Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polycomb function in early mouse development

Abstract

Epigenetic factors are crucial for ensuring proper chromatin dynamics during the initial stages of embryo development. Among these factors, the Polycomb group (PcG) of proteins plays a key role in establishing correct transcriptional programmes during mouse embryogenesis. PcG proteins are classified into two complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Both complexes decorate histone proteins with distinct post-translational modifications (PTMs) that are predictive of a silent transcriptional chromatin state. In recent years, a critical adaptation of the classical techniques to analyse chromatin profiles and to study biochemical interactions at low-input resolution has allowed us to deeply explore PcG molecular mechanisms in the very early stages of mouse embryo development– from fertilisation to gastrulation, and from zygotic genome activation (ZGA) to specific lineages differentiation. These advancements provide a foundation for a deeper understanding of the fundamental role Polycomb complexes play in early development and have elucidated the mechanistic dynamics of PRC1 and PRC2. In this review, we discuss the functions and molecular mechanisms of both PRC1 and PRC2 during early mouse embryo development, integrating new studies with existing knowledge. Furthermore, we highlight the molecular functionality of Polycomb complexes from ZGA through gastrulation, with a particular focus on non-canonical imprinted and bivalent genes, and Hox cluster regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polycomb mechanisms in early mouse development.
Fig. 2: Non-canonical imprinting mechanisms and X chromosome Inactivation (XCI).
Fig. 3: Bivalency establishment and mESC differentiation.
Fig. 4: Schematic representation of the timely activation of the Hox gene clusters during vertebrates somitogenesis.

Similar content being viewed by others

References

  1. Bhakta HH, Refai FH, Avella MA The molecular mechanisms mediating mammalian fertilization. Development. 2019; 146. https://doi.org/10.1242/dev.176966.

  2. Siu KK, Serrão VHB, Ziyyat A, Lee JE The cell biology of fertilization: Gamete attachment and fusion. J Cell Biol. 2021; 220. https://doi.org/10.1083/jcb.202102146.

  3. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  4. Burton A, Torres-Padilla M-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol. 2014;15:723–34.

    Article  CAS  PubMed  Google Scholar 

  5. Xu R, Li C, Liu X, Gao S. Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2021;12:7–28.

    Article  PubMed  Google Scholar 

  6. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuettengruber B, Bourbon H-M, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171:34–57.

    Article  CAS  PubMed  Google Scholar 

  8. Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol. 2021;22:326–45.

    Article  CAS  PubMed  Google Scholar 

  9. Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. Sci Adv. 2015;1:e1500737.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer. 2020;122:315–28.

    Article  CAS  PubMed  Google Scholar 

  11. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007;27:3769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife. 2012;1:e00205.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao J, Wang M, Chang L, Yu J, Song A, Liu C, et al. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat Cell Biol. 2020;22:439–52.

    Article  CAS  PubMed  Google Scholar 

  14. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  CAS  PubMed  Google Scholar 

  15. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45:344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Højfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol Cell. 2019;76:423–.e3.

    Article  PubMed  Google Scholar 

  17. Beringer M, Pisano P, Di Carlo V, Blanco E, Chammas P, Vizán P, et al. EPOP functionally links elongin and polycomb in pluripotent stem cells. Mol Cell. 2016;64:645–58.

    Article  CAS  PubMed  Google Scholar 

  18. Conway E, Jerman E, Healy E, Ito S, Holoch D, Oliviero G, et al. A family of vertebrate-specific polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Mol Cell. 2018;70:408–.e8.

    Article  CAS  PubMed  Google Scholar 

  19. Arecco N, Mocavini I, Blanco E, Ballaré C, Libman E, Bonnal S, et al. Alternative splicing decouples local from global PRC2 activity. Mol Cell. 2024;84:1049–.e8.

    Article  CAS  PubMed  Google Scholar 

  20. Loh CH, Veenstra GJC The role of polycomb proteins in cell lineage commitment and embryonic development. Epigenomes. 2022; 6. https://doi.org/10.3390/epigenomes6030023.

  21. Luis NM, Morey L, Mejetta S, Pascual G, Janich P, Kuebler B, et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell. 2011;9:233–46.

