Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chromosome-coupled ubiquitin-proteasome pathway is required for meiotic surveillance

Abstract

Defects in meiotic prophase can cause meiotic chromosome missegregation and aneuploid gamete formation. Meiotic checkpoints are activated in germ cells with meiotic defects, and cells with unfixed errors are eliminated by apoptosis. How such a surveillance process is regulated remains elusive. Here, we report that a chromosome-coupled ubiquitin-proteasome pathway (UPP) regulates meiotic checkpoint activation and promotes germ cell apoptosis in C. elegans meiosis-defective mutants. We identified an F-box protein, FBXL-2, that functions as a core component within the pathway. This chromosome-coupled UPP regulates meiotic DSB repair kinetics and chromosome dynamic behaviors in synapsis defective mutants. Disrupted UPP impairs the axial recruitment of the HORMA domain protein HIM-3, which is required for efficient germ cell apoptosis in synapsis defective mutants. Our data suggest that an efficient chromosome-coupled UPP functions as a part of the meiotic surveillance system by enhancing the integrity of the meiotic chromosome axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RPN-1 depletion causes altered meiotic progression kinetics and reduced germ cell apoptosis in synapsis defective mutants.
Fig. 2: Identification of meiotic chromosome-coupled UPP components.
Fig. 3: FBXL-2 promotes germ cell apoptosis in syp-1 and rad-51 mutant backgrounds.
Fig. 4: Chromosome-coupled UPP regulates DSB repair kinetics.
Fig. 5: FBXL-2 promotes chromosome dynamics in syp-1 mutant background.
Fig. 6: Chromosome-coupled UPP participates in meiotic surveillance by promoting axial loading of HIM-3.
Fig. 7: FBXL-2 recognizes chromatin-associated cohesin complexes.
Fig. 8: FBXL-2 interacts with proteasome components.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its Supplementary Information files.

References

  1. Zickler D, Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol. 2015;7:a016626.

    Article  PubMed  PubMed Central  Google Scholar 

  2. MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21:393–400.

    Article  CAS  PubMed  Google Scholar 

  3. Roeder GS, Bailis JM. The pachytene checkpoint. Trends Genet. 2000;16:395–403.

    Article  CAS  PubMed  Google Scholar 

  4. Hochwagen A, Amon A. Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol. 2006;16:R217–28.

    Article  CAS  PubMed  Google Scholar 

  5. Bhalla N, Dernburg AF. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science. 2005;310:1683–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chuang CN, Cheng YH, Wang TF. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012;40:11416–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carballo JA, Johnson AL, Sedgwick SG, Cha RS. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell. 2008;132:758–70.

    Article  CAS  PubMed  Google Scholar 

  8. Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, et al. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 2011;13:599–U232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shin YH, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, et al. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 2010;6:e1001190.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, et al. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Gene Dev. 2012;26:958–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bohr T, Ashley G, Eggleston E, Firestone K, Bhalla N. Synaptonemal complex components are required for meiotic checkpoint function in Caenorhabditis elegans. Genetics. 2016;204:987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Couteau F, Nabeshima K, Villeneuve A, Zetka M. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr Biol. 2004;14:585–92.

    Article  CAS  PubMed  Google Scholar 

  13. Silva N, Ferrandiz N, Barroso C, Tognetti S, Lightfoot J, Telecan O, et al. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev Cell. 2014;31:503–11.

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, Rosenberg SC, Kugel CL, Kostow N, Rog O, Davydov V, et al. The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins. Dev Cell. 2014;31:487–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. BBA Mol Cell Res. 2004;1695:55–72.

    CAS  Google Scholar 

  16. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE. 2008;3:e1487.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du J, Zhang JZ, Su Y, Liu M, Ospina JK, Yang SY, et al. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. PLoS ONE. 2011;6:e241628.

    Article  Google Scholar 

  18. Kipreos ET. Ubiquitin-mediated pathways in C. elegans. WormBook. 2005;12:1–24.

  19. Ponts N, Yang J, Chung DW, Prudhomme J, Girke T, Horrocks P, et al. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS ONE. 2008;3:e2386.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deshaies RJ. SCF and cullin/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999;15:435–67.

    Article  CAS  PubMed  Google Scholar 

  21. Kipreos ET, Pagano M. The F-box protein family. Genome Biol. 2000;1:reviews3002.1–3002.7.

  22. Nguyen KM, Busino L. The biology of F-box proteins: the SCF family of E3 ubiquitin ligases. Adv Exp Med Biol. 2020;1217:111–22.

    Article  CAS  PubMed  Google Scholar 

  23. Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H, Hunt PA, et al. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science. 2017;355:408–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rao HB, Qiao H, Bhatt SK, Bailey LR, Tran HD, Bourne SL, et al. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science. 2017;355:403–07.

    Article  PubMed  Google Scholar 

  25. Guan Y, Leu NA, Ma J, Chmatal L, Ruthel G, Bloom JC, et al. SKP1 drives the prophase I to metaphase I transition during male meiosis. Sci Adv. 2020;6:eaaz2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu Z, Bani Ismail M, Shinohara M, Shinohara ASCF. SCF(Cdc4) ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Sci Alliance. 2021;4:e202000933.

  27. Barbosa P, Zhaunova L, Debilio S, Steccanella V, Kelly V, Ly T, et al. SCF-Fbxo42 promotes synaptonemal complex assembly by downregulating PP2A-B56. J Cell Biol. 2021;220:e202009167.

    Article  CAS  PubMed  Google Scholar 

  28. Burger J, Merlet J, Tavernier N, Richaudeau B, Arnold A, Ciosk R, et al. CRL2(LRR-1) E3-ligase regulates proliferation and progression through meiosis in the Caenorhabditis elegans germline. PLoS Genet. 2013;9:e1003375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee B-H, et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science. 2016;351:aad9421.1-10.

