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SALL4 is a CRL3REN/KCTD11 substrate that drives Sonic
Hedgehog-dependent medulloblastoma
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The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to
medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically
characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic
benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-
expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis
revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase
complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces
polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1).
Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably,
inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4
as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.
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INTRODUCTION
Deregulations in developmental signaling pathways are crucial
events in the pathogenesis of cancer and deciphering the
complex networks that govern their activity is fundamental to
design novel and effective therapeutic options. Sonic Hedgehog
(SHH) signaling is a major developmental pathway, highly
conserved during evolution and orchestrated at multiple levels.
In the cerebellum, SHH stimulates the proliferation of granule
neuron precursors (GNPs) and the aberrant activation of the SHH
signaling in these cells is responsible for medulloblastoma (MB)
onset, the most common malignant pediatric brain tumor [1]. In
the last decade, whole genome sequencing approaches have
defined specific mutational spectra and epigenetic profiling
leading to the identification of distinct subgroups, namely
Wingless (WNT), Sonic Hedgehog (SHH), and non-WNT/non-SHH,
comprising Group 3 (G3) and Group 4 (G4) [2]. Among them, SHH-
MB is the most genetically understood further classified in four
molecular subtypes (SHH-MB alpha, beta, gamma, delta) [3] and
represents ~30% of all MBs [1]. Mutations in key components of
the SHH pathway and cytogenetic alterations lay the pathogenetic
foundation for this subgroup [4].

A growing body of evidence has underlined the existence of an
intricate network of molecular mechanisms that control SHH
signaling. However, how alterations of such events are involved in
SHH-MB remains unclear. The signaling is triggered following the
interaction of the SHH ligand with its receptor Patched (PTCH),
thus relieving the repression on the co-receptor Smoothened
(SMO) and leading to the activation of the GLI transcription factors
(GLI1, GLI2, GLI3). GLI1 is the main downstream effector of the
pathway that, by driving its own expression, provides a positive
feedback loop and reinforces the signaling strength [5]. Dissecting
the molecular circuitry that controls GLI1 activity is needed to
unveil the mechanisms responsible for SHH-driven diseases.
Ubiquitylation and acetylation are post-translational modifica-

tions that finely regulate GLI1 activity. Previously we reported that
GLI1-mediated transcription is controlled by a multiprotein
complex including HDAC1, a deacetylase upregulated in SHH-
MB [6, 7], and REN/KCTD11 (here REN), the substrate-receptor
subunit of the CRL3REN ubiquitin ligase, encoded by a gene
localized on chromosome 17p and frequently deleted in SHH-MB
[6, 8]. REN belongs to the “KCTD containing Cullin3 adaptor
suppressor of Hedgehog” (KCASH) protein family [9]. It is involved
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in neuronal progenitor development [10] and acts as an
antagonist of the SHH pathway by inducing ubiquitylation and
degradation of HDAC1, which in turn deacetylates GLI1 promoting
its activation [6]. This acetylation/ubiquitylation interplay functions

as a key transcriptional checkpoint of SHH signaling that deserves
further investigations.
By affinity purification coupled to mass spectrometry, we

identified the Spalt-like transcriptional factor 4 (SALL4) as a
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binding partner and substrate of CRL3REN, which induces the
polyubiquitylation and proteasome-mediated degradation of
SALL4. SALL4 is a zinc finger transcription factor belonging to
spalt (sal) gene family, highly expressed in embryonic stem cells
(ESCs) and crucial for the maintenance of pluripotency [11–14].
SALL4 protein presents a conserved motif of 12 amino acids at the
N-terminal that interacts with the nucleosome remodeling and
histone deacetylase (NuRD) complex [15, 16], and seven zinc
finger (ZF) motifs organized in three clusters (ZFC1, ZFC2, ZFC4)
with an additional single ZF near the N-terminal [17]. SALL4 is
downregulated in most adult tissues, but it is re-expressed in
various human malignancies [18–24]. It acts as a transcriptional
repressor when associated with NuRD complex by inhibiting the
expression of pro-apoptotic and tumor suppressor genes [25, 26].
Here, we show a novel mechanism of action of SALL4 in SHH-

