Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vps34 sustains Treg cell survival and function via regulating intracellular redox homeostasis

Abstract

The survival and suppressive function of regulatory T (Treg) cells rely on various intracellular metabolic and physiological processes. Our study demonstrates that Vps34 plays a critical role in maintaining Treg cell homeostasis and function by regulating cellular metabolic activities. Disruption of Vps34 in Treg cells leads to spontaneous fatal systemic autoimmune disorder and multi-tissue inflammatory damage, accompanied by a reduction in the number of Treg cells, particularly eTreg cells with highly immunosuppressive activity. Mechanistically, the poor survival of Vps34-deficient Treg cells is attributed to impaired endocytosis, intracellular vesicular trafficking and autophagosome formation, which further results in enhanced mitochondrial respiration and excessive ROS production. Removal of excessive ROS can effectively rescue the death of Vps34-deficient Treg cells. Functionally, acute deletion of Vps34 within established Treg cells enhances anti-tumor immunity in a malignant melanoma model by boosting T-cell-mediated anti-tumor activity. Overall, our results underscore the pivotal role played by Vps34 in orchestrating Treg cell homeostasis and function towards establishing immune homeostasis and tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vps34 plays a crucial role in maintaining Treg cell-mediated prevention of lethal autoimmune disease.
Fig. 2: Ablation of Vps34 in Treg cells disrupts immune homeostasis.
Fig. 3: Vps34 is critical for Treg cell survival.
Fig. 4: Vps34 is necessary for the transition of cTreg to eTreg.
Fig. 5: Vps34 mediates Treg cell autophagy capacity and endocytosis.
Fig. 6: Deletion of Vps34 impairs Treg cell redox homeostasis.
Fig. 7: Vps34 is critical for Treg cell-mediated immunosuppressive function.
Fig. 8: Schematic illustration of Vps34 controls redox homeostasis to orchestrate Treg cell survival and function.

Similar content being viewed by others

Data availability

The RNA-seq data were deposited in the Sequence Read Archive (SRA) repository at NCBI under the accession number PRJNA917486.

References

  1. Smigiel KS, Srivastava S, Stolley JM, Campbell DJ. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev. 2014;259:40–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.

    Article  CAS  PubMed  Google Scholar 

  3. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–71.

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19:116.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Backer JM. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473:2251–71.

    Article  CAS  PubMed  Google Scholar 

  7. Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy. 2015;11:1956–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 2016;5:e12444.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016;17:277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McLeod IX, Zhou X, Li QJ, Wang F, He YW. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J Immunol. 2011;187:5051–61.

    Article  CAS  PubMed  Google Scholar 

  11. Parekh VV, Wu L, Boyd KL, Williams JA, Gaddy JA, Olivares-Villagomez D, et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J Immunol. 2013;190:5086–101.

    Article  CAS  PubMed  Google Scholar 

  12. Tao H, Yancey PG, Blakemore JL, Zhang Y, Ding L, Jerome WG, et al. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARalpha transcription of Tfeb in atherosclerosis. J Clin Investig. 2021;131:e94229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parekh VV, Pabbisetty SK, Wu L, Sebzda E, Martinez J, Zhang J, et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8alpha(+) dendritic cells. Proc Natl Acad Sci USA. 2017;114:E6371–E80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang G, Postoak JL, Song W, Martinez J, Zhang J, Wu L, et al. Dendritic cell PIK3C3/VPS34 controls the pathogenicity of CNS autoimmunity independently of LC3-associated phagocytosis. Autophagy. 2022;18:161–70.

    Article  CAS  PubMed  Google Scholar 

  15. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  CAS  PubMed  Google Scholar 

  16. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.

    Article  CAS  PubMed  Google Scholar 

  17. Borys SM, Bag AK, Brossay L, Adeegbe DO. The Yin and Yang of targeting KLRG1(+) Tregs and effector cells. Front Immunol. 2022;13:894508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kongara S, Karantza V. The interplay between autophagy and ROS in tumorigenesis. Front Oncol. 2012;2:171.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arguello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E, et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 2020;32:1063–75.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, et al. Distinct metabolic programs established in the thymus control effector functions of gammadelta T cell subsets in tumor microenvironments. Nat Immunol. 2021;22:179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352.

