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Combined absence of TRP53 target genes ZMAT3, PUMA and
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Transcriptional activation of target genes is essential for TP53-mediated tumour suppression, though the roles of the diverse TP53-
activated target genes in tumour suppression remains poorly understood. Knockdown of ZMAT3, an RNA-binding zinc-finger
protein involved in regulating alternative splicing, in haematopoietic cells by shRNA caused leukaemia only with the concomitant
absence of the PUMA and p21, the critical effectors of TRP53-mediated apoptosis and cell cycle arrest respectively. We were
interested to further investigate the role of ZMAT3 in tumour suppression beyond the haematopoietic system. Therefore, we
generated Zmat3 knockout and compound gene knockout mice, lacking Zmat3 and p21, Zmat3 and Puma or all three genes.
Puma−/−p21−/−Zmat3−/− triple knockout mice developed tumours at a significantly higher frequency compared to wild-type,
Puma−/−Zmat3−/− or p21−/−Zmat3−/−deficient mice. Interestingly, we observed that the triple knockout and Puma−/−Zmat3−/−

double deficient animals succumbed to lymphoma, while p21−/−Zmat3−/− animals developed mainly solid cancers. This analysis
suggests that in addition to ZMAT3 loss, additional TRP53-regulated processes must be disabled simultaneously for TRP53-
mediated tumour suppression to fail. Our findings reveal that the absence of different TRP53 regulated tumour suppressive
processes changes the tumour spectrum, indicating that different TRP53 tumour suppressive pathways are more critical in different
tissues.
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INTRODUCTION
The tumour suppressor TP53 (mouse TRP53, often referred to as
p53) is a frequently mutated gene in human cancer [1–3].
Although TP53-mediated transcriptional regulation of diverse
cellular responses is known to be critical for its ability to prevent
the development of cancer, the role of many TP53 target genes in
tumour suppression remains unclear [2, 4]. Recent studies in mice
sought to identify the mechanisms that are critical for TRP53-
mediated tumour suppression, using sensitised shRNA gene
knock-down and CRISPR/Cas9 knockout screens in cells in culture
and even in vivo [5, 6]. Amongst the hits identified in these
screens, the RNA binding protein ZMAT3 [7, 8] was found to be a
potent tumour suppressor. ZMAT3 (also known as WIG-1) is an
RNA-binding zinc-finger protein that is involved in regulating
alternative splicing and as such is expressed in a broad range of
tissues [6]. ZMAT3 was reported to control splicing of mRNAs,
including those encoding the negative regulators of TRP53
function, MDM2 and MDM4, several other splicing factors (e.g.,
HNRNPDL, DHX9) and the cell adhesion and stem cell marker
CD44 [6, 9]. ZMAT3 has been described to be under the direct
transcriptional control of TRP53 in various cell types [5, 6, 8, 10],

indicating its broad role for tumour suppression in diverse tissues.
The absence of TRP53 causes a reduction in Zmat3 expression in a
range of human carcinomas (e.g., breast, lung) and high levels of
Zmat3 expression in malignant cells predict increased patient
survival in certain cancers [6]. Moreover, an analysis of the Project
Achilles CRISPR/Cas9 gene knockout screening data in human
cancer cells revealed that ZMAT3 inactivation enhances prolifera-
tion of malignant cells with wild-type (wt) TP53. This further
supports a role for ZMAT3 in tumour suppression acting down-
stream of TP53 [6]. Of note, CRISPR/Cas9-mediated loss of ZMAT3
enhanced tumorigenesis in autochthonous mouse models of lung
adenocarcinoma and hepatocellular carcinoma [6]. However,
unlike loss of TRP53, the absence of ZMAT3 did not have marked
impact on the rate of tumour development or severity of
malignant disease in the context of murine c-MYC-driven
lymphomagenesis or mutant KrasG12D-driven lung adenocarci-
noma development [11]. This indicates that the relative impor-
tance of ZMAT3 in TRP53-mediated tumour suppression may vary
depending on cell type and/or the context of other oncogenic
drivers present in the emerging neoplastic cell population. In vivo
studies have shown that shRNA-mediated silencing of ZMAT3 in
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haematopoietic stem/progenitor cells (HSPCs) caused develop-
ment of leukaemia/lymphoma in transplant recipient mice only
when PUMA and p21, the critical effectors of TRP53-mediated
apoptosis [12, 13] and cell cycle arrest [14] respectively, were also
absent [5]. A limitation of these studies was that ZMAT3, PUMA
and p21 were removed only in the haematopoietic compartment.
Therefore, it remains unclear what impact the absence of ZMAT3
either on its own, or in conjunction with the loss of TRP53 induced
apoptosis and cell cycle arrest/cell senescence might have in other
tissues. To address this question, we generated mice lacking
ZMAT3, PUMA and p21. We found that these triple knockout (TKO)
mice spontaneously developed malignancy at a considerably
higher frequency compared to wt controls as well as
Puma−/−Zmat3−/− and p21−/−Zmat3−/− double knockout (DKO)
mice. Most of the tumours from the TKO mice were of
haematopoietic cell origin. These findings demonstrate that this
combination of defects in TRP53-activated cellular responses, even
if present in all cells, predominantly causes leukaemia/lymphoma.
They also reaffirm that defects in multiple TRP53-activated cellular
responses must collude to drive tumorigenesis.