MB pathogenesis whereby its re-expression, due to loss of REN,
drives the activation of GLI1. Specifically, we found that SALL4
forms a trimeric complex with GLI1 and HDAC1 to induce GLI1
protein deacetylation, thus enhancing its activity. Remarkably,
inhibition of SALL4 arrests tumor growth in vitro and in vivo.
These findings highlight SALL4 as a crucial player of the SHH
pathway and innovative target for tailored SHH-MB therapies.

RESULTS
The CRL3REN complex binds SALL4 and induces its
proteasome-mediated degradation
To identify novel REN binding partners involved in SHH signaling
and tumorigenesis, we performed immunoaffinity-purification of
Flag-HA-tagged wild type (WT)-REN (Fig. 1A) ectopically expressed
in HEK293T cells, followed by mass spectrometry analysis. In
addition to proteins known to directly bind REN, such as Cul3,
RBX1, and KCTD15 (Supplementary Fig. 2A) [6, 27], we recovered
various potential REN interactors (Fig. 1B) including SALL4, a cell
stemness regulator aberrantly activated in several types of human
cancers [18–24].
Interestingly, using the expression profile from primary SHH-MB

samples and the associated clinical information (Cavalli dataset27;
accession number: GSE85217; visualized using R2 platform,
https://r2.amc.nl), we observed that high SALL4 expression is
related to worse prognosis in SHH-MB patients (Supplementary
Fig. S1A), specifically in alpha, beta, and delta but not in gamma
SHH-MB subtype which expresses lower SALL4 levels compared to
the others (Supplementary Fig. S1B–D). This evidence prompted
us to pursue our investigation on SALL4 as REN interactor.
We first confirmed the interaction between REN and SALL4. Co-

immunoprecipitation experiments demonstrate that REN binds
both exogenous and endogenous SALL4 in HEK293T cells
(Supplementary Fig. S2B and Fig. 1C, respectively). Then, we
investigated the region of REN responsible for its interaction with

SALL4. REN contains an N-terminal Broad-Complex, Tramtrack and
Bric a brac (BTB) domain that is known to mediate the recruitment
of Cul3 [28]. We transfected HEK293Ts with HA-SALL4 together
with WT-, ΔBTB- (a BTB domain-deleted mutant) or BTB- (a mutant
containing only BTB domain) REN. Whereas WT- and ΔBTB-REN
interact with SALL4, the BTB mutant does not indicating that the
BTB domain is not required for the interaction of REN with SALL4
(Fig. 1D).
To assess if SALL4 is a substrate of the CRL3REN ubiquitin ligase

complex, we examined the ability of REN to promote SALL4
ubiquitylation in cultured cells. Overexpression of REN promotes
the polyubiquitylation of SALL4 that is further increased by Cul3,
whereas the ΔBTB-REN mutant is ineffective (Fig. 1E). Increasing
amounts of REN result in a progressive increment in the
polyubiquitylation of both exogenous and endogenous SALL4
(Supplementary Fig. S2C and Fig. 1F, respectively), and a
significant accumulation of polyubiquitylated SALL4 is further
observed following treatment with the proteasome inhibitor
MG132 (Fig. 1G). Accordingly, SALL4 protein stability progressively
decreases in the presence of increasing amounts of REN in Med1-
MB cell lines, derived from a Ptch1+/−;lacZ mouse model which
spontaneously develops MB due to heterozygous deletion of Ptc
gene [29, 30] (Fig. 1H, I). Remarkably, SALL4 transcript levels are
not modulated (Fig. 1J). Moreover, cycloheximide (CHX) assay
shows that REN impinges upon the half-life of SALL4 (Fig. 1K, L).
These results demonstrate that the CRL3REN ubiquitin ligase
complex specifically targets SALL4 for polyubiquitylation and
proteasomal degradation.
To identify the region of SALL4 ubiquitylated by CRL3REN, we