    Article  CAS  PubMed  Google Scholar 

  22. Asenjo HG, Gallardo A, López-Onieva L, Tejada I, Martorell-Marugán J, Carmona-Sáez P, et al. Polycomb regulation is coupled to cell cycle transition in pluripotent stem cells. Sci Adv. 2020;6:eaay4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asenjo HG, Alcazar-Fabra M, Espinosa-Martínez M, Lopez-Onieva L, Gallardo A, Dimitrova E, et al. Changes in PRC1 activity during interphase modulate lineage transition in pluripotent cells. Nat Commun. 2023;14:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012;148:664–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoeftner S, Sengupta AK, Kubicek S, Mechtler K, Spahn L, Koseki H, et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 2006;25:3110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol Cell. 2019;76:437–.e6.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell. 2016;63:1066–79.

    Article  CAS  PubMed  Google Scholar 

  28. Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature. 2016;537:548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537:553–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mei H, Kozuka C, Hayashi R, Kumon M, Koseki H, Inoue A. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat Genet. 2021;53:539–50.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Djekidel MN, Zhang Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat Genet. 2021;53:551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu Y, Yu J, Rong Y, Wu Y-W, Li Y, Zhang L et al. Genomewide decoupling of H2AK119ub1 and H3K27me3 in early mouse development. Sci Bull. 2021. https://doi.org/10.1016/j.scib.2021.06.010.

  33. Richard Albert J, Greenberg MVC. The Polycomb landscape in mouse development. Nat Genet. 2021;53:427–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Wang C, Liu W, Li J, Li C, Kou X, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature. 2016;537:558–62.

    Article  CAS  PubMed  Google Scholar 

  35. Du Z, Zheng H, Kawamura YK, Zhang K, Gassler J, Powell S, et al. Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol Cell. 2020;77:825–.e7.

    Article  CAS  PubMed  Google Scholar 

  36. Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018;19:436–50.

    Article  CAS  PubMed  Google Scholar 

  37. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75.

    Article  CAS  PubMed  Google Scholar 

  38. Hanna CW, Kelsey G. Features and mechanisms of canonical and noncanonical genomic imprinting. Genes Dev. 2021;35:821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Dis Model Mech. 2020; 13. https://doi.org/10.1242/dmm.044123.

  40. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. 2017;547:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inoue A, Chen Z, Yin Q, Zhang Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 2018;32:1525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jarred EG, Qu Z, Tsai T, Oberin R, Petautschnig S, Bildsoe H, et al. Transient Polycomb activity represses developmental genes in growing oocytes. Clin Epigenetics. 2022;14:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.

    Article  CAS  PubMed  Google Scholar 

  44. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996;379:131–7.

    Article  CAS  PubMed  Google Scholar 

  45. Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J. 2023;480:521–37.

    Article  CAS  PubMed  Google Scholar 

  46. Boeren J, Gribnau J. Xist-mediated chromatin changes that establish silencing of an entire X chromosome in mammals. Curr Opin Cell Biol. 2021;70:44–50.

    Article  CAS  PubMed  Google Scholar 

  47. Bousard A, Raposo AC, Żylicz JJ, Picard C, Pires VB, Qi Y, et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep. 2019;20:e48019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brockdorff N Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci. 2017; 372. https://doi.org/10.1098/rstb.2017.0021.

  49. Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, et al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol Cell. 2017;68:955–.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, et al. Systematic discovery of Xist RNA binding proteins. Cell. 2015;161:404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M, Cerase A, et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science. 2017;356:1081–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, et al. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun. 2019;10:3129.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Masui O, Corbel C, Nagao K, Endo TA, Kezuka F, Diabangouaya P, et al. Polycomb repressive complexes 1 and 2 are each essential for maintenance of X inactivation in extra-embryonic lineages. Nat Cell Biol. 2023;25:134–44.

    Article  CAS  PubMed  Google Scholar 

  54. Leung CY, Zernicka-Goetz M. Mapping the journey from totipotency to lineage specification in the mouse embryo. Curr Opin Genet Dev. 2015;34:71–76.

