Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel role for Ddx39 in differentiation and telomere length regulation of embryonic stem cells

Abstract

Erk signaling is indispensable for the self-renewal and differentiation of mouse embryonic stem cells (ESCs), as well as telomere homeostasis. But how Erk regulates these biological processes remains unclear. We identified 132 Erk2 interacting proteins by co-immunoprecipitation and mass spectrometric analysis, and focused on Ddx39 as a potential Erk2 substrate. We demonstrated that Erk2 phosphorylates Ddx39 on Y132 and Y138. Ddx39 knockout (KO) ESCs are defective in differentiation, due to reduced H3K27ac level upon differentiation. Phosphorylation of Ddx39 promotes the recruitment of Hat1 to acetylate H3K27 and activate differentiation genes. In addition, Ddx39 KO leads to telomere elongation in ESCs. Ddx39 is recruited to telomeres by the telomere-binding protein Trf1, consequently disrupting the DNA loop formed by Trf1 and suppressing the alternative lengthening of telomeres (ALT). Phosphorylation of Ddx39 weakens its interaction with Trf1, releasing it from telomeres. Thus, ALT activity is enhanced, and telomeres are elongated. Altogether, our studies reveal an essential role of Ddx39 in the differentiation and telomere homeostasis of ESCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Erk2 phosphorylates Ddx39 at Y132 and Y138.
Fig. 2: Ddx39 depletion impairs differentiation capacity of ESCs.
Fig. 3: Ddx39 recruits Hat1 to activates differentiation genes.
Fig. 4: Ddx39 depletion leads to telomere elongation and enhanced ALT activity.
Fig. 5: Regulation of telomere homeostasis by Ddx39 is Trf1 dependent.
Fig. 6: Ddx39 mediates the regulatory effect of Erk on telomeres.

Similar content being viewed by others

Data availability

The raw sequencing data reported in this paper have been deposited in the GenBase in National Genomics Data Center (https://ngdc.cncb.ac.cn/) Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, under the accession number: CRA009355. The mass spectrometry proteomics data have been deposited to the Proteome Xchange Consortium via the PRIDE partner repository with the dataset identifier PXD048543. The original western blot data are provided in Supplementary Materials (Original western blots).

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell. 2006;10:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell. 2011;144:513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18:643–58.

    Article  CAS  PubMed  Google Scholar 

  7. Yang W, Lee YH, Jones AE, Woolnough JL, Zhou D, Dai Q, et al. The histone H2A deubiquitinase Usp16 regulates embryonic stem cell gene expression and lineage commitment. Nat Commun. 2014;5:3818.

    Article  CAS  PubMed  Google Scholar 

  8. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.

    Article  CAS  PubMed  Google Scholar 

  9. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010;107:21931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang C, Lee JE, Lai B, Macfarlan TS, Xu S, Zhuang L, et al. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc Natl Acad Sci USA. 2016;113:11871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feldser DM, Hackett JA, Greider CW. Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer. 2003;3:623–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184:306–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet. 2017;33:16–33.

    Article  PubMed  Google Scholar 

  14. Liu CC, Ma DL, Yan TD, Fan X, Poon Z, Poon LF, et al. Distinct Responses of Stem Cells to Telomere Uncapping-A Potential Strategy to Improve the Safety of Cell Therapy. Stem Cells. 2016;34:2471–84.

    Article  CAS  PubMed  Google Scholar 

  15. Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature. 2011;474:399–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pucci F, Gardano L, Harrington L. Short telomeres in ESCs lead to unstable differentiation. Cell Stem Cell. 2013;12:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, et al. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res. 2011;21:779–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997;17:231–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet. 1997;17:236–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shen M, Haggblom C, Vogt M, Hunter T, Lu KP. Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis. Proc Natl Acad Sci USA. 1997;94:13618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171–5.

    Article  CAS  PubMed  Google Scholar 

  22. Ye JZS, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Gene Dev. 2004;18:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–10.

    Article  PubMed  Google Scholar 

  24. Li B, Oestreich S, de Lange T. Identification of human Rap1: implications for telomere evolution. Cell. 2000;101:471–83.

    Article  CAS  PubMed  Google Scholar 

  25. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.