RESULTS
Adult pre-neoplastic Puma−/−p21−/−Zmat3−/− mice have only
minor abnormalities in their haematopoietic cell populations
To investigate the impact of combined loss of ZMAT3, PUMA
and p21 in TRP53-mediated tumour suppression we crossed
Zmat3−/− with Puma−/−p21−/− mice to obtain Puma−/−Zmat3−/−,
p21−/−Zmat3−/− and Puma−/−p21−/−Zmat3−/− animals (Fig. 1A).
Puma−/−Zmat3−/−, p21−/−Zmat3−/− and Puma−/−p21−/−

Zmat3−/− offspring were born at the expected Mendelian ratios
of inheritance observed for heterozygous crosses of each allele
within the colony (Table S1), as well as from Puma+/-Zmat3+/- and
p21+/-Zmat3+/- di-hybrid inter-crosses (Table S2). The DKO and
TKO mutant mice reached adulthood without any notable defects.
Previous reports have demonstrated important individual

and overlapping roles of ZMAT3, PUMA and p21 in lymphoid cells
[5, 12, 14]. Therefore, we hypothesised that Puma−/−p21−/−

Zmat3−/− TKO mice may display a marked pre-leukaemic phenotype
with a pronounced expansion of certain haematopoietic cell
populations. We therefore determined the overall composition of
the haematopoietic system of the TKO, and both DKO mice by
immunostaining and fluorescence-activated cell sorter (FACS)
analysis at 8–12 weeks of age. The cellularity of the different
lymphoid organs (e.g. spleen, bone marrow, thymus) in the DKO and
TKO mice were comparable to those in wt controls (Figs. 1B, S1A), as
were the white blood cell (WBC) counts in peripheral blood (PB)
(Fig. S1B). T cell development in the thymus appeared normal with
the overall distribution of the double negative (DN, CD4-CD8-

progenitors), double-positive (DP, CD4+CD8+ immature) and single
positive CD4+ and CD8+ (mature) thymocytes comparable
between the DKO as well as TKO mice with those seen in wt
controls (Fig. S1C, D). In the bone marrow, we observed a small but
significant increase in the immature stem and multi-potent
progenitor population (termed LSK, defined by lack of any mature
lineage markers and expression of both SCA1 and cKIT) in
the Puma−/−p21−/−Zmat3−/− TKO mice compared to wt controls
(Fig. 1C, D). However, this did not result in any differences in B-cell
development in the bone marrow, with only a small, yet significant
increase in myeloid cells observed (Figs. 1E, F, S1E, F). The numbers of
all mature cell types in the spleen that we tested were comparable
between DKO as well as TKO mice with those seen in wt controls,
with comparable frequencies of B cells (B220+), T cells (TCRβ+) and
myeloid cells (MAC1+) (Figs. 1G, H, S1G–I). In addition, histological
analysis of major organs revealed no lesions of significance in young
adult DKO and TKO mice (Fig. S2). Overall, these findings
demonstrate that the combined absence of ZMAT3, PUMA and
p21 does not cause marked defects in pre-cancerous mice.

Cells from Puma−/−p21−/−Zmat3−/− mice are resistant to
TRP53-mediated apoptosis triggered by DNA damage
The BH3-only protein PUMA is critical for apoptosis induced by stress
stimuli that activate TRP53, such as DNA damage [12, 13, 15]. To
verify that cells from TKO mice were, as expected, resistant
to TRP53-mediated apoptosis, we exposed thymocytes
from Puma−/−p21−/−Zmat3−/− as well as Puma−/−Zmat3−/−,
p21−/−Zmat3−/−, Zmat3−/−, p21−/−, Puma−/− and wt mice to
apoptosis inducing agents in vitro and their survival was
then measured by flow cytometric analysis. The survival of
Puma−/−p21−/−Zmat3−/− TKO thymocytes was comparable to that
of DKO and wt thymocytes when either left untreated (DMSO control),
treated with ionomycin or starved of serum (growth factor deprivation)
(Fig. 2A–C). As expected, thymocytes from TKO and Puma−/−Zmat3−/−

DKO mice were resistant to etoposide, a cytotoxic stimulus that kills
these cells via a TRP53-dependent process. At 24 h, there was less than
40% survival of wt thymocytes but more than 80% survival of the TKO,
Puma−/−Zmat3−/− DKO and Puma−/− thymocytes (Fig. 2D). To
confirm that this survival advantage was due to failure to induce
apoptosis owing to the absence of PUMA, we performed cleaved
caspase-3 (CC3) staining, a marker for cells that have initiated
apoptosis, after etoposide treatment, followed by flow cytometric
analysis. At 24 h after treatment a drastic decrease in CC3 staining in
Puma−/−p21−/−Zmat3−/− as well as Puma−/−Zmat3−/− and Puma−/−

thymocytes was observed compared to wt thymocytes (Fig. 2E). These
data show that cells from TKO mice are resistant to TRP53-driven
apoptosis triggered by DNA damage due to the absence of PUMA, but
are normally sensitive to several TRP53-independent apoptotic stimuli.

