral RIG-I activation via interaction with TRIM25. Cell host microbe. 2019;25:602–16.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gack M, Shin Y, Joo C, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–20.

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez-Aparicio M, Ayllón J, Leo-Macias A, Wolff T, García-Sastre A. Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. J Virol. 2017;91:e01155–16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang Z, Wang J, He B, Zhang X, Li X, Kuang E. RTN3 inhibits RIG-I-mediated antiviral responses by impairing TRIM25-mediated K63-linked polyubiquitination. eLife. 2021;10:e68958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin H, Jiang M, Liu L, Yang Z, Ma Z, Liu S, et al. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat Immunol. 2019;20:812–23.

    Article  CAS  PubMed  Google Scholar 

  43. Khatun O, Sharma M, Narayan R, Tripathi S. SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction. Cell Mol Life Sci 2023;80:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Tong X, Ye X. Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. J Immunol. 2012;189:5304–13.

    Article  CAS  PubMed  Google Scholar 

  45. You F, Sun H, Zhou X, Sun W, Liang S, Zhai Z, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol. 2009;10:1300–8.

    Article  CAS  PubMed  Google Scholar 

  46. Yoo Y, Park Y, Kim J, Cho H, Kim S, Lee H, et al. The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nat Commun. 2015;6:7910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Hou P, He D, Wang H, He H. RACK1 degrades MAVS to promote bovine ephemeral fever virus replication via upregulating E3 ubiquitin ligase STUB1. Vet Microbiol. 2021;257:109096.

    Article  CAS  PubMed  Google Scholar 

  48. Feng L, Li C, Zeng L, Gao D, Sun Y, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα. Signal Transduct Target Ther. 2022;7:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu Z, Xie Y, Lu J, Yang J, Zhang J, Jiang H, et al. VANGL2 inhibits antiviral IFN-I signaling by targeting TBK1 for autophagic degradation. Sci Adv. 2023;9:eadg2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu F, Zhuang W, Song B, Yang Y, Liu J, Zheng Y, et al. MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade. Cell Mol Immunol. 2023;20:1186–202.

    Article  CAS  PubMed  Google Scholar 

  51. Huang J, Yu Z, Li X, Yang M, Fang Q, Li Z, et al. E3 ligase HECTD3 promotes RNA virus replication and virus-induced inflammation via K33-linked polyubiquitination of PKR. Cell Death Dis. 2023;14:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng M, Xu B, Sun Y, Wang J, Lu Y, Shi C, et al. ASB3 expression aggravates inflammatory bowel disease by targeting TRAF6 protein stability and affecting the intestinal microbiota. bioRxiv. 20232023.07.30.551192.

  53. Yuan Z, Hu B, Xiao H, Tan X, Li Y, Tang K, et al. The E3 Ubiquitin Ligase RNF5 facilitates SARS-CoV-2 membrane protein-mediated Virion release. mBio. 2021;13:e0316821.

    Article  PubMed  Google Scholar 

  54. Liu X, Xu F, Ren L, Zhao F, Huang Y, Wei L, et al. MARCH8 inhibits influenza A virus infection by targeting viral M2 protein for ubiquitination-dependent degradation in lysosomes. Nat Commun. 2021;12:4427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32202890, 32273043, U21A20261), the Science and Technology Development Program of Changchun City (21ZY42), and the China Agriculture Research System of MOF and MARA (CARS-35).

Author information

Authors and Affiliations

Authors

Contributions

MC performed the majority of the experiments. YS, JW, YL, CS, RW, XW, JL, and WZ contributed to and/or supported us in some experiments. XC, YZ, and MC contributed to the animal studies and wrote the manuscript. JW, NW, WY, YJ, MG, TY, JG, and HH participated in the inflammation evaluation experiments. MC and YL analyzed and interpreted the data. MC, YZ, GY, CW, and XC conceived and designed the experiments, interpreted the data, and wrote the manuscript. YZ acts as a guarantor for the present study. All the authors discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to Xin Cao, Dongqin Yang, Chunfeng Wang or Yan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal procedures were performed in accordance with the Guide for Care and Use of Laboratory Animals of Jilin Agricultural University and were approved by the Animal Ethics Committee of Jilin Agricultural University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Lu, Y., Wang, J. et al. The E3 ligase ASB3 downregulates antiviral innate immunity by targeting MAVS for ubiquitin-proteasomal degradation. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01376-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01376-5

Search

Quick links