Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells

Abstract

Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/β-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/β-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/β-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the β-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/β-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/β-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cuproptosis activates Wnt/β-catenin signaling.
Fig. 2: The SLC31A1-copper axis regulates PDK1/AKT/GSK3β/β-catenin signaling and stemness.
Fig. 3: Activation of Wnt/β-catenin pathway promotes resistance to cuproptosis in cancer stem cells.
Fig. 4: TCF4 protects cancer stem cells from cuproptosis by regulating ATP7B.
Fig. 5: The β-catenin/TCF4 complex activates ATP7B transcription.
Fig. 6: TCF4 deficiency or Wnt signaling inhibition enhances the anticancer activity of elesclomol-Cu in vivo.
Fig. 7: Model for regulation of cuproptosis sensitivity by Wnt/β-catenin signaling in cancer cells.

Similar content being viewed by others

Data availability

RNA-seq and CUT&Tag data have been deposited in GEO under the following accession numbers: GSE248083, GSE248084, and GSE248246.

References

  1. Ge E, Bush A, Casini A, Cobine P, Cross J, DeNicola G, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22:102–13.

    Article  CAS  PubMed  Google Scholar 

  2. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509:492–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Das A, Ash D, Fouda A, Sudhahar V, Kim Y, Hou Y, et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol. 2022;24:35–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsang T, Posimo J, Gudiel A, Cicchini M, Feldser D, Brady D. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22:412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramchandani D, Berisa M, Tavarez D, Li Z, Miele M, Bai Y, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun. 2021;12:7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7:378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, et al. Cuproptosis: harnessing transition metal for cancer therapy. ACS Nano. 2023;17:19581–99.

    Article  CAS  PubMed  Google Scholar 

  8. Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer. 2023;22:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohgami R, Campagna D, McDonald A, Fleming M. The Steap proteins are metalloreductases. Blood. 2006;108:1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res. 2022;20:1339–53.

    Article  CAS  PubMed  Google Scholar 

  11. La Fontaine S, Mercer J. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463:149–67.

    Article  PubMed  Google Scholar 

  12. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kahlson M, Dixon S. Copper-induced cell death. Science. 2022;375:1231–32.

    Article  CAS  PubMed  Google Scholar 

  14. Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ. 2023;30:876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulz V, Basu S, Freibert S-A, Webert H, Boss L, Mühlenhoff U, et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol. 2023;19:206–17.

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, et al. Lactylation of METTL16 promotes cuproptosis via mA-modification on FDX1 mRNA in gastric cancer. Nat Commun. 2023;14:6523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cobine P, Brady D. Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell. 2022;82:1786–87.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang X, Ke J, Jia L, An X, Ma H, Li Z, et al. A novel cuproptosis-related gene signature of prognosis and immune microenvironment in head and neck squamous cell carcinoma cancer. J Cancer Res Clin Oncol. 2023;149:203–18.

    Article  CAS  PubMed  Google Scholar 

  19. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  20. Bugter J, Fenderico N, Maurice M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 2021;21:5–21.

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022;29:2190–202.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  24. Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022;13:2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huster D, Purnat TD, Burkhead JL, Ralle M, Fiehn O, Stuckert F, et al. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem. 2007;282:8343–55.

    Article  CAS  PubMed  Google Scholar 

  26. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi F, et al. Intratumoral copper Modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020;80:4129–44.

    Article  CAS  PubMed  Google Scholar 

  27. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv Sci. 2021;8:e2004303.

    Article  Google Scholar 

  28. Lu J, Liu X, Li X, Li H, Shi L, Xia X, et al. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci USA. 2024;121:e2311630121.

    Article  CAS  PubMed  Google Scholar 

  29. Zulkifli M, Spelbring AN, Zhang Y, Soma S, Chen S, Li L, et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc Natl Acad Sci USA. 2023;120:e2216722120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao Z, Brose J, Schimo S, Ackland SM, La Fontaine S, Wedd AG. Unification of the copper(I) binding affinities of the metallo-chaperones Atx1, Atox1, and related proteins: detection probes and affinity standards. J Biol Chem. 2011;286:11047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, et al. APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed. 2021;60:25346–55.

    Article  CAS  Google Scholar 

  32. Wang Z, Wu VH, Allevato MM, Gilardi M, He Y, Luis Callejas-Valera J, et al. Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat Commun. 2019;10:5546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen D, Wang C. Targeting cancer stem cells in squamous cell carcinoma. Precis Clin Med. 2019;2:152–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Zhao H, Liang W, Jiang E, Zhou X, Shao Z, et al. Autophagy regulates the cancer stem cell phenotype of head and neck squamous cell carcinoma through the noncanonical FOXO3/SOX2 axis. Oncogene. 2022;41:634–46.