ZMAT3 impacts expression of genes involved in TRP53
mediated regulation of the haematopoietic compartment
Given the importance of ZMAT3 as an RNA binding protein we
performed RNA-seq analysis on cells from young adult (8–12
weeks old) age-matched Puma−/−p21−/−Zmat3−/−, Zmat3−/− and
wt control mice. Comparison of gene expression profiles of
Puma−/−p21−/−Zmat3−/− and wt thymocytes revealed minor
changes in the transcriptional landscape and identified 75 signifi-
cantly differentially expressed (DE) genes (Figs. 2F, G, S3A, B,
Table S3). GO term annotation uncovered various categories
related to mechanisms that cells use to control gene expression
and maintain cellular proliferation, differentiation, or cell
adhesion (Fig. S3A). Notably, the most statistically DE genes in
Puma−/−p21−/−Zmat3−/− cells included genes that regulate TP53
and compromise its tumour suppression function (Fig. 2G, red
arrows), such as Rps2 - regulator of TRP53-MDM2 signalling [16], Klf4
[17], Trb1 [18], Neat1 [19], Cebpb [20], Sik1 [21], Jun [22], Arc [23], and
some known TRP53 target genes (Fig. 2G, blue arrows), including
Dusp1 [24], Perp [25], Dusp5 [26], Fos [27], Rgs2 [28], Spry1 [29], Plk2
[30] and Zfp36L2 [31]. Additionally, gene-set enrichment analysis
(GSEA) comparing wt with Puma−/−p21−/−Zmat3−/− thymocytes
showed a significant enrichment for TRP53 regulated genes (Fig. 2G).
Thus, these data indicate that ZMAT3 may function in tumour
suppression by regulating TRP53 function. To assess the
contribution of PUMA and p21 to the observed transcriptomic
changes, we compared gene expression profiles between
Puma−/−p21−/−Zmat3−/− and Zmat3−/− thymocytes. This revealed
only 9 significantly DE genes (Fig. S3C), with Rnps1 and Rps2 being
the only genes overlapping between the two sets of comparisons
(Fig. S3B, C). This demonstrates that the absence of PUMA and p21
have only minor impact on the transcriptome changes seen in
Puma−/−p21−/−Zmat3−/− cells. Collectively, our findings support the
model in which ZMAT3 regulates the expression of a range of genes
involved in TRP53 regulation of various cellular processes.

Consequences of combined loss of ZMAT3 and p21 on
γ-radiation induced thymic lymphoma development
Exposure of mice from a young age (starting at ~4 weeks) to
repeated low-dose γ-radiation drives thymic lymphoma
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development through a mechanism that is suppressed by TRP53
[32, 33]. To investigate whether TRP53-mediated induction of
ZMAT3 could restrain γ-radiation induced thymic lymphoma
development, we examined the consequences of individual or
combined loss of ZMAT3 and p21 in this model. Mice lacking
PUMA alone or in combination with ZMAT3 and p21 were not

included as it has been previously shown that mice defective in
TRP53-induced apoptosis due to loss of PUMA are profoundly
resistant to γ-radiation-induced thymic lymphoma development
[33, 34]. We found that p21−/−Zmat3−/− as well as Zmat3−/− and
p21−/− mice developed thymic lymphoma at a similar rate to wt
mice (Fig. 3A). Immunophenotyping of the tumours from sick

Fig. 1 Lymphoid organ analysis of young adult mice of the indicated genotypes. A Schematic for tumour development study. Mouse
cohorts were analysed for pre-neoplastic phenotypes and monitored for tumour-free survival. B–H Single-cell suspensions were prepared
from spleen, thymus, peripheral blood and bone marrow of Puma−/−p21−/−Zmat3−/− (N= 5), Puma−/−Zmat3−/− (N= 2–4), p21−/−Zmat3−/−

(N= 6), and wt (N= 7) mice and the indicated haematopoietic cell subsets were examined by immunostaining and FACS analysis. B Total cell
counts for bone marrow (1 femur, top) and whole spleen (bottom). C Representative FACS plots from wt mice that indicate gating strategy to
identify the cell populations of interest in the bone marrow: myeloid (MAC1+), LSK (Lineage-SCA1+cKIT+) haematopoietic stem/progenitor
cells (HSPCs) and B lymphoid cells; pro-pre (B220loIgM-), immature (B220+IgMlo IgD-), transitional (B220+IgMhi) and mature (B220+IgMmedIgD+)
B lymphoid cells. The lineage marker antibody cocktail included antibodies against NK1.1, TER119, Ly6G, F4/80, CD2, CD4 and CD8.
D–F Percentages of the indicated cell subsets in the bone marrow from mice of the indicated genotypes. G Representative FACS plots of wt
mice indicate gating strategy to identify cell populations in the spleen: B cells (B220+), T cells (TCRβ+) and myeloid cells (MAC1+B220-TCRβ-).
H Percentages of the indicated cell subsets in the spleen of mice of the indicated genotypes. Data represent mean ± SEM. Statistical
significance was calculated by one-way ANOVA *p < 0.05. N number of mice, MNC mono-nuclear cells as determined by forward/side scatter.
For data of analysis of single knockout control mice, Puma−/− (N= 7), p21−/−(N= 8), Zmat3−/− (N= 6), refer to Fig. S1.
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Fig. 2 Impact of combined loss of ZMAT3, PUMA and p21 on thymocyte transcriptional landscape and survival upon treatment with
various apoptotic stimuli. Thymocytes from mice of the indicated genotypes were isolated and either (A) left untreated (DMSO control), (B)
treated with 1 μg/mL ionomycin, (C) exposed to serum deprivation in culture or (D) treated with 1 μg/mL etoposide. Cell viability was assessed
after 24 h by Annexin-V/PI staining and FACS analysis. Data are presented as mean ± SEM of Annexin-V-PI- population (live cells) (A) and live
cells relative to DMSO treated control samples (B–D). Representative FACS plots are shown to the right of each graph. E Thymocytes were
treated with 5 μg/mL etoposide for 6 h, fixed, followed by intracellular staining for activated (i.e. cleaved) caspase-3 (CC3) and then subjected
to FACS analysis. Data are presented as ratio of CC3+ cells in treated vs untreated (DMSO control) thymocytes with representative histograms
shown below. FMO = fluorescence minus one staining control. Statistical significance was calculated by one-way ANOVA *p= 0.035,
***p= 0.0009, ****p < 0.0001. F, G RNAseq analysis of isolated thymocytes from 8–12 week old wt (N= 4) and Puma−/−p21−/−Zmat3−/− TKO
(N= 3) mice. F Heat map showing all significant differentially expressed (DE) genes between thymocytes from wt and TKO mice. Each column
represents data from an individual mouse. Data are colour coded by gene expression Z-scores. Arrows indicate genes that regulate TRP53 and
are reported to compromise its tumour suppression function (red), known TRP53 target genes (blue) and splicing regulators (green). G Gene-
set enrichment analysis (GSEA) on DE genes between thymocytes from wt and TKO mice shows significant overlap with the Mouse Gene Set:
MARTINEZ_TP53_TARGETS_UP [65].
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p21−/−Zmat3−/−, Zmat3−/− and p21−/− mice confirmed that these
lymphomas were all of T lymphoid origin expressing THY1 and
variable expression of CD4 and CD8 (Figs. 3B, S4A). Lymphoma
burden, as determined by thymus weight, was smaller in p21−/−

