Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atg7 autophagy-independent role on governing neural stem cell fate could be potentially applied for regenerative medicine

Abstract

A literature review showed that Atg7 biological role was associated with the development and pathogenesis of nervous system, but very few reports focused on Atg7 role on neurogenesis at the region of spinal cord, so that we are committed to explore the subject. Atg7 expression in neural tube is incrementally increased during neurogenesis. Atg7 neural-specific knockout mice demonstrated the impaired motor function and imbalance of neuronal and glial cell differentiation during neurogenesis, which was similarly confirmed in primary neurosphere culture and reversely verified by Atg7 overexpression in unilateral neural tubes of gastrula chicken embryos. Furthermore, activating autophagy in neural stem cells (NSCs) of neurospheres did not rescue Atg7 deficiency-suppressed neuronal differentiation, but Atg7 overexpression on the basis of autophagy inhibition could reverse Atg7 deficiency-suppressed neuronal differentiation, which provides evidence for the existence of Atg7 role of autophagy-independent function. The underlying mechanism is that Atg7 deficiency directly caused the alteration of cell cycle length of NSCs, which is controlled by Atg7 through specifically binding Mdm2, thereby affecting neuronal differentiation during neurogenesis. Eventually, the effect of overexpressing Atg7-promoting neuronal differentiation was proved in spinal cord injury model as well. Taken together, this study revealed that Atg7 was involved in regulating neurogenesis by a non-autophagic signaling process, and this finding also shed light on the potential application in regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assessing general status (in adulthood) and neurogenesis in the conditional knockout mice of Atg7.
Fig. 2: Assessing the differentiation of NSCs in neurosphere culture system following autophagic activation.
Fig. 3: Assessing the differentiation of Atg7-overexpressed NSCs in neurosphere culture system following and autophagic activation.
Fig. 4: Determining the proportion of NSCs in the neuron progenitor domain in the context of Atg7 deficiency.
Fig. 5: Determining the cell cycle and differentiation of NSCs in neural tubes in the context of Atg7 deficiency.
Fig. 6: Determining the cell cycle and differentiation of NSCs in neural tubes following manipulating Mdm2 expression in the context of Atg7 deficiency.
Fig. 7: Determining the differentiation of NSCs in the model of SCI following the manipulation of Atg7 expression.
Fig. 8

Similar content being viewed by others

Data availability

The data used in this study can be found in the supplementary materials. All RNA-seq data were deposited in the National Center for Biotechnology Information (NCBI) GenBank (SRA; no. PRJNA941433) database.

References

  1. Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88.

    Article  PubMed  Google Scholar 

  2. Mira H, Morante J. Neurogenesis from embryo to adult–lessons from flies and mice. Front Cell Dev Biol. 2020;8:533.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doetsch F, García-Verdugo JM, Alvarez-Buylla A. Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA. 1999;96:11619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doetsch F, Caille I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.

    Article  CAS  PubMed  Google Scholar 

  5. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427:740–4.

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci. 2001;2:287–93.

    Article  CAS  PubMed  Google Scholar 

  7. Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155:135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci. 2019;20:34–48.

    Article  CAS  PubMed  Google Scholar 

  9. Becker CG, Diez Del Corral R. Neural development and regeneration: it’s all in your spinal cord. Development. 2015;142:811–6.

    Article  CAS  PubMed  Google Scholar 

  10. Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy. 2022;18:254–82.

    Article  CAS  PubMed  Google Scholar 

  11. Hughes T, Rusten TE. Origin and evolution of self-consumption: autophagy. In: Eukaryotic membranes and cytoskeleton. Landes Bioscience, Austin (TX): Madame Curie Bioscience Database; 2007, p. 111–8.

  12. Maria Fimia G, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–5.

    Article  Google Scholar 

  13. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    Article  CAS  PubMed  Google Scholar 

  14. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100:15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen Y, Wang YP, Cheng X, Yang X, Wang G. Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury. Neural Regen Res. 2023;18:1629–36.