    Article  CAS  PubMed  Google Scholar 

  35. Sun S, Liu S, Duan SZ, Zhang L, Zhou H, Hu Y, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 2014;74:7546–59.

    Article  CAS  PubMed  Google Scholar 

  36. Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis W, et al. A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 2016;76:891–901.

    Article  CAS  PubMed  Google Scholar 

  37. Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 2023;35:e2212267.

    Article  PubMed  Google Scholar 

  38. Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Affinity gradients drive copper to cellular destinations. Nature. 2010;465:645–48.

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Jensen R. Understanding and overcoming immunosuppression shaped by cancer stem cells. Cancer Res. 2023;83:2096–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castellano M, Pollock P, Walters M, Sparrow L, Down L, Gabrielli B, et al. CDKN2A/p16 is inactivated in most melanoma cell lines. Cancer Res. 1997;57:4868–75.

    CAS  PubMed  Google Scholar 

  41. Dok R, Kalev P, Van Limbergen E, Asbagh L, Vázquez I, Hauben E, et al. p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res. 2014;74:1739–51.

    Article  CAS  PubMed  Google Scholar 

  42. Spranger S, Bao R, Gajewski T. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Sun Z. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5365–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeuchi Y, Tanegashima T, Sato E, Irie T, Sai A, Itahashi K, et al. Highly immunogenic cancer cells require activation of the WNT pathway for immunological escape. Sci Immunol. 2021;6:eabc6424.

    Article  CAS  PubMed  Google Scholar 

  45. Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, et al. A druggable copper-signalling pathway that drives inflammation. Nature. 2023;617:386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pezacki AT, Matier CD, Gu X, Kummelstedt E, Bond SE, Torrente L, et al. Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proc Natl Acad Sci USA. 2022;119:e2202736119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang D, Kroemer G, Kang R. Targeting cuproplasia and cuproptosis in cancer. Nat Rev Clin Oncol. 2024;21:370–88.

    Article  PubMed  Google Scholar 

  48. Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med. 2012;52:2142–50.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Li S, Wang S, Yang Q, Wu Z, Zhang M, et al. LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma. Int J Oral Sci. 2023;15:24.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen L, Yang Q, Li Y, Yang L, Liu J, Li H, et al. Targeting CMTM6 suppresses stem cell-like properties and enhances antitumor immunity in head and neck squamous cell carcinoma. Cancer Immunol Res. 2020;8:179–91.

    Article  CAS  PubMed  Google Scholar 

  51. Arnesano F, Natile G. Interference between copper transport systems and platinum drugs. Semin Cancer Biol. 2021;76:173–88.

    Article  CAS  PubMed  Google Scholar 

  52. Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, et al. Wilson disease. Nat Rev Dis Primers. 2018;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang S, Wu Z, Zhu S, Wan S, Zhang M, Zhang B, et al. CTLA-4 blockade induces tumor pyroptosis via CD8 T cells in head and neck squamous cell carcinoma. Mol Ther. 2023;31:2154–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaya-Okur H, Wu S, Codomo C, Pledger E, Bryson T, Henikoff J, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10:1930.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barbie D, Tamayo P, Boehm J, Kim S, Moody S, Dunn I, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China 82273202, 82072996, 82002893, 82103670, National Key Research and Development Program 2022YFC2504200, Interdisciplinary innovative foundation of Wuhan University XNJC202303, and the Fundamental Research Funds for the Central Universities (2042022dx0003).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. Liu: Data curation, conceptualization, methodology, formal analysis, investigation, writing-original draft. L. Chen: Data curation, methodology, formal analysis, writing-original draft. S.J. Li: Data curation, methodology. W.Y. Wang: Investigation, methodology. Y.Y. Wang: Data curation. Q.C. Yang: Data curation. A. Song: Methodology. M.J. Zhang: Formal analysis. W.T. Mo: Formal analysis. H. Li: Supervision. C.Y. Hu: Writing-review and editing, funding acquisition. Z.J. Sun: Conceptualization, supervision, funding acquisition, writing-original draft, project administration, resources, writing-review and editing.

Corresponding authors

Correspondence to Chuan-Yu Hu or Zhi-Jun Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Approval for human tissue samples utilization was granted by the Medical Ethics Committee of the School and Hospital of Stomatology, Wuhan University (2016LUNSHENZI62), following the guidelines of Declaration of Helsinki. All patients provided written informed consent. All animal experiments were carried out with the approval of the center for Animal Experiment of Wuhan University (WP20230467) and performed according to institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YT., Chen, L., Li, SJ. et al. Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01341-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01341-2

Search

Quick links