analysed a set of SALL4 mutants lacking NuRD (ΔNuRD) [15, 16]
or clusters of ZF motifs (ΔZFC1, ΔZFC2, and ΔZFC4, involved in
the binding to DNA and in protein-protein interaction
[12, 17, 31–33]) (Fig. 2A). The ΔZFC1-SALL4 mutant shows a
significant reduction in the binding affinity for REN compared to
the WT-SALL4 and the ΔNuRD-, ΔZFC2-, ΔZFC4-SALL4 mutants
(Fig. 2B, C) and it is insensitive to the CRL3REN–mediated
polyubiquitylation (Fig. 2D). Accordingly, neither protein abun-
dance of ΔZFC1-SALL4 (Fig. 2E, F) nor its degradation rate
(Fig. 2G, H) are modulated by REN.

SALL4 positively controls the SHH signaling pathway
The role of REN as negative regulator of the SHH pathway [6]
prompted us to wonder whether SALL4 is functionally connected
to this crucial signaling. SALL4 expression enhances the transcrip-
tion of a GLI1-responsive luciferase reporter [34] in a dose-
dependent manner (Fig. 3A, B) and this effect is counteracted by
WT-REN, but not by its ΔBTB mutant (Fig. 3C). Interestingly, SALL4
induces the transcription of a PTCH-dependent luciferase reporter
having a conserved GLI1 binding site (GLI1-BS) in its promoter
(P1A WT-Luc), while it is not effective when GLI1-BS is mutated

Fig. 1 REN binds and ubiquitylates SALL4 promoting its proteasome-mediated degradation. A HEK293T cells were transfected with
plasmids encoding for Flag-HA epitope tagged REN/KCTD11 or an empty vector (EV). B Cells were treated with the proteasome inhibitor
MG132 and lysed. Whole cell extracts were immunoprecipitated with anti-Flag resin and eluted with Flag peptide. A second
immunoprecipitation was carried out with an anti-HA antibody, which was followed by three sequential elutions with 1% SDS, as indicated.
Immunocomplexes were resolved by SDS-PAGE. The gel was then stained by silver stain for protein visualization. Co-IPs of C Flag-REN and
endogenous SALL4, or D Flag-REN WT or its mutants (ΔBTB, BTB) and exogenous SALL4 from HEK293Ts transiently transfected with indicated
plasmids. IPs of E HA-SALL4 or F endogenous SALL4 from HEK293Ts transiently transfected with indicated plasmids. G IP of HA-SALL4 from
HEK293Ts transiently transfected with indicated plasmids and treated with MG132 (50 μM, 4 h) to block proteasome, or DMSO as control. In E,
F, and G anti-Flag antibody was used to detect the SALL4 polyubiquitylated forms; anti-HA or anti-SALL4 antibodies were used to re-probe
blots to assess the levels of immunoprecipitated protein. Total protein lysates are shown in the Input. H, K Representative immunoblotting
and I, L densitometric analysis of SALL4 protein levels in Med1-MB cells transiently transfected with indicated plasmids, and treated in K with
CHX (100 μg/mL) up to 8 h to block protein synthesis. J qRT-PCR analysis of SALL4 expression in Med1-MB cells overexpressing increasing
amounts of HA-REN. Representative immunoblotting of n= 3 biological replicas with similar results are shown in C–H, and K. Densitometric
analysis in I and L, normalized on endogenous actin, represent the mean of n= 3 independent experiments ± SD. Data in J are normalized to
endogenous Gapdh and Hprt control, expressed as the fold change (FC) versus the control sample value, and represent the mean of n= 3
independent experiments ± SD. *p < 0.05 calculated with two-sided Student’s t-test.
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(P1A Mut-Luc) [35] (Fig. 3D). Given that we did not find SALL4
binding sites on GLI1 [36], our findings indicate that the SALL4-
mediated regulation of the SHH pathway requires the integrity of
GLI1 consensus element.