    Article  CAS  PubMed  Google Scholar 

  55. Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 2015;31:402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saha B, Home P, Ray S, Larson M, Paul A, Rajendran G, et al. EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol. 2013;33:2691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Illingworth RS, Hölzenspies JJ, Roske FV, Bickmore WA, Brickman JM. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. eLife. 2016; 5. https://doi.org/10.7554/eLife.14926.

  58. Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 2017;20:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiang Y, Zhang Y, Xu Q, Zhou C, Liu B, Du Z, et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet. 2020;52:95–105.

    Article  CAS  PubMed  Google Scholar 

  60. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  61. Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2008;2:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Zhang Y, You Q, Huang C, Zhang T, Wang M, et al. Highly enriched BEND3 prevents the premature activation of bivalent genes during differentiation. Science. 2022;375:1053–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mas G, Blanco E, Ballaré C, Sansó M, Spill YG, Hu D, et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat Genet. 2018;50:1452–62.

    Article  CAS  PubMed  Google Scholar 

  64. Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol. 2023;24:6–26.

    Article  CAS  PubMed  Google Scholar 

  65. Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The bivalent genome: characterization, structure, and regulation. Trends Genet. 2020;36:118–31.

    Article  CAS  PubMed  Google Scholar 

  66. Rivera-Pérez JA, Hadjantonakis A-K The dynamics of morphogenesis in the early mouse embryo. Cold Spring Harb Perspect Biol. 2014; 7. https://doi.org/10.1101/cshperspect.a015867.

  67. Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani C-A, et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019;576:487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Faust C, Schumacher A, Holdener B, Magnuson T. The eed mutation disrupts anterior mesoderm production in mice. Development. 1995;121:273–85.

    Article  CAS  PubMed  Google Scholar 

  69. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23:4061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21:4330–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Voncken JW, Roelen BAJ, Roefs M, de Vries S, Verhoeven E, Marino S, et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci USA. 2003;100:2468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Illingworth RS, Moffat M, Mann AR, Read D, Hunter CJ, Pradeepa MM, et al. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes Dev. 2015;29:1897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blackledge NP, Fursova NA, Kelley JR, Huseyin MK, Feldmann A, Klose RJ. PRC1 catalytic activity is central to polycomb system function. Mol Cell. 2020;77:857–.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77:840–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boyle S, Flyamer IM, Williamson I, Sengupta D, Bickmore WA, Illingworth RS. A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev. 2020;34:931–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM, et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol Cell. 2019;74:1020–.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, et al. Epigenetic regulator function through mouse gastrulation. Nature. 2020;584:102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bryja V, Bonilla S, Arenas E. Derivation of mouse embryonic stem cells. Nat Protoc. 2006;1:2082–7.

    Article  CAS  PubMed  Google Scholar 

  79. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.

    Article  CAS  PubMed  Google Scholar 

  80. Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.

    Article  CAS  PubMed  Google Scholar 

  81. Wang X, Xiang Y, Yu Y, Wang R, Zhang Y, Xu Q, et al. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res. 2021;31:526–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sankar A, Mohammad F, Sundaramurthy AK, Wang H, Lerdrup M, Tatar T, et al. Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat Genet. 2022;54:754–60.

    Article  CAS  PubMed  Google Scholar 

  83. Glancy E, Wang C, Tuck E, Healy E, Amato S, Neikes HK, et al. PRC2.1- and PRC2.2-specific accessory proteins drive recruitment of different forms of canonical PRC1. Mol Cell. 2023;83:1393–.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, et al. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun. 2021;12:7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rothberg JLM, Maganti HB, Jrade H, Porter CJ, Palidwor GA, Cafariello C, et al. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov. 2018;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, et al. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 1995;9:1211–22.

    Article  CAS  PubMed  Google Scholar 

  87. Takeuchi T, Kojima M, Nakajima K, Kondo S. jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev. 1999;86:29–38.

    Article  CAS  PubMed  Google Scholar 

  88. Højfeldt JW, Laugesen A, Willumsen BM, Damhofer H, Hedehus L, Tvardovskiy A, et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol. 2018;25:225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Oksuz O, Narendra V, Lee C-H, Descostes N, LeRoy G, Raviram R, et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell. 2018;70:1149–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dobrinić P, Szczurek AT, Klose RJ. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat Struct Mol Biol. 2021;28:811–24.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Holoch D, Wassef M, Lövkvist C, Zielinski D, Aflaki S, Lombard B, et al. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nat Genet. 2021;53:1686–97.

