Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IFI35 regulates non-canonical NF-κB signaling to maintain glioblastoma stem cells and recruit tumor-associated macrophages

Abstract

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IFI35 is upregulated in GBM and GSCs compared with non-tumors and NSCs.
Fig. 2: IFI35 promotes GSC proliferation and self-renewal.
Fig. 3: IFI35 interacts with TRIM21 to regulate NF-κB signaling pathway.
Fig. 4: IFI35-TRIM21 complex mediates NFKB1 P105 processing through K48-linked ubiquitin chain.
Fig. 5: IFI35 with RELB/p50 complex transcriptionally regulates chemokines.
Fig. 6: IFI35 induces recruitment and maintenance of M2-like TAMs.
Fig. 7: IFI35 promotes in vivo tumor growth and has therapeutic potential in GSCs.

Similar content being viewed by others

Data availability

RNA-seq (GSE242225), ATAC-seq (GSE242570), and single-cell RNA-seq (GSE141383, GSE117891) data generated for this study are available in Gene Expression Omnibus Database (GEO). All data accessed from external sources and prior publications have been referenced in the text and corresponding figure legends. Additional data will be made available upon request.

References

  1. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71:381–406.

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24:v1–v95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perry JR, Laperriere N, O’Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376:1027–37.

    Article  CAS  PubMed  Google Scholar 

  4. Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 2018;20:1566–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hernandez Martinez A, Madurga R, Garcia-Romero N, Ayuso-Sacido A. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 2022;527:66–79.

    Article  CAS  PubMed  Google Scholar 

  6. Yeo AT, Rawal S, Delcuze B, Christofides A, Atayde A, Strauss L, et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat Immunol. 2022;23:971–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LeBlanc VG, Trinh DL, Aslanpour S, Hughes M, Livingstone D, Jin D, et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity. Cancer Cell. 2022;40:379–392.e379.

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Lee IH, Cho HJ, Park CK, Jung YS, Kim Y, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28:318–28.

    Article  CAS  PubMed  Google Scholar 

  9. Santangelo A, Rossato M, Lombardi G, Benfatto S, Lavezzari D, De Salvo GL, et al. A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro Oncol. 2021;23:264–76.

    Article  CAS  PubMed  Google Scholar 

  10. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prager BC, Xie Q, Bao S, Rich JN. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019;24:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021;10:621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The interplay between glioblastoma and its microenvironment. Cells. 2021;10:2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernandez A, Domenech M, Munoz-Marmol AM, Carrato C, Balana C. Glioblastoma: relationship between metabolism and immunosuppressive microenvironment. Cells. 2021;10:3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang H, Winkler W, Wu X. Interferon inducer IFI35 regulates RIG-I-mediated innate antiviral response through mutual antagonism with Influenza protein NS1. J Virol. 2021;95:e00283–00221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chai D, Shi SY, Sobhani N, Ding J, Zhang Z, Jiang N, et al. IFI35 promotes renal cancer progression by inhibiting pSTAT1/pSTAT6-dependent autophagy. Cancers. 2022;14:2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jing X, Yao Y, Wu D, Hong H, Feng X, Xu N, et al. IFP35 family proteins promote neuroinflammation and multiple sclerosis. Proc Natl Acad Sci USA. 2021;118:e2102642118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mack SC, Singh I, Wang X, Hirsch R, Wu Q, Villagomez R, et al. Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. J Exp Med. 2019;216:1071–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun. 2023;14:865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kravtsova-Ivantsiv Y, Cohen S, Ciechanover A. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-κB precursor. Adv Exp Med Biol. 2011;691:95–106.

    Article  CAS  PubMed  Google Scholar 

  21. Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci. 2014;71:2083–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xuan W, Hsu WH, Khan F, Dunterman M, Pang L, Wainwright DA, et al. Circadian regulator CLOCK drives immunosuppression in glioblastoma. Cancer Immunol Res. 2022;10:770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao W, Chu C, Zhou W, Huang Z, Zhai K, Fang X, et al. Dual role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun. 2020;11:3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin J, Kim SS, Choi E, Oh YT, Lin W, Kim TH, et al. ARS2/MAGL signaling in glioblastoma stem cells promotes self-renewal and M2-like polarization of tumor-associated macrophages. Nat Commun. 2020;11:2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiahou Z, Wang X, Shen J, Zhu X, Xu F, Hu R, et al. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat Commun. 2017;8:950.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Zhu H, Li Y, Dai X, Zhou B, Li Q, et al. The role of IFI35 in lupus nephritis and related mechanisms. Mod Rheumatol. 2017;27:1010–8.