SALL4 enhances SHH signaling activity through HDAC1-
mediated deacetylation of GLI1
REN prevents the HDAC1-mediated deacetylation of GLI1 protein, a
key regulatory mechanism in the control of the SHH transcriptional
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output [6]. Therefore, we postulated a potential cooperation
between SALL4 and HDAC1 in the enhancement of SHH pathway
activation. To test our hypothesis, we carried out GLI1-responsive
luciferase assays demonstrating that co-expression of SALL4 and
HDAC1 increases GLI1 transcriptional activity that is significantly
higher than the effect induced by SALL4 and HDAC1 transfected
alone (Fig. 4A). In this regard, we confirmed that SALL4 binds both
exogenous and endogenous HDAC1 (Fig. 4B, C, respectively) and
demonstrated, for the first time, the ability of SALL4 to interact
with GLI1 (Fig. 4D, E) in SHH-MB cell lines (Med1-MB). Notably, we
observed that GLI1/SALL4 and GLI1/HDAC1 binding affinities are
significantly strengthened when the three proteins are co-
expressed in cultured cells (Fig. 4F, G). Furthermore, we expressed
epitope tagged SALL4, HDAC1, and GLI1 in HEK293Ts in different
combinations [37, 38] and performed two sequential immunopre-
cipitations demonstrating that SALL4, HDAC1, and GLI1 are
assembled in a trimeric complex (Fig. 4H).
The deacetylation of GLI1 at lysine 518 (K518) mediated by

HDAC1 is critical to enhance GLI1 activity [6]. Interestingly, we
observed that SALL4 decreases the levels of Acetyl-K518-GLI1
(AcGLI1) (Fig. 4I, J) detected through a specific in-house generated
antibody [39]. Additionally, SALL4 overexpression is not effective
in inducing the transcriptional activity of the not acetylable K518R-
GLI1 mutant [6] (Fig. 4K). These results indicate that SALL4
cooperates with HDAC1 to enhance SHH signaling through the
regulation of GLI1 acetylation.

SALL4 knock-down inhibits the proliferation of SHH-MB cells
by eliciting GLI1 acetylation and counteracting SHH signaling
Next, we investigated the role of SALL4 on SHH-dependent tumor
growth. To this end, we silenced SALL4 expression in Med1-MB
cells by using two different short interfering RNAs (siSALL4 #1 and
#2). SALL4 knock-down results in a decrease in cell proliferation
compared to control cells (Fig. 5A). Accordingly, SHH transcrip-
tional signature is downregulated (Fig. 5B) and AcGLI1 levels are
increased in SALL4-silenced cells (Fig. 5C, D). Similar results have
been observed in Med1-MB cells infected with purified lentiviral
particles encoding a short hairpin RNA targeting murine SALL4
(shSALL4) (Fig. 5E–H). Of note, the overexpression of the K518R-
GLI1 mutant rescues the defective proliferation of Med1-MB cells
upon SALL4 depletion (Fig. 5N). These findings indicate that SALL4
sustains SHH-MB cells proliferation favouring GLI1 deacetylation
and the SHH pathway activation.
Given that SALL4 is a substrate of the CRL3REN complex,

silencing of REN increases SALL4 protein abundance and its half-
life in Med1-MB cells (Fig. 5J–N). In agreement with our previous
data (Fig. 2), the ΔZFC1-SALL4 mutant rescues the growth of
SALL4-silenced cells (Fig. 5O). Overall, these results demonstrate
that the REN-mediated degradation of SALL4 is a crucial event for
the proliferation of SHH-MB cells, and that alterations of this
mechanism could favour SHH-MB tumorigenesis.