  30. Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem. 2012;287:14659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol. 2022;10:901320.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet. 2019;15:e1008486.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet. 2019;15:e1008161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002;16:2428–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colaiácovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell. 2003;5:463–74.

    Article  PubMed  Google Scholar 

  37. Bohr T, Nelson CR, Giacopazzi S, Lamelza P, Bhalla N. Shugoshin is essential for meiotic prophase checkpoints in C. elegans. Curr Biol. 2018;28:3199–211.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol. 2020;219:e201910086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET. The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol. 2002;12:277–87.

    Article  CAS  PubMed  Google Scholar 

  40. Mets DG, Meyer BJ. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell. 2009;139:73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solinger JA, Kiianitsa K, Heyer WD. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell. 2002;10:1175–88.

    Article  CAS  PubMed  Google Scholar 

  42. Rinaldo C, Bazzicalupo P, Ederle S, Hilliard M, La Volpe A. Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics. 2002;160:471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takanami T, Mori A, Takahashi H, Horiuchi S, Higashitani A. Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination. Chromosome Res. 2003;11:125–35.

    Article  CAS  PubMed  Google Scholar 

  44. Hiraoka Y, Dernburg AF. The SUN rises on meiotic chromosome dynamics. Dev Cell. 2009;17:598–605.

    Article  CAS  PubMed  Google Scholar 

  45. Tzur YB, Wilson KL, Gruenbaum Y. SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol. 2006;7:782–8.

    Article  CAS  PubMed  Google Scholar 

  46. Woglar A, Daryabeigi A, Adamo A, Habacher C, Machacek T, La Volpe A, et al. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet. 2013;9:e1003335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deshong AJ, Ye AL, Lamelza P, Bhalla N. A quality control mechanism coordinates meiotic prophase events to promote crossover assurance. PLoS Genet. 2014;10:e1004291.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim Y, Kostow N, Dernburg AF. The chromosome axis mediates feedback control of CHK-2 to ensure crossover formation in C. elegans. Dev Cell. 2015;35:247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang R, Li J, Tian Y, Sun Y, Zhang Y, Liu M, et al. The dynamic recruitment of LAB proteins senses meiotic chromosome axis differentiation in C. elegans. J Cell Biol. 2024;223:e202212035.

    Article  CAS  PubMed  Google Scholar 

  50. Brockway H, Balukoff N, Dean M, Alleva B, Smolikove S. The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans. PLoS Genet. 2014;10:e1004757.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, et al. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun. 2020;11:477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blundon JM, Cesar BI, Bae JW, ÄŒavka I, Haversat J, Ries J, et al. Skp1 proteins are structural components of the synaptonemal complex in C. elegans. Sci Adv. 2024;10:eadl4876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carlton PM, Farruggio AP, Dernburg AF. A link between meiotic prophase progression and crossover control. PLoS Genet. 2006;2:119–28.

    Article  CAS  Google Scholar 

  54. Penkner AM, Fridkin A, Gloggnitzer J, Baudrimont A, Machacek T, Woglar A, et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell. 2009;139:920–33.

    Article  CAS  PubMed  Google Scholar 

  55. MacQueen AJ, Villeneuve AM. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev. 2001;15:1674–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castellano-Pozo M, Pacheco S, Sioutas G, Jaso-Tamame AL, Dore MH, Karimi MM, et al. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat Commun. 2020;11:4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Couteau F, Zetka M. DNA damage during meiosis induces chromatin remodeling and synaptonemal complex disassembly. Dev Cell. 2011;20:353–63.

    Article  CAS  PubMed  Google Scholar 

  58. Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev Cell. 2008;14:263–74.

    Article  CAS  PubMed  Google Scholar 

  59. Li X, Schimenti JC. Mouse pachytene checkpoint 2 (Trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 2005;3:e130.

    Article  Google Scholar 

  60. Wang Y, Gao WY, Wang LL, Wang RL, Yang ZX, Luo FQ, et al. FBXW24 controls female meiotic prophase progression by regulating SYCP3 ubiquitination. Clin Transl Med. 2022;12:e891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guan Y, Lin H, Leu NA, Ruthel G, Fuchs SY, Busino L, et al. SCF ubiquitin E3 ligase regulates DNA double-strand breaks in early meiotic recombination. Nucleic Acids Res. 2022;50:5129–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nadarajan S, Lambert TJ, Altendorfer E, Gao J, Blower MD, Waters JC, et al. Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop. Elife. 2017;6:e23437.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rog O, Kohler S, Dernburg AF. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. Elife. 2017;6:e21455.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Baudrimont A, Penkner A, Woglar A, Machacek T, Wegrostek C, Gloggnitzer J, et al. Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001219.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Monique Zetka (Department of Biology, McGill University) for the HTP-3 antibody. Some strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Funding

This work was supported by grants from the National Natural Science Foundation of China (32022018, 32370780, and 31871360) and the National Key R&D Program of China 2021YFA1101001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JG and RZ; Methodology: JG and RZ; Investigation: RZ, BL, YT, MX, QL, XH, YL, LZ, FQ, RW, XM, and JG; Writing: JG, RZ, and JZ; Funding acquisition: JG and JZ; Resources: JG, JZ, and JC; Supervision: JG.

Corresponding author

Correspondence to Jinmin Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, B., Tian, Y. et al. A chromosome-coupled ubiquitin-proteasome pathway is required for meiotic surveillance. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01375-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01375-6

Search

Quick links