Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PD-L2 drives resistance to EGFR-TKIs: dynamic changes of the tumor immune environment and targeted therapy

Abstract

There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumor immune environment is involved in the resistance of tumors to EGFR-TKIs.
Fig. 2: The tumor immune response gradually changes from enhanced to suppressed in mouse models of acquired EGFR-TKIs resistance.
Fig. 3: PD-L2 expression increases after acquisition of EGFR-TKIs resistance.
Fig. 4: PD-L2 expression affects the sensitivity of EGFR mutant cells and tumors to EGFR-TKIs through immune regulation.
Fig. 5: Blockade of PD-L2/PD-1 combined with EGFR-TKI can inhibit the growth of EGFR-TKI-resistant cells or tumors.
Fig. 6: PD-L2 overexpression reduces tumor cell apoptosis.
Fig. 7: PD-L2 overexpression diminishes the number of CD8+ T cells, and inhibits CD8+ T cell function.
Fig. 8: Screening and activity evaluation of ZU as a natural small-molecule inhibitor of PD-L2.
Fig. 9: ZU combined with EGFR-TKIs synergistically reverses EGFR-TKIs resistance in vivo.

Similar content being viewed by others

Data availability

All datasets are available from the corresponding authors upon reasonable request.

References

  1. Friedlaender A, Subbiah V, Russo A, Banna GL, Malapelle U, Rolfo C, et al. EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment. Nat Rev Clin Oncol. 2022;19:51–69.

    Article  CAS  PubMed  Google Scholar 

  2. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol. 2022;85:253–75.

    Article  CAS  PubMed  Google Scholar 

  4. Foidart P, Yip C, Radermacher J, Blacher S, Lienard M, Montero-Ruiz L, et al. Expression of MT4-MMP, EGFR, and RB in triple-negative breast cancer strongly sensitizes tumors to erlotinib and palbociclib combination therapy. Clin Cancer Res. 2019;25:1838–50.

    Article  CAS  PubMed  Google Scholar 

  5. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29:i10–i9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753.

    Article  CAS  PubMed  Google Scholar 

  7. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  8. Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234:5700–21.

    Article  CAS  PubMed  Google Scholar 

  9. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X, et al. Immune checkpoint inhibitors in EGFR-mutated NSCLC: dusk or dawn? J Thorac Oncol. 2021;16:1267–88.

    Article  CAS  PubMed  Google Scholar 

  11. Sugiyama E, Togashi Y, Takeuchi Y, Shinya S, Tada Y, Kataoka K, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer. Sci Immunol. 2020;5:eaav3937.

    Article  CAS  PubMed  Google Scholar 

  12. Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 2017;28:1532–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kaira K, Kagamu H. Drastic response of re-challenge of EGFR-TKIs immediately after nivolumab therapy in EGFR-TKI-resistant patients. J Thorac Oncol. 2019;14:e135–e6.

    Article  PubMed  Google Scholar 

  14. Gettinger S, Hellmann MD, Chow LQM, Borghaei H, Antonia S, Brahmer JR, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol. 2018;13:1363–72.

    Article  PubMed  Google Scholar 

  15. Chen M, Xu Y, Zhao J, Liu X, Liu X, Zhang D, et al. Comparison of chemotherapy plus pembrolizumab vs. chemotherapy alone in EGFR-mutant non-small-cell lung cancer patients. Clin Lung Cancer. 2023;24:278–86.

    Article  CAS  PubMed  Google Scholar 

  16. Tang H, Qiao J, Fu YX. Immunotherapy and tumor microenvironment. Cancer Lett. 2016;370:85–90.

    Article  CAS  PubMed  Google Scholar 

  17. Fang Y, Wang Y, Zeng D, Zhi S, Shu T, Huang N, et al. Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncoimmunology. 2021;10:1951019.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8:216–33.

    Article  CAS  PubMed  Google Scholar 

  19. Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev. 2014;259:245–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Dong X, Ren Y, Luo J, Liu P, Su D, et al. Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway. Cell Death Dis. 2018;9:129.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Morris AB, Farley CR, Pinelli DF, Adams LE, Cragg MS, Boss JM, et al. Signaling through the inhibitory Fc receptor FcγRIIB induces CD8(+) T cell apoptosis to limit T cell immunity. Immunity. 2020;52:136–50.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horton BL, Williams JB, Cabanov A, Spranger S, Gajewski TF. Intratumoral CD8(+) T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity. Cancer Immunol Res. 2018;6:14–24.