SALL4 genetic depletion inhibits SHH-MB cells growth in vitro
We examined SALL4 protein levels in Gfap-cre/Ptcfl/fl and Math1-
cre/Ptcfl/fl mouse models in which homozygous deletion of Ptc is

restricted to neuronal stem cells (NSCs) or granule neural
progenitors (GNPs), respectively (Fig. 6A) [40–44]. Interestingly,
we found high expression of SALL4 in murine MB tissues derived
from both conditional SHH-dependent mouse models when
compared to the one in cerebella of healthy siblings (Fig. 6B, C,
Supplementary Fig. S3A,B).
We assessed the effects of SALL4 silencing on the growth of

primary SHH-MB cells freshly isolated from MBs spontaneously
developed in Math1-cre/Ptcfl/fl mice (Fig. 6D). Lentiviral-induced
genetic depletion of SALL4 significantly suppresses tumor cell
proliferation (Fig. 6E) and correlates with the impairment of SHH
signaling activity (Fig. 6F–H). In addition, we observed an increase
in AcGLI1 levels, thus sustaining the cooperation between SALL4
and HDAC1 in the modulation of GLI1 acetylation (Fig. 6G, H). To
further investigate this aspect, we combined SALL4 genetic
depletion with HDAC1 pharmacological inhibition by using
MGCD0103 (a well-known HDAC1/2 inhibitor [45]) in primary
SHH-MB cells. As shown in Fig. 6I, while SALL4 genetic depletion or
MGCD0103 treatment alone restrains tumor cell proliferation, their
combination does not further induce the inhibition of SHH-MB
cells proliferative capability. This observation indicates that both
SALL4 and HDAC1 functions converge on the same regulatory
mechanism that culminates in GLI1 protein deacetylation to
trigger SHH pathway activation and promote tumor growth.
Further, our data suggest that SALL4 plays a specific role in SHH-
malignant proliferation. Indeed, although we found a weak
expression of SALL4 in GNPs (the cells of origin of SHH-MB) at
an early post-natal stage (P5) that is SHH-dependent, its genetic
inhibition in P5-old GNPs does not impair physiological SHH-
driven cell growth (Supplementary Fig. S3C-F).
Given the crucial role of SALL4 in stemness, we assessed if its

modulation could affect stemness and clonogenic properties of
SHH-MBs. To this end, we first cultured tumor cells from
spontaneous MB of Math1-cre/Ptcfl/fl mice as neurospheres (MB
Stem-Like Cells, MB-SLCs) in EGF- and bFGF-free cultured medium
to retain the characteristic of in vivo SHH-MB [46, 47]. Then, the
genetic silencing of SALL4 was assessed by electroporating MB-
SLC neurospheres with siRNA targeting murine SALL4 (or a control
non-targeting siRNA). Interestingly, the clonogenic self-renewal
ability of SHH-MB-SLCs decreases in SALL4-depleted neurospheres
(Fig. 6J, K) as a consequence of reduced expression of GLI1,
stemness (OCT4 and SOX2) and oncogenic (N-MYC) markers
(Fig. 6L, M). Overall, these findings support the oncogenic
properties of SALL4 in SHH-MB.

SALL4 knock-down inhibits SHH-MB growth in vivo
Based on the evidence in cultured cells, we investigated the
oncogenic role of SALL4 in vivo. As expected, immunohistochem-
istry analysis (IHC) reveals widespread expression of SALL4 in the
high-proliferative area (positive to Ki67 staining) of SHH-MB tissues
from Math1-cre/Ptcfl/fl mice (Fig. 7A). We assessed tumor growth in
heterotopic allograft animal model by subcutaneously injecting
primary SHH-MB cells in both flanks of athymic nude mice (nu/nu)
(Fig. 7B). Before injection, cells have been silenced for SALL4
expression by lentiviral transduction. Grafts from control group