Zmat3−/− mice compared to those detected in Zmat3−/−, p21−/−

and wt mice (Fig. 3C). However, no differences between these
genotypes were seen in spleen weights or white blood cell counts
(Fig. S4B, C), consistent with no difference in tumour burden.
Interestingly, high levels of p19ARF which are indicative of loss of
TRP53 pathway function, were apparent in 2 out of 4 wt, 2 out of 5
Zmat3−/−, 2 out of 3 p21−/− but none out of 8 p21−/−Zmat3−/−

lymphomas tested by Western blotting (Fig. 3D). We therefore
sequenced Trp53 exons in all available tumours and found only
1/11 p21−/−Zmat3−/− tumours to harbour a Trp53 mutation, with
considerable higher frequencies seen in lymphomas from the

other tested genotypes, p21−/− or Zmat3−/− (Fig. 3E, F, Table S4).
These findings demonstrate that in this mouse model of
lymphomagenesis tumour suppression by TRP53 does not depend
on ZMAT3 and/or p21 function. However, the reduction of readily
detectable defects in TRP53 pathway function in the lymphomas
from the p21−/−Zmat3−/− mice indicates that the absence of
these two TRP53 target genes may obviate the selection for
mutations in Trp53 in this malignant disease.

Zmat3−/−Puma−/−p21−/− mice are prone to spontaneous
tumour development
To examine the impact of combined loss of ZMAT3, PUMA and
p21 in all tissues on the development of cancer, we aged
Puma−/−p21−/−Zmat3−/− TKO as well as Puma−/−Zmat3−/−,
p21−/−Zmat3−/− and as controls Trp53−/− as well as wt mice for

Fig. 3 The combined absence of ZMAT3 and p21 does not accelerate γ-radiation induced thymic lymphoma development. A Kaplan-
Meier curves showing percentages of tumour-free mice of the indicated genotypes after exposure to four weekly doses of γ-radiation (1.5 Gy
for each dose). Differences in thymic lymphoma incidence between wt and p21−/−Zmat3−/− were not statistically significant. P value
determined by log-rank (Mantel-Cox) test p= 0.5. B Immunophenotyping of γ-radiation-induced thymic lymphomas arising in mice of the
indicated genotypes, as assessed by cell surface marker staining and flow cytometric analysis of tumour cells from the thymus. Data are
presented as the frequency of the indicated phenotypes for each genotype. Double negative CD4-CD8- (DN) or double positive CD4+CD8+

(DP) lymphoma cells found in the thymus that show a trend towards the CD8 T cell lineage (DP/CD8+ or DN CD8+, respectively). N number of
mice. C Thymus weights from sick mice of the indicated genotypes. Significant differences were observed in spleen weights between the sick
p21−/−Zmat3−/− and sick wt γ-irradiated mice. p21−/−Zmat3−/− (N= 12), p21−/− (N= 7), Zmat3−/− (N= 7) and wt (N= 5). Mean ± SEM,
Unpaired Students t-test **p= 0.0065. D Western blot analysis of p19ARF, TRP53 and HSP70 (loading control) in thymic lymphomas of the
indicated genotypes. Red asterisk indicates samples with dysregulated TRP53 pathway. The Trp53 mutant Eμ-Myc lymphoma cell line
EMRK1172 [51] was used as a control for p19ARF and mutant TRP53 protein overexpression. Protein size standards in kilodaltons (kDa) are
indicated. The numbers represent the identification of individual mice in the colony. E Trp53 exons 4-11 were sequenced from tumours
(N= 26, Table S4). Table summary of mutations found, listed by amino acid change, Trp53 knock out (KO) or Trp53 wild-type (WT) alleles.
F Summary of the TRP53 status in γ-radiation-induced thymic lymphomas arising in mice of the indicated genotypes as assessed by Western
blot analysis and/or Trp53 exon sequencing (see also Table S4). Inconclusive refers to lymphomas where TRP53 pathway dysregulation was
seen by only Western blot analysis or exon sequencing but not in both assays.
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450–500 days. These animals were monitored for tumour
development and major tissues were collected either at the time
of sickness or at 450–500 days (study endpoint) regardless of
health status. Interestingly, TKO as well as Puma−/−Zmat3−/− and
p21−/−Zmat3−/− DKO mice were significantly more prone to
spontaneous tumour development compared to wt controls, with
TKO mice showing a cancer incidence of nearly 50% by 500
days (Fig. 4A). The majority of sick Puma−/−Zmat3−/− and
Puma−/−p21−/−Zmat3−/− mice presented with lymphoma
(Figs. 4B, S5, Table 1) as determined by histopathological analysis,
while most sick Zmat3−/−p21−/− mice presented with solid
tumours (Table 1). Consistent with previous reports [35],
Trp53−/− mice all develop cancer, mostly thymic lymphomas,
within 250 days of age [35] (Fig. 4A, Table 1). None of the control
wt mice developed tumours during the 500 day observation
period (Fig. 4A, B). Collectively, these results show that the
combined absence of the three TRP53 target genes Zmat3, Puma
and p21 causes a high incidence of spontaneous tumour
development. It also shows that most malignancies arising in
the compound mutant mice lacking PUMA are lymphomas
whereas mice lacking ZMAT3 and p21 develop solid cancers.

