Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy

Subjects

Abstract

The pseudokinase mixed lineage kinase domain-like (MLKL) is an essential component of the activation of the necroptotic pathway. Emerging evidence suggests that MLKL plays a key role in liver disease. However, how MLKL contributes to hepatocarcinogenesis has not been fully elucidated. Herein, we report that MLKL is upregulated in a diethylnitrosamine (DEN)-induced murine HCC model and is associated with human hepatocellular carcinomas. Hepatocyte-specific MLKL knockout suppresses the progression of hepatocarcinogenesis. Conversely, MLKL overexpression aggravates the initiation and progression of DEN-induced HCC. Mechanistic study reveals that deletion of MLKL significantly increases the activation of autophagy, thereby protecting against hepatocarcinogenesis. MLKL directly interacts with AMPKα1 and inhibits its activity independent of its necroptotic function. Mechanistically, MLKL serves as a bridging molecule between AMPKα1 and protein phosphatase 1B (PPM1B), thus enhancing the dephosphorylation of AMPKα1. Consistently, MLKL expression correlates negatively with AMPKα1 phosphorylation in HCC patients. Taken together, our findings highlight MLKL as a novel AMPK gatekeeper that plays key roles in inhibiting autophagy and driving hepatocarcinogenesis, suggesting that the MLKL-AMPKα1 axis is a potential therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MLKL is overexpressed in DEN-induced murine HCC model and is associated with poor prognosis in HCC.
Fig. 2: MLKL in hepatocytes promotes hepatocarcinogenesis.
Fig. 3: MLKL regulates autophagy in hepatocytes to control hepatocarcinogenesis.
Fig. 4: MLKL directly interacts with AMPKα and negatively regulates its activity.
Fig. 5: MLKL negatively regulates autophagy and promotes hepatocarcinogenesis through AMPK.
Fig. 6: MLKL suppresses AMPKα1 activation by promoting PPM1B-dependent dephosphorylation.
Fig. 7: MLKL overexpression increased DEN-induced hepatocarcinogenesis.
Fig. 8: High MLKL expression is related to low pAMPKα1 expression in HCC.

Similar content being viewed by others

Data availability

The authors declare that the data are present in the paper and/or the supplementary information. Additional data supporting the present study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Pinyol R, Torrecilla S, Wang H, Montironi C, Piqué-Gili M, Torres-Martin M, et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol. 2021;75:865–78.

    Article  CAS  PubMed  Google Scholar 

  3. Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, et al. Autophagy in liver diseases: a review. Mol Aspects Med. 2021;82:100973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, et al. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol. 2023;14:1149809.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, et al. Isoginkgetin, a potential CDK6 inhibitor, suppresses enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy. 2023;19:1221–38.

    Article  CAS  PubMed  Google Scholar 

  6. He L, Li H, Li C, Liu ZK, Lu M, Zhang RY, et al. HMMR alleviates endoplasmic reticulum stress by promoting autophagolysosomal activity during endoplasmic reticulum stress-driven hepatocellular carcinoma progression. Cancer Commun. 2023;43:981–1002.

    Article  Google Scholar 

  7. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park JM, Kim DH. A paradigm shift: AMPK negatively regulates ULK1 activity. Autophagy. 2024;20:960–2.

    Article  CAS  PubMed  Google Scholar 

  9. Guo S, Zhang C, Zeng H, Xia Y, Weng C, Deng Y, et al. Glycolysis maintains AMPK activation in sorafenib-induced Warburg effect. Mol Metab. 2023;77:101796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: MLKL. Cell Mol Life Sci. 2016;73:2153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Fan C, Zhang H, Zhao Q, Liu Y, Xu C, et al. MLKL and FADD are critical for suppressing progressive lymphoproliferative disease and activating the NLRP3 inflammasome. Cell Rep. 2016;16:3247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao Q, Yu X, Li M, Liu Y, Han Y, Zhang X, et al. MLKL attenuates colon inflammation and colitis-tumorigenesis via suppression of inflammatory responses. Cancer Lett. 2019;459:100–11.

    Article  CAS  PubMed  Google Scholar 

  14. Cao M, Wu Z, Lou Q, Lu W, Zhang J, Li Q, et al. Dectin-1-induced RIPK1 and RIPK3 activation protects host against infection. Cell Death Differ. 2019;26:2622–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, et al. MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci. 2021;17:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo R, Jia X, Ding Z, Wang G, Jiang M, Li B, et al. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Theranostics. 2022;12:5220–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Du X, Liu G, Huang S, Du W, Zou S, et al. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab. 2019;23:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Poulsen KL, Sanz-Garcia C, Huang E, McMullen MR, Roychowdhury S, et al. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J Hepatol. 2020;73:616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang X, Deng W, Tao S, Tang Z, Chen Y, Tian M, et al. A RIPK3-independent role of MLKL in suppressing parthanatos promotes immune evasion in hepatocellular carcinoma. Cell Discov. 2023;9:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27.

    Article  CAS  PubMed  Google Scholar 

  21. Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, et al. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun. 2023;14:5405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee A, Kondapalli C, Virga DM, Lewis TL Jr, Koo SY, Ashok A, et al. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun. 2022;13:4444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE. 2008;3:e2009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu X, Ding G, Liu C, Ding Y, Chen X, Huang X, et al. Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res. 2022;32:54–71.

    Article  CAS  PubMed  Google Scholar 

  25. Wakayama K, Kamiyama T, Yokoo H, Orimo T, Shimada S, Einama T, et al. Huge hepatocellular carcinoma greater than 10 cm in diameter worsens prognosis by causing distant recurrence after curative resection. J Surg Oncol. 2017;115:324–9.