    CAS  PubMed  Google Scholar 

  16. Collier JJ, Guissart C, Oláhová M, Sasorith S, Piron-Prunier F, Suomi F, et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N Engl J Med. 2021;384:2406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461:654–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.

    Article  CAS  PubMed  Google Scholar 

  19. Subramani S, Malhotra V. Non‐autophagic roles of autophagy‐related proteins. EMBO Rep. 2013;14:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang B, Iyengar R, Li-Harms X, Joo JH, Wright C, Lavado A, et al. The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy. 2018;14:796–811.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, et al. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA. 2007;104:5842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baerga R, Zhang Y, Chen P-H, Goldman S, Jin SV. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy. 2009;5:1118–30.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA. 2009;106:19860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shibata M, Yoshimura K, Tamura H, Ueno T, Nishimura T, Inoue T, et al. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem Biophys Res Commun. 2010;393:274–9.

    Article  CAS  PubMed  Google Scholar 

  25. Velikkakath AKG, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012;23:896–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011;21:966–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science. 2012;336:225–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau W-C, Ledoux P, et al. NCBI GEO: mining millions of expression profiles—database and tools. Nucleic acids Res. 2005;33:D562–D566.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Q, Zhao X, Zheng K, Li H, Huang H, Zhang Z, et al. Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development. 2014;141:548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huttner WB, Kosodo Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol. 2005;17:648–57.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Zhang J, Xu X, Lu S, Yang D, Xie C, et al. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-kappaB signaling. Theranostics. 2021;11:4187–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole body vibration improves spatial memory, anxiety-like behavior, and motor performance in aged male and female rats. Front Aging Neurosci. 2021;13:801828.

    Article  PubMed  Google Scholar 

  33. Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, et al. Emerging role of neuron-glia in neurological disorders: at a glance. Oxid Med Cell Longev. 2022;2022:3201644.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sotthibundhu A, Muangchan P, Phonchai R, Promjantuek W, Chaicharoenaudomrung N, Kunhorm P, et al. Autophagy promoted neural differentiation of human placenta-derived mesenchymal stem cells. vivo. 2021;35:2609–20.

    Article  CAS  Google Scholar 

  35. Wang Y, Zhou K, Li T, Xu Y, Xie C, Sun Y, et al. Selective neural deletion of the atg7 gene reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain by ameliorating oligodendrocyte progenitor cell loss. Front Cell Neurosci. 2019;13:241.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kusne Y, Goldberg EL, Parker SS, Hapak SM, Maskaykina IY, Chew WM, et al. Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice. Age. 2014;36:199–212.

    Article  CAS  PubMed  Google Scholar 

  37. Ruegg S, Baybis M, Juul H, Dichter M, Crino PB. Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res. 2007;77:85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleming A, Rubinsztein DC. Autophagy in neuronal development and plasticity. Trends Neurosci. 2020;43:767–79.

    Article  CAS  PubMed  Google Scholar 

  39. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177:1682–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Honda S, Arakawa S, Yamaguchi H, Torii S, Tajima Sakurai H, Tsujioka M, et al. Association between Atg5-independent alternative autophagy and neurodegenerative diseases. J Mol Biol. 2020;432:2622–32.

    Article  CAS  PubMed  Google Scholar 

  41. Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci. 2003;116:4947–55.

    Article  CAS  PubMed  Google Scholar 

  42. Ohnuma S, Harris WA. Neurogenesis and the cell cycle. Neuron. 2003;40:199–208.

    Article  CAS  PubMed  Google Scholar 

  43. Jang J, Wang Y, Lalli MA, Guzman E, Godshalk SE, Zhou H, et al. Primary cilium-autophagy-Nrf2 (PAN) axis activation commits human embryonic stem cells to a neuroectoderm fate. Cell. 2016;165:410–20.

    Article  CAS  PubMed  Google Scholar 

  44. Lim S, Kaldis P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells. 2012;30:1509–20.

    Article  CAS  PubMed  Google Scholar 

  45. Klein AM, Biderman L, Tong D, Alaghebandan B, Plumber SA, Mueller HS, et al. MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci USA. 2021;118:e2102420118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duffy MJ, Synnott NC, Crown J. p53 in cancer: ready for therapeutic targeting. Transl Cancer Res. 2016;5:627–31.