Fig. 2 ΔZFC1-SALL4 is a degradation-defective mutant. A Schematic representation of SALL4 WT (left panel) and SALL4 mutants (right
panel): ΔZFC1-SALL4 (Δ320-486 aa); ΔZFC2-SALL4 (Δ551-662 aa); ΔZFC4-SALL4 (Δ859–1028 aa); ΔNuRD-SALL4 (Δ1-12 aa). B Co-IPs of Flag-
REN and ectopic SALL4 (WT or mutants) from HEK293Ts transiently transfected with indicated plasmids and C relative binding affinities (%)
normalized to immunoprecipitated Flag-REN (mean of n= 3 individual experiments ± SD). D IP of HA-SALL4 from HEK293Ts transiently
transfected with indicated plasmids. WT- and ΔZFC2-SALL4 are used as controls. Anti-Flag antibody was used to detect the SALL4
polyubiquitylated forms; anti-HA antibody was used to re-probe blot to assess the levels of immunoprecipitated protein. Total protein lysates
are shown in the Input. E Protein levels of WT- and ΔZFC1-SALL4 in HEK293Ts transfected with a vector encoding REN and F relative
densitometric analysis. G ΔZFC1-SALL4 protein stability in HEK293Ts transfected with the indicated plasmids and treated with CHX (100 µg/
mL) at different time points, with H relative densitometric analysis. Representative immunoblotting of n= 3 biological replicas with similar
results are shown in B, D, E, and G. Actin-normalized densitometric analysis in F and H represent the mean of n= 3 independent experiments
± SD; *p < 0.05; **p < 0.01 calculated with two-sided Student’s t-test.
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Fig. 3 SALL4 positively regulates the SHH pathway. The transcriptional activity of A endogenous and B. C exogenous GLI1 has
been assessed in the presence of ectopic SALL4 in HEK293Ts transiently transfected with a Firefly luciferase reporter gene under the control of
a synthetic promoter containing 12 binding sites for GLI1 (12 × GLI1-BS), pRL-TK Renilla as normalization control, and the indicated plasmids.
D GLI1-mediated transcription has been evaluated in HEK293Ts transiently transfected with constructs expressing Firefly luciferase under the
control of PTCH promoter presenting a conserved (P1A WT-Luc) or mutated (P1A Mut-Luc) GLI1-BS, pRL-TK Renilla as normalization control,
and the indicated plasmids. Luciferase analyses were performed 24 h after transfection. Data in A–C represent the mean of n= 3 independent
experiments ± SD; data in D represent the mean of n= 4 independent experiments ± SD. All data are expressed as FC versus empty vector.
Representative immunoblotting of n= 3 biological replicas with similar results showing the expression levels of transfected plasmids are
reported. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 calculated with two-sided Student’s t-test.
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develop progressively enlarging tumors, whereas SALL4-depleted
tumor masses grow at a significantly slower rate (Fig. 7C–E). This
effect strongly correlates with the reduction of SHH target genes
and the increase of AcGLI1 levels (Fig. 7F–H). Consistently, tumor

masses from the SALL4-silenced group show a reduced cellularity,
a significant decrease in GLI1 and the proliferation marker Ki67
expression as well as increased apoptosis as indicated by increased
expression of cleaved Caspase-3 (Cl. CAS-3) when compared to the
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control group (Fig. 7I, J). The pro-oncogenic properties of SALL4
have been also investigated in an orthotopic allograft model of
SHH-MB. Primary SHH-MB cells have been implanted into the
cerebella of nu/nu mice after lentiviral-mediated depletion of
SALL4 expression (Fig. 7K). As observed in Fig. 7L, whereas cells
infected with the lentiviral particles expressing a non-targeting
sequence (shCTR) give rise to detectable tumor masses, cells in
which SALL4 has been silenced do not grow. These in vivo data
confirm the tumorigenic role of SALL4 in the regulation of SHH-
dependent tumor growth.