    Article  CAS  PubMed  Google Scholar 

  26. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

    Article  CAS  PubMed  Google Scholar 

  27. Pickett HA, Reddel RR. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol. 2015;22:875–80.

    Article  CAS  PubMed  Google Scholar 

  28. Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature. 2010;464:858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le R, Huang Y, Zhang Y, Wang H, Lin J, Dong Y, et al. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell. 2021;28:732–47.e739.

    Article  CAS  PubMed  Google Scholar 

  30. Dan J, Li M, Yang J, Li J, Okuka M, Ye X, et al. Roles for Tbx3 in regulation of two-cell state and telomere elongation in mouse ES cells. Sci Rep. 2013;3:3492.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell. 2014;29:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.

    Article  CAS  PubMed  Google Scholar 

  33. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS  PubMed  Google Scholar 

  34. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol. 1999;210:30–43.

    Article  CAS  PubMed  Google Scholar 

  36. Chen HX, Guo RP, Zhang Q, Guo HC, Yang M, Wu ZF, et al. Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. P Natl Acad Sci USA. 2015;112:E5936–5943.

    Article  CAS  Google Scholar 

  37. Yoo HH, Chung IK. Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection. Aging Cell. 2011;10:557–71.

    Article  CAS  PubMed  Google Scholar 

  38. Lejnine S, Makarov VL, Langmore JP. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. P Natl Acad Sci USA. 1995;92:2393–7.

    Article  CAS  Google Scholar 

  39. Li X, Wang M, Zheng W, Huang W, Wang Z, Jin K, et al. Dynamics of TRF1 organizing a single human telomere. Nucleic Acids Res. 2021;49:760–75.

    Article  CAS  PubMed  Google Scholar 

  40. Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, et al. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol Cell. 2011;44:878–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AY, Pickett HA, et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol. 2009;27:1181–5.

    Article  CAS  PubMed  Google Scholar 

  42. Yu Z, Dulin D, Cnossen J, Kober M, van Oene MM, Ordu O, et al. A force calibration standard for magnetic tweezers. Rev Sci Instrum. 2014;85:123114.

    Article  PubMed  Google Scholar 

  43. Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, et al. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res. 2009;19:1052–61.

    Article  PubMed  Google Scholar 

  44. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, et al. The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol. 2018;14:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang G, Yuan Y, Yuan H, Wang J, Yun H, Geng Y, et al. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Rep. 2021;22:e50967.

    Article  CAS  PubMed  Google Scholar 

  46. Lee OH, Kim H, He QY, Baek HJ, Yang D, Chen LY, et al. Genome-wide YFP Fluorescence Complementation Screen Identifies New Regulators for Telomere Signaling in Human Cells. Mol Cell Proteomics. 2011;10:M110 001628.

    Article  PubMed  Google Scholar 

  47. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015;162:425–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Munoz P, Blanco R, de Carcer G, Schoeftner S, Benetti R, Flores JM, et al. TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol Cell Biol. 2009;29:1608–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–13.

    Article  PubMed  Google Scholar 

  51. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283:1321–5.

    Article  CAS  PubMed  Google Scholar 

  52. Ruis P, Van Ly D, Borel V, Kafer GR, McCarthy A, Howell S, et al. TRF2-independent chromosome end protection during pluripotency. Nature. 2021;589:103–9.

    Article  CAS  PubMed  Google Scholar 

  53. Markiewicz-Potoczny M, Lobanova A, Loeb AM, Kirak O, Olbrich T, Ruiz S, et al. TRF2-mediated telomere protection is dispensable in pluripotent stem cells. Nature. 2021;589:110–5.

    Article  CAS  PubMed  Google Scholar 

  54. Bejarano L, Bosso G, Louzame J, Serrano R, Gómez-Casero E, Martínez-Torrecuadrada J, et al. Multiple cancer pathways regulate telomere protection. Embo Mol Med. 2019;11:e10292.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [Grant No. 2021YFA1101002] and the 111 Project Grant [B08011].

Author information

Authors and Affiliations

Authors

Contributions

SN, MW, JY, BL, QD, XY, ML and XD performed experiments, SN, LL and ZY analyzed the data and contributed to the paper writing, LC designed the experiments and wrote the paper.

Corresponding author

Correspondence to Lingyi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, S., Wang, M., Yang, J. et al. Novel role for Ddx39 in differentiation and telomere length regulation of embryonic stem cells. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01354-x

Search

Quick links