DISCUSSION
TP53 is a critical suppressor of cancer development and
progression [1–3, 36]. TP53 functions as a transcription factor
that can directly regulate the expression of ~500 target genes, and

indirectly many more [4, 36, 37]. Direct transcriptional targets of
TP53/TRP53 that are critical for the induction of apoptotic cell
death, cell cycle arrest and senescence have been considered as
essential effectors of TP53/TRP53-mediated tumour suppression
[4]. Unexpectedly, however, genetic inactivation of these three
TRP53-activated cellular processes, for example due to the
combined absence of PUMA, NOXA and p21, does not render
mice tumour prone [10, 38, 39]. In contrast, 100% of TRP53-
deficient mice spontaneously develop tumours, on a C57BL/6
background mostly thymic T cell lymphoma, before 270 days of
age [40, 41]. Genetic screens and genetically modified mouse
strains have provided useful tools to examine the importance and
biological functions of a range of TRP53 target genes in TRP53-
mediated tumour suppression. Utilising in vivo CRISPR and shRNA
screening in oncogene expressing mouse embryonic fibroblast
in vitro [6] and haematopoietic stem/progenitor cells in vivo [5],
respectively, identified the zinc-finger RNA-binding protein ZMAT3
as a critical factor contributing to TRP53-mediated tumour
suppression.
Here we show that the combined absence of ZMAT3, PUMA and

p21, the latter two critical for TRP53-mediated induction of
apoptosis [12, 13] and cell cycle arrest/cell senescence [14],
respectively, resulted in nearly 50% of spontaneous tumour
development by 500 days of age. Given that PUMA is a key
factor in TRP53-mediated apoptosis in haematopoietic cells
[1, 12, 13, 15], it is perhaps not surprising that the majority of
sick Puma−/−Zmat3−/− and Puma−/−p21−/−Zmat3−/− mice

Fig. 4 The combined absence of ZMAT3, PUMA and p21 causes spontaneous tumour development in mice. A Kaplan-Meier curves
showing tumour-free survival of Puma−/−p21−/−Zmat3−/−, Puma−/−Zmat3−/− and p21−/−Zmat3−/− mice. Data from wt and Trp53−/− mice are
included as controls. Log-rank (Mantel-Cox) test P values comparing to wt mice; Puma−/−p21−/−Zmat3−/− p= 0.003**; Puma−/−p21−/−

p= 0.06; Puma−/−Zmat3−/− p= 0.26; ****p < 0.0001. B Representative H&E-stained sections of spleen, bone marrow (sternum) and thymus of
sick Puma−/−p21−/−Zmat3−/− (#454,615) and Puma−/−Zmat3−/− (#471,624) mice, and an age-matched healthy wt (#953) mouse for
comparison. Scale bar denotes 500 µm or 20 µm, respectively. N number of mice of a particular genotype analysed. C Model: ZMAT3 loss
drives spontaneous tumour development in collaboration with additional loss of PUMA and p21.
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presented with lymphoma. Interestingly, some Zmat3−/−p21−/−

sick mice developed a range of solid cancers at a relatively old
age. Their incidence of such malignant disease was significantly
higher compared to wt mice. This indicates that loss of apoptotic
function, cell cycle arrest/cell senescence and ZMAT3-regulated
alternative splicing or not yet identified functions of ZMAT3
contribute to the tumour suppressive function of TRP53 in both
haematological and solid cancers, with the combination of the
genes lost determining cancer type. Notably, Puma−/−Zmat3−/−

and Puma−/−p21−/−Zmat3−/− mice presented with lymphoma,
and Zmat3−/−p21-/ mice mainly developed solid tumours (6/8).
This indicates that the loss of PUMA is particularly critical for
spontaneous development of haematopoietic malignancies, con-
sistent with the profound impact of its absence on apoptotic
death of lymphoid and myeloid cells [12, 13, 15].
Examination of the lymphoid tissues from young

Puma−/−Zmat3−/−, Zmat3−/−p21−/−Puma−/−and p21−/−

Zmat3−/− mice revealed that they were largely normal, although

we did observe a significant, albeit minor, increase in LSK HSPCs in
Puma−/−p21−/−Zmat3−/− mice compared to wt controls. This is
consistent with earlier reports that the absence of TRP53 itself
does not cause detectable abnormalities in the haematopoietic
system of young healthy mice although it predisposes them to
spontaneous lymphoma development [15, 40–42].
Several direct TRP53 target genes have been implicated in DNA

damage-induced apoptosis signalling, but only the BH3-only
proteins, PUMA and to lesser extent NOXA, have been shown to
be essential for TRP53-induced apoptosis [12, 13, 15, 43]. As
expected, thymocytes from Puma−/−p21−/−Zmat3−/− and
Puma−/−Zmat3−/− mice displayed significant resistance to etopo-
side (comparable to thymocytes from Puma−/− mice) to etopo-
side, a cytotoxic agent that kills these cells via a TRP53-dependent
pathway [42, 44, 45]. This indicates that the additional loss of
ZMAT3, alone or with further removal of p21, does not increase
the protection against TRP53-dependent or TRP53-independent
apoptosis that is caused by the absence of PUMA. Consistent with

Table 1. Tumour types observed in Zmat3, Puma, p21 compound mutant mice.