SALL4 depletion represses human SHH-MB growth
Next, we validated the effects of SALL4 inhibition in human SHH-
MB patient-derived xenograft (PDX) model. Investigating the
intratumoral distribution of SALL4 in two independent SHH-MB
PDXs, we found that SALL4 is detectable in the analysed tumor
tissues (Fig. 8A, Supplementary Fig. S4A). Genetic depletion of
SALL4 in SHH-MB PDX cells (Fig. 8B) impairs cell proliferation
compared to control (Fig. 8C), an effect associated to a reduction
of SHH signature and an increase of AcGLI1 (Fig. 8D–F). The
analysis of the cell cycle by Fluorescence-activated cell sorting
(FACS) confirms that SALL4 depletion results in more than 3-fold
decrease in the S phase compared to control cells (4.03% and
12.75%, respectively), underlying an impairment in DNA replica-
tion (Fig. 8G). At the same time, G2 population significantly
increases in SALL4 depleted cells (13.75% versus 6.185%, in
control cells) suggesting cell cycle arrest in G2/M phase (Fig. 8G).
Recent studies reported that SALL4 is a neo-substrate of

thalidomide (Thal) [48], an immunomodulatory imide drug (IMiD)
currently used in clinical practice for haematological and solid
tumors. Thal efficiently directs SALL4 to Cullin4/Cereblon
(CRL4CRBN)-mediated degradation [49, 50] exclusively in humans,
primates, and rabbits [48]. Of interest, we found that Thal
treatment impairs SHH-MB PDX cells proliferation (Fig. 8H), leading
to SALL4 and GLI1 downregulation (Fig. 8I). Overall, these data
confirm the relevance of SALL4 in SHH-MB growth and tumor
prognosis.

DISCUSSION
The SHH signaling pathway is crucial for mammalian brain
homeostasis and its aberrant activation is responsible for
neurodevelopmental disorders and MB formation. The transcrip-
tion factor GLI1 is the final effector of this signaling and regulates
the transcriptional response to SHH. In addition, GLI1 can be
activated by different oncogenic pathways thus highlighting the
relevance to unveil the molecular mechanisms that govern its
misregulation in cancer.
Ubiquitylation processes are crucial events by which GLI1

activity is finely regulated [38, 51–60]. Of note, we previously
reported that the CRL3REN E3 ligase complex finely suppresses

GLI1 functions by promoting ubiquitylation and degradation of
HDAC1, a strong activator of the SHH pathway [6].
The complexity of these regulatory mechanisms is a critical

issue for the understanding of physiological SHH signaling
activation and SHH-dependent tumorigenesis, thus prompting to
identify and characterize novel players as targets for promising
unexplored therapeutic options.
In this work we have identified SALL4, a master regulator of

stemness and a well-recognized oncofetal protein, as a critical
player of the SHH pathway. SALL4 is a zinc finger transcription
factor mainly expressed in embryonic stem cells and implicated in
the maintenance of pluripotency by its interaction with NANOG
and OCT4, two of the main embryonic stemness markers [13, 14].
In mouse, loss of SALL4 gene leads to embryonic lethality during
implantation [61] and heterozygous SALL4 mutant mouse
recapitulate human Okihiro syndrome, an autosomal dominant
disease with multiple developmental defects [62, 63]. Similar to
mice, the expression of SALL4 is downregulated during develop-
ment and rarely detectable in human adult tissues, but when
reactivated it is a leading cause of a wide spectrum of cancers. An
aberrant SALL4 activity has been reported in acute myeloid
leukemia, lung adenocarcinoma, breast cancer, and other
aggressive malignancies, and its overexpression is associated with
poor prognosis and lower survival rate of patients [64–67].
Recently, it has been reported that knockdown of SALL4 in
human melanoma cells decreases cell proliferation and impairs
the expression of genes related to cell cycle, inflammation, and
developmental processes [22]. For all these reasons, SALL4 is
emerging as attractive therapeutic target in cancer.
Herein, we identified SALL4 as a novel substrate of REN, a CRL3

