Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells

Abstract

Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression level of MafG is upregulated in liver fibrosis.
Fig. 2: MafG knockdown promotes erastin-mediated HSC ferroptosis.
Fig. 3: MafG overexpression inhibits erastin-induced ferroptosis in HSC.
Fig. 4: LCN2 is an effector gene of MafG in regulating ferroptosis.
Fig. 5: Silencing MafG contributes to ferroptosis of HSC through LCN2.
Fig. 6: MYH9 is required for MafG in transcriptional regulation of LCN2.
Fig. 7: Block of MafG contributes to the IKE-induced HSC ferroptosis in vivo.

Similar content being viewed by others

Data availability

All data generated during this study are available within the article and its supplementary information files can be acquired from the corresponding author upon reasonable request. Human MafG ChIP-seq data were obtained from GEO datasets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92076). RNA-seq data was acquired from GEO dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14323).

References

  1. Roehlen N, Crouchet E, Baumert TF liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9:875.

  2. Aydin MM, Akcali KC. Liver fibrosis. Turk J Gastroenterol. 2018;29:14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–66.

    Article  PubMed  Google Scholar 

  4. Campana L, Iredale JP. Regression of Liver Fibrosis. Semin Liver Dis. 2017;37:1–10.

    Article  PubMed  Google Scholar 

  5. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Zeng Y, Zhao L, Xu Q, Miao D, Yu F. Targeting hepatic stellate cell death to reverse hepatic fibrosis. Curr Drug Targets. 2023;24:568–83.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F, et al. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life. 2019;71:45–56.

    Article  CAS  PubMed  Google Scholar 

  9. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  CAS  PubMed  Google Scholar 

  13. Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10:822.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel SJ, Frey AG, Palenchar DJ, Achar S, Bullough KZ, Vashisht A, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol. 2019;15:872–81.

  15. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

  16. Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56.

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.

    Article  CAS  PubMed  Google Scholar 

  19. Blank V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol. 2008;376:913–25.

    Article  CAS  PubMed  Google Scholar 

  20. Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res. 2023;11:17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kannan MB, Solovieva V, Blank V. The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta. 2012;1823:1841–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Liu T, Wang J, Li TW, Fan W, Peng H, et al. Deregulated methionine adenosyltransferase alpha1, c-Myc, and Maf proteins together promote cholangiocarcinoma growth in mice and humans(double dagger). Hepatology. 2016;64:439–55.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Yang T, Fan H, Tu W, Li TWH J, Wang J, et al. Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. Gastroenterology. 2018;155:557–71.e14.

    Article  CAS  PubMed  Google Scholar 

  24. Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Guede A, Vera O, Ibanez-de-Caceres I. When oxidative stress meets epigenetics: implications in cancer development. antioxidants. 2020;9:468.

  26. Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol. 2005;25:8044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.

    Article  CAS  PubMed  Google Scholar 

  28. Yi K, Liu J, Rong Y, Wang C, Tang X, Zhang X, et al. Biological functions and prognostic value of ferroptosis-related genes in bladder cancer. Front Mol Biosci. 2021;8:631152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015;10:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oses C, Aouadi M. Kupffer cell and hepatocyte isolation from a single mouse liver by gradient centrifugation. Methods Mol Biol. 2020;2164:1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.

    Article  PubMed  Google Scholar 

  32. Ramadori G, Saile B. Portal tract fibrogenesis in the liver. Lab Investig. 2004;84:153–9.

    Article  PubMed  Google Scholar 

  33. Sun B, Karin M. NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27:6228–44.

    Article  CAS  PubMed  Google Scholar 

  34. Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 2023;97:1439–51.

    Article  CAS  PubMed  Google Scholar 

  35. Marti-Rodrigo A, Alegre F, Moragrega AB, Garcia-Garcia F, Marti-Rodrigo P, Fernandez-Iglesias A, et al. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut. 2020;69:920–32.