Animal # Sex Age (days) Tumour type(s) observed

Zmat3−/−;Puma−/−

624 M 340 Early B- (Spl) and T-cell (Thy) lymphoma, infiltration (Liv, Kid, SC)

471 M 323 B-cell (Spl) and T-cell (Thy) lymphoma, metastasis (Liv, Kid)

6 M/F 450–493 No tumours observed

13 M/F 450–469 N.D. No tumours observed

Zmat3−/−;p21−/−

222 M 572 Hepatocellular carcinoma

276 M 399 Hepatocellular carcinoma

283 F 470 Sarcoma

285 F 423 Sarcoma

297 F 394 Sarcoma

293 M 400 Subcutaneous tumour resembling amelanotic melanoma

831 M 400 Lymphoma (Spl), metastasis (Liv, Kid)

832 M 549 N.D. Enlarged spleen (0.3 g), mottled liver (0.26 g) observed

2 M/F 461–517 No tumours observed

18 M/F 459–517 N.D. No tumours observed

Zmat3−/−;p21−/−;Puma−/−

615 M 245 Early B-cell (Spl) and T-cell (Thy, MLN) lymphoma

616 M 257 Early B-cell (Spl) and T-cell (Thy) lymphoma

696 F 133 Early B-cell (Spl) and T-cell (Thy) lymphoma

454 F 430 B-cell lymphoma (Spl), myeloid tumour (SC/BM)

473 F 345 B-cell lymphoma (Liv)

507 M 374 B-cell (Spl) and T-cell (MLN) lymphoma, metastasis (L, Spl)

773 M 218 B-cell (Thy, LN) and T-cell (Spl) lymphoma

187 F 506 N.D. Splenomegaly (2.9 g) observed

651 F 453 Follicular hyperplasia (Spl)

562 F 373 Myelogenous leukaemia

10 M/F 450–590 N.D, No tumours observed

WT

12 M/F 438–508 No tumours observed

Trp53−/−

14 M/F 83–424 N.D. 5x thymic lymphoma, 8x lymphoma, 1x solid tumour

Aged mice from Zmat3−/−;p21−/− Puma−/− inter-crosses were euthanised at ethical endpoint (sick, hind leg paralysis, tumour volume, anaemia). Wild-type
(WT) and Trp53−/− mice housed in the same facility are included as comparative controls. Tumour types were determined by pathological analysis of H&E-
stained organs and tumour sections. Organs involved noted in brackets.
Spl spleen, Thy thymus, Liv liver, Kid kidney, SC spinal cord, BM bone marrow, MLN mesenteric lymph node, L lung, LN lymph node, N.D. histology not done,
noted observations made at autopsy.

M.S. Brennan et al.

165

Cell Death & Differentiation (2024) 31:159 – 169



previous studies [5], this demonstrates that ZMAT3 does not have
a prominent role in apoptosis, at least in lymphoid cells.
ZMAT3 is a double-stranded RNA binding protein and known

TP53/TRP53 target gene, that has been shown to modulate
splicing of genes involved in TP53/TRP53 regulation, various
cellular processes, and splicing itself [46]. Similarly, we found here
that ZMAT3 regulates expression of transcripts encoding proteins
involved in the regulation of TP53/TRP53 function. The targets
identified include, RPS2 is a ribosomal protein that was reported
to interact with MDM2 to control the levels of TP53/TRP53 [16],
SIK1 serine/threonine kinase that regulates TP53 function in
apoptosis triggered by lack of adhesion to suppress breast cancer
metastasis [21]. Additional genes included JUN, transcription
factor and apoptosis repressor with caspase recruitment domain
(ARC) that are commonly induced in cancers [22, 23]. Notably,
CEBPB and KLF4 transcription factors were described to suppress
the expression of TP53/TRP53 [20, 47] and frequently dysregulated
in acute myeloid leukaemias [17]. In addition, we found that
proteins encoded by known TP53/TRP53 target genes, including
dual-specific threonine and tyrosine phosphatases DUSP1 [24] and
DUSP5 [26], the FOS oncoprotein [27], RGS2 [28], SPRY1 [29], PLK2
[30] and ZFP36L2 [31] are regulated by ZMAT3. Collectively, these
data indicate that ZMAT3 may suppress tumorigenesis by
modulating the expression of the genes that control and maintain
TP53/TRP53 activity.
Previous reports have shown that thymic T cell lymphoma

development in mice induced by γ-radiation can be significantly
accelerated by loss of Trp53 (even loss of one allele of Trp53)
[32, 34, 48]. This is likely due to impairment of DNA damage-
induced apoptosis, cell cycle arrest/cell senescence and coordina-
tion of DNA repair, which constitute critical processes for TRP53-
mediated tumour suppression [1–3, 36, 49, 50]. Whole body
γ-irradiation activates TRP53 and causes induction of its down-
stream target genes p21, Puma and Zmat3 in thymocytes as well
as fibroblasts [5, 11] and probably many (if not all) other cell types.
However, our investigations show that the absence of ZMAT3,
either alone or in combination with loss of p21, did not accelerate
(or slow) γ-radiation induced thymic T cell lymphoma develop-
ment, in contrast to the loss of even a single allele of Trp53. Of
note, while many Zmat3−/− and p21−/− thymic T cell lymphomas
had acquired defects in TRP53 function, as revealed by high levels
of p19ARF and DNA sequencing analysis, most p21−/−Zmat3−/−

lymphomas tested had retained wt TRP53 function. These findings
demonstrate that ZMAT3 loss is not essential for the suppression
of γ-radiation induced thymic T cell lymphoma development,
probably because TRP53 can activate many at least partially
redundant tumour suppressive processes in response to DNA
damage.
In conclusion, our results confirm and extend the notion that