    Article  CAS  PubMed  Google Scholar 

  27. Weix J, Haupl T, Raio L, Villiger PM, Forger F. The physiologic increase in expression of some type I IFN-inducible genes during pregnancy is not associated with improved disease activity in pregnant patients with rheumatoid arthritis. Transl Res. 2013;161:505–12.

    Article  CAS  PubMed  Google Scholar 

  28. Bange FC, Vogel U, Flohr T, Kiekenbeck M, Denecke B, Bottger EC. IFP 35 is an interferon-induced leucine zipper protein that undergoes interferon-regulated cellular redistribution. J Biol Chem. 1994;269:1091–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tan J, Qiao W, Wang J, Xu F, Li Y, Zhou J, et al. IFP35 is involved in the antiviral function of interferon by association with the viral tas transactivator of bovine foamy virus. J Virol. 2008;82:4275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Tang Y, Tie Y, Tian C, Wang J, Dong Y, et al. The PH domain containing protein CKIP-1 binds to IFP35 and Nmi and is involved in cytokine signaling. Cell Signal. 2007;19:932–44.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol. 2013;14:172–8.

    Article  CAS  PubMed  Google Scholar 

  32. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin L, Wang X, Chen Z, Deng T, Yan Y, Dong W, et al. TRIM21 restricts influenza A virus replication by ubiquitination-dependent degradation of M1. PLoS Pathog. 2023;19:e1011472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang K, Shi HX, Liu XY, Shan YF, Wei B, Chen S, et al. TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol. 2009;182:3782–92.

    Article  CAS  PubMed  Google Scholar 

  35. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    Article  CAS  PubMed  Google Scholar 

  36. Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-κB in glioblastoma: a therapeutic approach. Sci Adv. 2016;2:e1501292.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy. Neuro Oncol. 2016;18:329–39.

    Article  CAS  PubMed  Google Scholar 

  38. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  39. Kravtsova-Ivantsiv Y, Shomer I, Cohen-Kaplan V, Snijder B, Superti-Furga G, Gonen H, et al. KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth. Cell. 2015;161:333–47.

    Article  CAS  PubMed  Google Scholar 

  40. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savinova OV, Hoffmann A, Ghosh G. The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high- molecular-weight heterogeneous complexes. Mol Cell. 2009;34:591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roy P, Mukherjee T, Chatterjee B, Vijayaragavan B, Banoth B, Basak S. Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway. Oncogene. 2017;36:1417–29.

    Article  CAS  PubMed  Google Scholar 

  44. Xiao Y, Wang Z, Zhao M, Deng Y, Yang M, Su G, et al. Single-cell transcriptomics revealed subtype-specific tumor immune microenvironments in human glioblastomas. Front Immunol. 2022;13:914236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer. 2023;9:9–27.

    Article  CAS  PubMed  Google Scholar 

  46. Xuan W, Lesniak MS, James CD, Heimberger AB, Chen P. Context-dependent glioblastoma-macrophage/microglia symbiosis and associated mechanisms. Trends Immunol. 2021;42:280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu B, Sun H, Song X, Liu Q, Jin W. Mapping the tumor microenvironment in TNBC and deep exploration for M1 macrophages-associated prognostic genes. Front Immunol. 2022;13:923481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16:1373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

    Article  PubMed  Google Scholar 

  53. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82072779 to XXW, 82172667 to XFW) and Jiangsu Provincial Key Research Development Program of China (BE2022770 to YC).

Author information

Authors and Affiliations

Authors

Contributions

XXW, QZ, JNR, and KY conceptualized and supervised the study. DL, XFW, KC, DS conducted most of the experiments, analyzed the data, prepared the figures and contributed to the original paper preparation, review, and editing. GC, WY, QL, CL performed the data analysis and bioinformatics analysis under the supervision of ZS, XF, QW, and WG; DG, HY, JG, YL, TK, JY, HY, and KS interpreted the data. ZZ, JM, QW, FL, WT, SCM, YC, JZ, CL, NZ, YY, and XQ commented on the study, RCG and DD revised the manuscript and supervised the work. All authors discussed the results and approved submission of the manuscript.

Corresponding authors

Correspondence to Kailin Yang, Jeremy N. Rich, Qian Zhang or Xiuxing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC-2006033-2) at Nanjing Medical University in accordance with NIH and institutional guidelines. Human fresh tumor samples were obtained with informed consent of patients, and all experimental procedures were performed in accordance with the recognized ethical guidelines of the Declaration of Helsinki, and Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2021-SR-076).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, X., Chen, K. et al. IFI35 regulates non-canonical NF-κB signaling to maintain glioblastoma stem cells and recruit tumor-associated macrophages. Cell Death Differ 31, 738–752 (2024). https://doi.org/10.1038/s41418-024-01292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01292-8

Search

Quick links