    Article  CAS  PubMed  Google Scholar 

  23. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 2006;20:1496–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan J, Xiong D, Zhang Q, Palen K, Shoemaker RH, Johnson B, et al. Precision immunointerception of EGFR-driven tumorigenesis for lung cancer prevention. Front Immunol. 2023;14:1036563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaira K, Kobayashi K, Shiono A, Yamaguchi O, Hashimoto K, Mouri A, et al. Effectiveness of EGFR-TKI rechallenge immediately after PD-1 blockade failure. Thorac Cancer. 2021;12:864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Yu X, Hou L, Zhao J, Zhou F, Chu X, et al. Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment by upregulating LAG-3 in advanced non-small-cell lung cancer. Lung Cancer. 2021;153:143–9.

    Article  CAS  PubMed  Google Scholar 

  28. Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18:165.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng Y, Han L, Wu L, Chen J, Sun H, Wen G, et al. Effect of first-line serplulimab vs placebo added to chemotherapy on survival in patients with extensive-stage small cell lung cancer: the ASTRUM-005 randomized clinical trial. JAMA. 2022;328:1223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paz-Ares L, Vicente D, Tafreshi A, Robinson A, Soto Parra H, Mazières J, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J Thorac Oncol. 2020;15:1657–69.

    Article  CAS  PubMed  Google Scholar 

  31. Ito T, Nagashima H, Akiyama M, Utsumi Y, Sato H, Chiba S, et al. Treatment with immune checkpoint inhibitors after EGFR-TKIs in EGFR-mutated lung cancer. Thorac Cancer. 2022;13:386–93.

    Article  CAS  PubMed  Google Scholar 

  32. Klement JD, Redd PS, Lu C, Merting AD, Poschel DB, Yang D, et al. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell. 2023;41:620–36.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. PD-L2 expression in human tumors: relevance to anti-pd-1 therapy in cancer. Clin Cancer Res. 2017;23:3158–67.

    Article  CAS  PubMed  Google Scholar 

  34. Miao YR, Thakkar KN, Qian J, Kariolis MS, Huang W, Nandagopal S, et al. Neutralization of PD-L2 is essential for overcoming immune checkpoint blockade resistance in ovarian cancer. Clin Cancer Res. 2021;27:4435–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shibahara D, Tanaka K, Iwama E, Kubo N, Ota K, Azuma K, et al. Intrinsic and extrinsic regulation of PD-L2 expression in oncogene-driven non-small cell lung cancer. J Thorac Oncol. 2018;13:926–37.

    Article  PubMed  Google Scholar 

  36. Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res. 2022;9:69.

    PubMed  PubMed Central  Google Scholar 

  37. Nguyen LT, Ciric B, Van Keulen VP, Rodriguez M, Pease LR, Tamada K, et al. Retraction: Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res. 2010;70:9528.

    Article  CAS  PubMed  Google Scholar 

  38. Lin MC, Wu HL, Kou HS, Wu SM. Simple fluorimetric liquid chromatographic method for the analysis of undecylenic acid and zinc undecylenate in pharmaceutical preparations. J Chromatogr A. 2006;1119:264–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hao J, Granowski PC, Stefan MC. Zinc undecylenate catalyst for the ring-opening polymerization of caprolactone monomers. Macromol Rapid Commun. 2012;33:1294–9.

    Article  CAS  PubMed  Google Scholar 

  40. Chretien JH, Esswein JG, Sharpe LM, Kiely JJ, Lyddon FE. Efficacy of undecylenic acid-zinc undecylenate powder in culture-positive tinea pedis. Int J Dermatol. 1980;19:51–4.

    Article  CAS  PubMed  Google Scholar 

  41. Brayden DJ, Walsh E. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative. Aaps J. 2014;16:1064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi D, Zhao Y, Yan H, Fu H, Shen Y, Lu G, et al. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther. 2016;54:343–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82373157, 82073320, 81903112, 82272725), Central Guidance on Local Science and Technology Development Fund of Liaoning Province (2022JH6/100100038), “Xingliao Talents” Program of Liaoning Province (XLYC1902008), Natural Science Foundation of Shenyang (22-315-6-11).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CFW, LHW; Methodology: SMW, DLS, CFT, YDW, HC, YY, YL, J-CL; Investigation: SMW, DLS; Visualization: SMW, DLS; Funding acquisition: CFW, LHW; Project administration: YY, YL; Supervision: SMW, DLS, CFT, YDW, YY, YL; Writing – original draft: SMW, DLS; Writing—review & editing: SMW, CFW, LHW, J-CL, CFT.

Corresponding authors

Correspondence to Lihui Wang or Chunfu Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Su, D., Chen, H. et al. PD-L2 drives resistance to EGFR-TKIs: dynamic changes of the tumor immune environment and targeted therapy. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01317-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01317-2

Search

Quick links