ZMAT3 is a direct TRP53 target gene that contributes to TRP53-
mediated tumour suppression. It probably does this by regulating
a large number of mRNAs that function in the TP53/TRP53
network, thereby impacting, perhaps in a feed-forward activation
loop, several TP53/TRP53-activated cellular responses [8, 46]. Of
note, on its own loss of ZMAT3 does not cause cancer in mice but
its tumour suppressive function becomes apparent when TRP53-
mediated apoptosis (loss of PUMA) and/or cell cycle arrest/cell
senescence (loss of p21) are concomitantly disabled. Similarly, the
impact of loss of ZMAT3 in mouse models of lung and liver cancer
was less pronounced than that caused by the absence of TRP53
[6, 11]. Additional support for the idea that in addition to the
absence of ZMAT3, additional TP53/TRP53-regulated processes
must also be disabled for spontaneous tumour development
comes from the observation that mutations in ZMAT3 are not
prevalent in human cancers compared to the very high frequency
of TP53 mutations [6, 46]. Since the combined loss of ZMAT3,
PUMA and p21 does not result in the same tumour spectrum
and duration of tumour-free survival as loss of TRP53 alone.

Hence other TP53/TRP53 regulated processes for tumour preven-
tion such as coordination of DNA repair to maintain genome
stability [5] are required. Thus, our findings further cement the
importance of the coordinated action of multiple TP53/TRP53-
activated cellular responses for tumour suppression. This may
have implications for developing novel strategies for treating
cancer as simultaneous activation of several of these responses
might be needed for effective therapy.

MATERIALS AND METHODS
Mice
Zmat3−/−5, Puma−/−p21−/−21 and Trp53−/−41mice have been previously
described. All mice were maintained on a C57BL/6-WEHI background. To
produce Puma−/−p21−/−Zmat3−/−, Puma−/−Zmat3−/− and p21−/−

Zmat3−/− mice, we serially inter-crossed Zmat3−/− and Puma−/−p21−/−

mice. Genotyping was performed by polymerase chain reaction (PCR) to
confirm the absence of Zmat3, Puma and/or p21 genes (for PCR primers
used, see Supplementary Table 5).

Histology
Organs from mice were fixed in 10% buffered formalin solution and
subsequently embedded in paraffin. Slides were prepared and stained with
haematoxylin and eosin (H&E). Histological examination of the organs was
performed by Phenomics Australia Histopathology and Slide Scanning
Service, University of Melbourne.

Thymic T cell lymphoma induction
p21−/−Zmat3−/−, p21−/−, Zmat3−/− and wt mice (starting at 27 ± 6 days of
age) were γ-irradiated weekly for 4 weeks with 1.5 Gy from a 60 Co source
(Theratron Phoenix, Theratronics). Treated mice were then monitored for
200 days for signs of illness, and tumour onset was calculated from the last
(4th) dose of γ-irradiation.

Trp53 exon sequencing
Genomic DNA was isolated from 5 × 106 thymic lymphoma cells using the
DNeasy Blood & Tissue Kit (Qiagen). A total of 9 PCR primers pairs spanning
exons 4–11 of Trp53 [51] were used to amplify coding regions.
Subsequently, PCR products were subjected to a second PCR using
indexing primers, purified using Ampure XP beads (Beckman Coulter), then
pooled and sequenced using the MiSeq platform (Illumina).

Immunostaining and flow cytometric analysis
Thymus, spleen, and bone marrow were harvested, and single cell
suspensions were prepared in PBS (Gibco) with 5mM EDTA (Merck),
supplemented with 5% foetal calf serum (FCS; Sigma-Aldrich) for staining.
Fluorochrome-conjugated monoclonal antibodies used are as follows;
B220 (RA3-6B2), IgM (RMM-1), IgD (11.26C), TCRβ (H57.597), CD4 (GK1.5),
CD8 (53-6.7), MAC1 (M1/70) SCA1 (E13-161.7), c-KIT (2B8), NK1.1(PK136),
Ter119 (TER119), Ly6G (1A8-4-10-9), F4/80 (BM8), CD2 (RM2.1), and were
obtained from eBioscience, BioLegend, or generated in-house. Staining
with propidium iodide (PI Sigma-Aldrich; 1 μg/mL) was used to exclude
dead cells. Whole-organ cell counts were determined by mixing a known
concentration of APC Calibrite beads (Becton Dickinson) with each sample.
Data were collected using LSRFortessa X-20 or FACSymphony analysers
and examined using FlowJo 10 (Becton Dickson).