    Article  PubMed  Google Scholar 

  26. Yang B, Li CL, Guo WH, Qin TQ, Jiao H, Fei ZJ, et al. Intra-arterial ethanol embolization augments response to TACE for treatment of HCC with portal venous tumor thrombus. BMC Cancer. 2018;18:101.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang T, Wang Y, Inuzuka H, Wei W. Necroptosis pathways in tumorigenesis. Semin Cancer Biol. 2022;86:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geng L, Gao W, Saiyin H, Li Y, Zeng Y, Zhang Z, et al. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson’s disease. Mol Neurodegener. 2023;18:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhan C, Huang M, Yang X, Hou J. MLKL: Functions beyond serving as the executioner of necroptosis. Theranostics. 2021;11:4759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakatsuka T, Tateishi R. Development and prognosis of hepatocellular carcinoma in patients with diabetes. Clin Mol Hepatol. 2023;29:51–64.

    Article  PubMed  Google Scholar 

  31. Foerster F, Gairing SJ, Müller L, Galle PR. NAFLD-driven HCC: safety and efficacy of current and emerging treatment options. J Hepatol. 2022;76:446–57.

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Zhan H, Ren Y, Feng M, Wang Q, Jiao Q, et al. Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. 2023;30:313–26.

    Article  CAS  PubMed  Google Scholar 

  34. Li GM, Li L, Li MQ, Chen X, Su Q, Deng ZJ, et al. DAPK3 inhibits gastric cancer progression via activation of ULK1-dependent autophagy. Cell Death Differ. 2021;28:952–67.

    Article  CAS  PubMed  Google Scholar 

  35. Guha P, Tyagi R, Chowdhury S, Reilly L, Fu C, Xu R, et al. IPMK mediates activation of ULK signaling and transcriptional regulation of autophagy linked to liver inflammation and regeneration. Cell Rep. 2019;26:2692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jang HJ, Lee YH, Dao T, Jo Y, Khim KW, Eom HJ, et al. Thrap3 promotes nonalcoholic fatty liver disease by suppressing AMPK-mediated autophagy. Exp Mol Med. 2023;55:1720–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ponnusamy L, Natarajan SR, Thangaraj K, Manoharan R. Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer. 2020;1874:188379.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Yang Z, Zheng G, Yu L, Yin Y, Mu N, et al. Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways. Life Sci. 2019;225:64–71.

    Article  CAS  PubMed  Google Scholar 

  39. Huang Z, Fang W, Liu W, Wang L, Liu B, Liu S, et al. Aspirin induces Beclin-1-dependent autophagy of human hepatocellular carcinoma cell. Eur J Pharmacol. 2018;823:58–64.

    Article  CAS  PubMed  Google Scholar 

  40. Zong Y, Zhang CS, Li M, Wang W, Wang Z, Hawley SA, et al. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 2019;29:460–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voss M, Paterson J, Kelsall IR, Martín-Granados C, Hastie CJ, Peggie MW, et al. Ppm1E is an AMP-activated protein kinase phosphatase. Cell Signal. 2011;23:114–24.

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz A, Xu X, Carlson M. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae. J Biol Chem. 2013;288:31052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang Y, Fang G, Guo F, Zhang H, Chen X, An L, et al. Selective inhibition of STRN3-containing PP2A phosphatase restores hippo tumor-suppressor activity in gastric cancer. Cancer Cell. 2020;38:115–28.

    Article  CAS  PubMed  Google Scholar 

  44. Tasdelen I, van Beekum O, Gorbenko O, Fleskens V, van den Broek NJ, Koppen A, et al. The serine/threonine phosphatase PPM1B (PP2Cβ) selectively modulates PPARγ activity. Biochem J. 2013;451:45–53.

    Article  CAS  PubMed  Google Scholar 

  45. Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019;26:1670–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Günther C, He GW, Kremer AE, Murphy JM, Petrie EJ, Amann K, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest. 2016;126:4346–60.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 2015;6:6282.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou H, Zhou L, Guan Q, Hou X, Wang C, Liu L, et al. Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells. Commun Biol. 2023;6:805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Z, Dagley LF, Shield-Artin K, Young SN, Bankovacki A, Wang X, et al. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J. 2021;40:e103718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81902852, 82003237), Natural Science Foundation of Hubei Province of China (2022CFB481), Natural Science Foundation of Hubei Provincial Department of Education (T2022021), Projects of International Cooperation and Exchanges (G2022027004L, G2022027012L) and the Advantages Discipline Group (Medicine) Project in Higher Education of Hubei Province (2021-2025) (2024XKQY26, 2024BMXKQY2). The authors appreciate Professor Quentin Qiang Liu and Professor Mian Wu for their helpful suggestions on this study. The authors thank the Biomedical Research Institute of Hubei University of Medicine for instrument support.

Author information

Authors and Affiliations

Authors

Contributions

XY and QZ conceived the project and designed the research studies. QZ, XY, MF, JG, and HW performed most of the experiments described. JY performed structure analysis. AZ, and JW provided help with animal and technical assistance in the mouse experiments. YH, ZS and YL provided conceptual advice and helpful discussion. XY, QZ and MF analyzed data. XY and QZ prepared the manuscript.

Corresponding author

Correspondence to Qun Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the Science and Technology Ethics Committee of Hubei University of Medicine (No. 2023-EER-05). Animal experiments were approved by the the Animal Care and Use Committee of Hubei Medicine University (No. 2022-021) and animal care was conducted in accordance with institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Feng, M., Guo, J. et al. MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01314-5

Search

Quick links