    Article  CAS  Google Scholar 

  47. Cheriyan T, Ryan D, Weinreb J, Cheriyan J, Paul J, Lafage V, et al. Spinal cord injury models: a review. Spinal Cord. 2014;52:588–95.

    Article  CAS  PubMed  Google Scholar 

  48. Steward O, Willenberg R. Rodent spinal cord injury models for studies of axon regeneration. Exp Neurol. 2017;287:374–83.

    Article  PubMed  Google Scholar 

  49. Weightman AP, Pickard MR, Yang Y, Chari DM. An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials. 2014;35:3756–65.

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Floriddia EM, Toskas K, Fernandes KJL, Guerout N, Barnabe-Heider F. Regenerative potential of ependymal cells for spinal cord injuries over time. EBioMedicine. 2016;13:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Y, Fan Y, Zhang H, Zhang Q, Zhao Y, Xiao Z, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials. 2021;269:120479.

    Article  CAS  PubMed  Google Scholar 

  52. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011.

  53. Chapman SC, Collignon J, Schoenwolf GC, Lumsden A. Improved method for chick whole‐embryo culture using a filter paper carrier. Dev Dyn. 2001;220:284–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Li Y, Wang G, Münsterberg A, Chuai M, Lee KK, et al. Combinational electroporation and transplantation approach to studying gene functions in avian embryos. Chin Sci Bull. 2014;59:616–24.

    Article  Google Scholar 

  55. Harris L, Zalucki O, Piper M. BrdU/EdU dual labeling to determine the cell-cycle dynamics of defined cellular subpopulations. J Mol Histol. 2018;49:229–34.

    Article  CAS  PubMed  Google Scholar 

  56. Si Z-P, Wang G, Han S-S, Jin Y, Hu Y-X, He M-Y, et al. CNTF and Nrf2 are coordinately involved in regulating self-renewal and differentiation of neural stem cell during embryonic development. Iscience. 2019;19:303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fromowitz FB, Viola MV, Chao S, Oravez S, Mishriki Y, Finkel G, et al. ras p21 expression in the progression of breast cancer. Hum Pathol. 1987;18:1268–75.

    Article  CAS  PubMed  Google Scholar 

  58. Nie JH, Shen Y, Roshdy M, Cheng X, Wang G, Yang X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology. 2021;15:885–904.

    CAS  PubMed  Google Scholar 

  59. McDonough A, Monterrubio A, Ariza J, Martinez-Cerdeno V. Calibrated forceps model of spinal cord compression injury. J Vis Exp. 2015;24:52318.

    Google Scholar 

  60. Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–5.

    PubMed  PubMed Central  Google Scholar 

  61. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NSFC [grant number 32170825, 82371692, 31971108]; Guangdong Basic and Applied Basic Research Foundation [grant number 2023A1515010424]; Science and Technology Program of Guangzhou [grant number 202201020007]; the Fundamental Research Funds for the Central Universities [grant number 21621106]. We would like to thank Prof. Lihong Zhu from Jinan University for the guidance on the behavioral experiments in this paper. We also would like to thank Medical Experimental Center in Jinan University and Experimental Technology Center of Jinan University.

Author information

Authors and Affiliations

Authors

Contributions

YS, TL, CS, GW designed and performed experiments. XC and ZC collected samples. XY and GW wrote the manuscript. All authors analyzed and interpreted data, and critically read the manuscript.

Corresponding authors

Correspondence to Guang Wang or Xuesong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study does not involve any human data. All the experimental processes involving animal treatments were conducted per the procedures of the Ethical Committee for Animal Experimentation, Jinan University (IACUC-20191212-02).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, T., Sun, C. et al. Atg7 autophagy-independent role on governing neural stem cell fate could be potentially applied for regenerative medicine. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01330-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01330-5

Search

Quick links