Cell viability and activated (cleaved) caspase-3 assays
Thymi were harvested from mice of the indicated genotypes and single
cell suspensions were prepared by gentle mashing through a 100 µm
nylon strainer (Falcon). Cells were cultured in high-glucose Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% foetal calf
serum, 50 μM 2-mercaptoethanol, 100mM asparagine, 100 U/mL penicillin,
and 100mg/mL streptomycin. For viability assay, 5 × 104 cells were plated
into 96-well flat-bottom plates in triplicate and treated, as described [35],
with DMSO (control), 1 nM dexamethasone (Sigma-Aldrich), 1 µg/mL
etoposide (Sigma-Aldrich), 1 µg/mL ionomycin (Sigma-Aldrich) or sub-
jected to serum starvation by culturing in medium containing only 1%
foetal calf serum. Cell viability was assessed at 24 h by resuspending cells
in Annexin-V binding buffer (0.1 M Hepes (pH 7.4)), 1.4 M NaCl, 25 mM
CaCl2 containing fluorescein isothiocyanate (FITC)-conjugated Annexin-V
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and 1 µg/mL PI. For activated (i.e. cleaved) caspase-3 staining, 5 × 104 cells
were plated into 96-well flat-bottom plates in triplicate and treated with
5 µg/mL etoposide for 6 h, fixed (FIX & PERM, Invitrogen), and stained with
an antibody to detect cleaved caspase-3 conjugated to FITC (#9661, Cell
Signalling). Cells were examined by flow cytometric analysis using a BD-
Biosciences LSR-II analyser. Ten thousand events were recorded per sample
and data were analysed using FlowJo 10 analysis software.

Western blot analysis
For Western blot analysis, cell lysates were prepared in radio-
immunoprecipitation assay (RIPA) buffer supplemented with PhosSTOP
and complete protease inhibitor cocktail (Roche). Protein concentration
was determined by Bradford assay using the Protein Assay Dye Reagent
Concentrate (Bio-Rad, Hercules, CA). Samples of 10 μg of protein were
prepared in Laemmli buffer, boiled for 5 min and size-fractionated by gel
electrophoresis on NuPAGE 10% Bis-Tris 1.5-mm gels (Life Technologies) in
2-(N-morpholino) ethanesulfonic acid (MES) buffer. Proteins were then
transferred onto nitrocellulose membranes (Life Technologies) using the
iBlot membrane transfer system (Bio-Rad). Antibody dilution and blocking
were performed in 5% skim milk, 0.1% Tween 20 in phosphate-buffered
saline (PBS). The following antibodies were used for probing; mouse TRP53
(clone CM5, Novocastra), p19/ARF (clone 5.C3.1, Rockland) and HSP70
(clone N6, gift from Dr. R Anderson, Olivia Newton-John Cancer Research
Institute, Melbourne, VIC, Australia), the latter used as a control for protein
loading. Secondary antibodies used include goat anti-mouse IgG and goat
anti rabbit-IgG, both conjugated to horseradish peroxidase (HRP) (South-
ern Biotech). Forte Western HRP substrate (Millipore, Billerica, MA) was
used for developing the signal, and membranes were imaged and
analysed using the ChemiDoc XRS1 machine with ImageLab software (Bio-
Rad).

RNA sequencing
RNA was extracted from thymocytes using the miRNeasy Micro Kit
(Qiagen) according to the manufacturer’s protocol, including a DNase
digestion step. An input of 100 ng total RNA for each sample was indexed
separately using the TruSeq RNA Prep Kit v2 (Illumina). Each library was
quantified using the Agilent Tapestation. The indexed libraries were
pooled and diluted to 750 pM for paired end sequencing (2 × 116 cycles)
on the NextSeq 2000 instrument using the P3 200 cycle High Output Kit
(Illumina) according to the manufacturer’s instructions. The base calling
and quality scoring were determined using Real-Time Analysis on board
software v2.4.6, while the FASTQ file generation and de-multiplexing
utilised bcl2fastq conversion software v2.15.0.4. Raw FASTQ files were
processed, and quality control performed using the nf-core/rnaseq v3.10.1
[52, 53]. Reads were pseudo-aligned and quantified using the Salmon
option [54]. The GRCm38.p6 version of the mouse reference genome and
the GENCODE vM25 GTF annotation files were used. We filtered out genes:
(i) with obsolete Entrez Gene IDs, (ii) ribosomal RNA (rRNA), (iii) non-protein
coding immunoglobulin genes (iv) the Xist gene and (v) genes that are on
chromosome Y. Next, we filtered out lowly expressed genes by discarding
those that did not show a minimum reliable level of expression of 20
counts per million reads of the smallest library size, in at least all the
samples of the smallest group [55, 56]. The DESeq2 package (v1.40.0)
[55, 57] was used for the differential expression analysis. We adjusted for
the sex as a batch effect correction and surrogate variables were calculated
with SVA [58]. Genes with adjusted p < 0.05 (5% FDR) and absolute
log2FC > 1.5 were considered as statistically significant. Functional enrich-
ment analysis of the biological processes was conducted with the Gene
Ontology (GO) database using the clusterProfiler package [59] GSEA [60]
was carried out in R using the fgsea package v1.24.0 [61] using the
hallmark and curated gene sets from the mouse MsigDb [60, 62–64] GSEA
was used to test for enrichment of specific gene sets within a ranked list
based on p-value and log2FC. Gene sets with a p < 0.05 were considered as
statistically significant.

DATA AVAILABILITY
RNA-seq data have been deposited in the Gene Expression Omnibus (ncbi.nlm.nih.-
gov/geo) under accession number GSE248747. The code used for the RNA-Seq
analysis is available at https://github.com/Geriroso/ZMAT3_analysis. All knockout
mice will be made available to the scientific community upon request.
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