    Article  CAS  PubMed  Google Scholar 

  92. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157:1445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petracovici A, Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol Cell. 2021;81:2625–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loh CH, van Genesen S, Perino M, Bark MR, Veenstra GJC. Loss of PRC2 subunits primes lineage choice during exit of pluripotency. Nat Commun. 2021;12:6985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Santanach A, Blanco E, Jiang H, Molloy KR, Sansó M, LaCava J, et al. The Polycomb group protein CBX6 is an essential regulator of embryonic stem cell identity. Nat Commun. 2017;8:1235.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Morey L, Aloia L, Cozzuto L, Benitah SA, Di Croce L. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep. 2013;3:60–69.

    Article  CAS  PubMed  Google Scholar 

  97. Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA, et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell. 2012;10:47–62.

    Article  CAS  PubMed  Google Scholar 

  98. Morey L, Santanach A, Blanco E, Aloia L, Nora EP, Bruneau BG, et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell. 2015;17:300–15.

    Article  CAS  PubMed  Google Scholar 

  99. Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 2010;24:265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121:333–46.

    Article  CAS  PubMed  Google Scholar 

  101. Forlani S, Lawson KA, Deschamps J. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development. 2003;130:3807–19.

    Article  CAS  PubMed  Google Scholar 

  102. Neijts R, Amin S, van Rooijen C, Tan S, Creyghton MP, de Laat W, et al. Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos. Genes Dev. 2016;30:1937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaunt SJ, George M, Paul Y-L. Direct activation of a mouse Hoxd11 axial expression enhancer by Gdf11/Smad signalling. Dev Biol. 2013;383:52–60.

    Article  CAS  PubMed  Google Scholar 

  104. Jurberg AD, Aires R, Varela-Lasheras I, Nóvoa A, Mallo M. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell. 2013;25:451–62.

    Article  CAS  PubMed  Google Scholar 

  105. Amin S, Neijts R, Simmini S, van Rooijen C, Tan SC, Kester L, et al. Cdx and T Brachyury co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep. 2016;17:3165–77.

    Article  CAS  PubMed  Google Scholar 

  106. Young T, Rowland JE, van de Ven C, Bialecka M, Novoa A, Carapuco M, et al. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell. 2009;17:516–26.

    Article  CAS  PubMed  Google Scholar 

  107. Durston A, Wacker S, Bardine N, Jansen H. Time space translation: a hox mechanism for vertebrate a-p patterning. Curr Genomics. 2012;13:300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 1994;8:757–69.

    Article  PubMed  Google Scholar 

  109. Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M, Koseki H. A role for mel-18, a Polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development. 1996;122:1513–22.

    Article  CAS  PubMed  Google Scholar 

  110. Coré N, Bel S, Gaunt SJ, Aurrand-Lions M, Pearce J, Fisher A, et al. Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice. Development. 1997;124:721–9.

    Article  PubMed  Google Scholar 

  111. Takihara Y, Tomotsune D, Shirai M, Katoh-Fukui Y, Nishii K, Motaleb MA, et al. Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development. 1997;124:3673–82.

    Article  CAS  PubMed  Google Scholar 

  112. Isono K-I, Fujimura Y-I, Shinga J, Yamaki M, O-Wang J, Takihara Y, et al. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol Cell Biol. 2005;25:6694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang S, He F, Xiong W, Gu S, Liu H, Zhang T, et al. Polycomblike-2-deficient mice exhibit normal left-right asymmetry. Dev Dyn. 2007;236:853–61.