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity. 2016;45:1135–47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ohashi Y. Activation mechanisms of the VPS34 complexes. Cells. 2021;10:3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi H, Chi H. Metabolic control of Treg cell stability, plasticity, and tissue-specific heterogeneity. Front Immunol. 2019;10:2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei J, Zheng W, Chapman NM, Geiger TL, Chi H. T cell metabolism in homeostasis and cancer immunity. Curr Opin Biotechnol. 2021;68:240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism. Science. 2019;363:eaar3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity. 2022;55:1981–92.

    Article  PubMed  Google Scholar 

  28. Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, et al. HIF-1alpha is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep. 2019;27:226–37.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martinez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019;565:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chapman NM, Zeng H, Nguyen TM, Wang Y, Vogel P, Dhungana Y, et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T(reg) subsets to protect tissue homeostasis. Nat Commun. 2018;9:2095.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J. 2015;29:2315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng P, Yang Q, Luo L, Sun Y, Lv W, Wan S, et al. The kinase PDK1 regulates regulatory T cell survival via controlling redox homeostasis. Theranostics. 2021;11:9503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16:3–17.

    Article  CAS  PubMed  Google Scholar 

  34. Lu G, Tan HWS, Schmauck-Medina T, Wang L, Chen J, Cho YL, et al. WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP. Autophagy. 2022;18:2865–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol. 2014;6:a016964.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Farmer T, Reinecke JB, Xie S, Bahl K, Naslavsky N, Caplan S. Control of mitochondrial homeostasis by endocytic regulatory proteins. J Cell Sci. 2017;130:2359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farmer T, Naslavsky N, Caplan S. Tying trafficking to fusion and fission at the mighty mitochondria. Traffic. 2018;19:569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 2016;540:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA. 2013;110:17450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 2011;71:5976–86.

    Article  CAS  PubMed  Google Scholar 

  42. Mgrditchian T, Arakelian T, Paggetti J, Noman MZ, Viry E, Moussay E, et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Natl Acad Sci USA. 2017;114:E9271–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janji B, Hasmim M, Parpal S, De Milito A, Berchem G, Noman MZ. Lighting up the fire in cold tumors to improve cancer immunotherapy by blocking the activity of the autophagy-related protein PIK3C3/VPS34. Autophagy. 2020;16:2110–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noman MZ, Parpal S, Van Moer K, Xiao M, Yu Y, Viklund J, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci Adv. 2020;6:eaax7881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol. 2023;23:842–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Funatake CJ, Marshall NB, Steppan LB, Mourich DV, Kerkvliet NI. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J Immunol. 2005;175:4184–8.

    Article  CAS  PubMed  Google Scholar 

  47. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.

    Article  CAS  PubMed  Google Scholar 

  48. Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2018;554:373–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng G, Tsukamoto S, Ikutama R, Nguyen HLT, Umehara Y, Trujillo-Paez JV, et al. Human beta-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J Clin Investig. 2022;132:e156501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Zhang Y, Zhang M, Meng J, Ma Q, Hao Z, et al. Activated autophagy restored the impaired frequency and function of regulatory T cells in chronic prostatitis. Prostate. 2021;81:29–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the Natural Science Foundation of China (to MY, 82271754 and 82071737; to PF, 82301974; to QY, 32000615; to SW, 82101831); Guangdong Basic and Applied Basic Research Fund (to MY, 2024A1515010566; to QY, 2023A1515012582; to PF, 2022A1515110217); The China Postdoctoral Science Foundation (to PF, 2023M741377); The 111 Project (B16021).

Author information

Authors and Affiliations

Authors

Contributions

PF, QY, LL, and ZG performed experiments, analyzed data, and wrote the manuscript. JF, MZ, WM, SW, JH, ZL and GS assisted with the preparation of reagents, data analysis and manuscript preparation. G.W helped in revising the text and rebuttal. MY and ZD conceptualized the project, designed and supervised the research, and wrote the manuscript.

Corresponding authors

Correspondence to Zhongjun Dong or Meixiang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal studies were approved by the Animal Ethics Committee of Jinan University (IACUC-20211229-02). No human samples were used in this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, P., Yang, Q., Luo, L. et al. Vps34 sustains Treg cell survival and function via regulating intracellular redox homeostasis. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01353-y

Search

Quick links