    Article  CAS  PubMed  Google Scholar 

  36. Meng D, Li Z, Wang G, Ling L, Wu Y, Zhang C. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed Pharmacother. 2018;108:1617–27.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Guo M, Shen M, Kong D, Zhang F, Shao J, et al. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol. 2020;36:101619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152:327–39.

    Article  CAS  PubMed  Google Scholar 

  39. Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, et al. A targetable LIFR-NF-kappaB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun. 2021;12:7333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–30.

    Article  CAS  PubMed  Google Scholar 

  41. Ye G, Yang Q, Lei X, Zhu X, Li F, He J, et al. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics. 2020;10:7545–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, et al. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chem Biol. 2019;26:623–33.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy. 2020;16:1482–505.

    Article  CAS  PubMed  Google Scholar 

  44. Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA, Kienle E, et al. In Vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell. 2016;18:809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.

    Article  CAS  PubMed  Google Scholar 

  47. Sui M, Jiang X, Chen J, Yang H, Zhu Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2018;106:125–33.

    Article  CAS  PubMed  Google Scholar 

  48. Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019;109:2043–53.

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, An P, Xie E, Wu Q, Fang X, Gao H, et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 2017;66:449–65.

    Article  CAS  PubMed  Google Scholar 

  50. Carino A, Biagioli M, Marchiano S, Fiorucci C, Bordoni M, Roselli R, et al. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158733.

    Article  CAS  PubMed  Google Scholar 

  51. Xiang L, Zeng Q, Liu J, Xiao M, He D, Zhang Q, et al. MAFG-AS1/MAFG positive feedback loop contributes to cisplatin resistance in bladder urothelial carcinoma through antagonistic ferroptosis. Sci Bull. 2021;66:1773–88.

    Article  CAS  Google Scholar 

  52. Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK, et al. Farnesoid X receptor protects against cisplatin-induced acute kidney injury by regulating the transcription of ferroptosis-related genes. Redox Biol. 2022;54:102382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, et al. Silencing MYH9 blocks HBx-induced GSK3beta ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. You GR, Chang JT, Li YL, Huang CW, Tsai YL, Fan KH, et al. MYH9 Facilitates Cell invasion and radioresistance in head and neck cancer via modulation of cellular ROS levels by activating the MAPK-Nrf2-GCLC pathway. Cells. 2022;11:2855.

  55. Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: structure, functions and role of non-muscle myosin IIA in human disease. Gene. 2018;664:152–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schramek D, Sendoel A, Segal JP, Beronja S, Heller E, Oristian D, et al. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science. 2014;343:309–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eychene A, Rocques N, Pouponnot C. A new MAFia in cancer. Nat Rev Cancer. 2008;8:683–93.

    Article  CAS  PubMed  Google Scholar 

  58. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–43.

    Article  CAS  PubMed  Google Scholar 

  59. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.

    Article  CAS  PubMed  Google Scholar 

  60. Chaudhary N, Choudhary BS, Shah SG, Khapare N, Dwivedi N, Gaikwad A, et al. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer. 2021;149:1495–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by grants from the National Natural Science Foundation of China (81974074, 82172654 and 82070632), the Natural Science Foundation of Hunan Province (2023JJ30916 and 2023JJ41020), Hunan Provincial Science and Technology Department (2021RC4012 and R2023124).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YC and TL; Methodology, YD, LL; Software, DZ and HZ; Validation, YD, LL, YT. and XT; Formal analysis, YF and MG; Investigation, HY and BY; Resources, YC; Data curation, YD and YC; Writing – Original Draft Preparation, YD: Writing – Review & Editing, YC and TL; Visualization, YD; Supervision, YC and TL; Project Administration, YC and TL. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ting Liu or Yongheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experimental procedures for mice were carried out under the Central South University Animal Care and Use Committee criteria. The research protocol for human liver samples conformed to the guidelines of ethical committees of the Xiangya Hospital of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Lu, L., Zhu, D. et al. MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells. Cell Death Differ 31, 1127–1139 (2024). https://doi.org/10.1038/s41418-024-01322-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01322-5

Search

Quick links