    Article  CAS  PubMed  Google Scholar 

  114. Vizán P, Gutiérrez A, Espejo I, García-Montolio M, Lange M, Carretero A, et al. The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. Sci Adv. 2020;6:eabb2745.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lau MS, Schwartz MG, Kundu S, Savol AJ, Wang PI, Marr SK, et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science. 2017;355:1081–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Storre J, Elsässer H-P, Fuchs M, Ullmann D, Livingston DM, Gaubatz S. Homeotic transformations of the axial skeleton that accompany a targeted deletion of E2f6. EMBO Rep. 2002;3:695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huseyin MK, Klose RJ. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun. 2021;12:887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Soshnikova N, Duboule D. Epigenetic temporal control of mouse Hox genes in vivo. Science. 2009;324:1320–3.

    Article  CAS  PubMed  Google Scholar 

  119. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D. The dynamic architecture of Hox gene clusters. Science. 2011;334:222–5.

    Article  CAS  PubMed  Google Scholar 

  120. Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, Duboule D. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. eLife. 2014;3:e02557.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rekaik H, Lopez-Delisle L, Hintermann A, Mascrez B, Bochaton C, Mayran A, et al. Sequential and directional insulation by conserved CTCF sites underlies the Hox timer in stembryos. Nat Genet. 2023;55:1164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Benetti N, Gouil Q, Tapia Del Fierro A, Beck T, Breslin K, Keniry A, et al. Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo. Nat Commun. 2022;13:4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science. 2020; 370. https://doi.org/10.1126/science.aba4937.

  124. Beccari L, Moris N, Girgin M, Turner DA, Baillie-Johnson P, Cossy A-C, et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature. 2018;562:272–6.

    Article  CAS  PubMed  Google Scholar 

  125. Lewis PH. [New mutants report]. Drosoph Inf Serv. 1947;21:69–69.

    Google Scholar 

  126. Jürgens G. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature. 1985;316:153–5.

    Article  Google Scholar 

  127. Lewis EB. Genes and developmental pathways. Am Zool. 1963;3:33–56.

    Article  Google Scholar 

  128. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276:565–70.

    Article  CAS  PubMed  Google Scholar 

  129. Struhl G. A gene product required for correct initiation of segmental determination in Drosophila. Nature. 1981;293:36–41.

    Article  CAS  PubMed  Google Scholar 

  130. Zink B, Paro R. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature. 1989;337:468–71.

    Article  CAS  PubMed  Google Scholar 

  131. Gaunt SJ, Sharpe PT, Duboule D. Spatially restricted domains of homeo-gene transcripts in mouse embryos: Relation to a segmented body plan. Development. 1988;104:169–79.

    Article  Google Scholar 

  132. Casares F, Sánchez-Herrero E. Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development. 1995;121:1855–66.

    Article  CAS  PubMed  Google Scholar 

  133. Denell RE, Frederick RD. Homoeosis in Drosophila: A description of the polycomb lethal syndrome. Dev Biol. 1983;97:34–47.

    Article  CAS  PubMed  Google Scholar 

  134. Coleman RT, Struhl G Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science. 2017; 356. https://doi.org/10.1126/science.aai8236.

Download references

Acknowledgements

We thank Pedro Vizán Carralcázar and Pau Pascual-Garcia for critical reading of the manuscript and insightful discussions, and V.A. Raker for scientific editing. We apologize to the authors whose work we could not discuss due to space limitations. We acknowledge funding from the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) (PID2022-142679NB-I00 and ‘Planes complementarios’ STOP-DMG N6958), “Fundación Vencer El Cancer” (VEC), the European Regional Development Fund (FEDER), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673 “ChromDesign”, “la Caixa” Foundation (HR20-00411), and from AGAUR to L.D.C. The Ramon y Cajal programme of the Ministerio de Ciencia, Innovación y Universidades and the European Social Fund under the reference number RYC-2018-025002-I, the Instituto de Salud Carlos III-FEDER (PI22/01837), and MICIU/AEI /10.13039/501100011033 and NextGeneration EU/PRTR (CNS2023-145726) to S.A. We acknowledge the funding support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme / Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

LC wrote the manuscript and designed figures. IM wrote and revised the manuscript, and designed figures. SA and LDC conceptualized, wrote and revised the manuscript.

Corresponding author

Correspondence to Luciano Di Croce.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condemi, L., Mocavini, I., Aranda, S. et al. Polycomb function in early mouse development. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01340-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01340-3

Search

Quick links