adaptor involved in the differentiation of GNPs, the cells of origin
of SHH-MB [8, 10]. REN maps on chromosome 17p, a region
frequently deleted in SHH-MB subgroup, and acts as tumor
suppressor which, by promoting degradation of HDAC1, inhibits
GLI1 activity and represses SHH-MB growth.
We demonstrated that, under physiological condition, REN

binds SALL4 and HDAC1 and induces their ubiquitylation and
degradation. This event results in the acetylation of GLI1 thus
abrogating its function and suppressing cell growth. In SHH-MB,
the loss of REN caused by chromosome 17p deletion, allows SALL4
and HDAC1 accumulation. Biochemical data demonstrate that
SALL4, HDAC1, and GLI1 form a trimeric complex, thus promoting
GLI1 deacetylation. This confers increased activity to GLI1, thereby
enhancing SHH signaling and sustaining cell proliferation and
tumor onset (Fig. 8J).
The relationship between SALL4 and HDACs in the regulation

of gene expression represents a nodal point in tumor biology as
well as an opportunity for cancer treatments. Pharmacological
peptides that specifically disrupt the interaction between SALL4
and HDAC1 have been tested with success as therapeutic agents
both in acute myeloid leukemia and hepatocarcinoma [65, 68].

Fig. 4 SALL4 cooperates with HDAC1 in reducing GLI1 acetylation levels. A GLI1-induced transcription has been assessed in HEK293Ts
transiently transfected with 12 × GLI1-BS Firefly luciferase, pRL-TK Renilla as normalization control, and the indicated plasmids; data are
expressed as FC versus empty vector. Co-IPs of SALL4 and ectopic or endogenous HDAC1 (B, C, respectively), or ectopic or endogenous GLI1
(D, E, respectively) in HEK293Ts transiently transfected as indicated. F Co-IPs of GLI1, SALL4, and HDAC1 in HEK293Ts transiently transfected
with vectors expressing the indicated plasmids. G Densitometric analysis of relative GLI1/SALL4 and GLI1/HDAC1 binding affinities, expressed
as FC versus relative controls, are normalized to immunoprecipitated Flag-GLI1. H HEK293Ts were transfected with different combinations of
indicated plasmids. Protein lysates were immunoprecipitated with anti-Flag agarose beads. One-third of immunocomplexes was probed with
antibodies to the indicated proteins (1st IP), whereas two-thirds were subjected to two elutions with Flag-peptide and re-immunoprecipitated
with HA-agarose beads followed by immunoblotting as indicated (2nd IP). I Co-IP of Flag-GLI1 in HEK293Ts transiently transfected with
indicated plasmids. The acetylation levels of GLI1 protein at K518 residue have been assessed by using an in-house generated antibody [39].
Total protein lysates are shown in the Input. J Densitometric analysis of relative AcGLI1 levels, normalized to immunoprecipitated Flag-GLI1.
K GLI1-dependent transcription has been assessed in HEK293Ts transiently transfected with 12 × GLI1-BS Firefly luciferase, pRL-TK Renilla as
normalization control, and indicated plasmids. Data are expressed as FC versus empty vector. Representative immunoblotting of n= 3
biological replicas with similar results are shown in B–F, H, and I. Densitometric analysis in G and J represent the mean of n= 3 independent
experiments ± SD; *p < 0.05 *p < 0.05; **p < 0.01; ***p < 0.001 calculated with two-sided Student’s t-test.
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Lung cancer cell lines expressing high levels of SALL4 are
sensitive to the HDAC1 inhibitor Entinostat suggesting the use of
this drug as a potential treatment for lung cancer [68].
Interestingly mocetinostat, a selective inhibitor of HDAC1 and

HDAC2, drastically reduces SHH-MB growth in mouse models, an
effect linked to GLI1 acetylation [45], thereby suggesting the
potential of mocetinostat to counteract, at the same time, SALL4
activity.
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Our work contributes to further understanding SALL4 functions
and proposes alternative routes of intervention for SHH-MB, a
highly heterogenous and aggressive malignancy of the cerebel-
lum with a few treatment options. Despite the deep molecular
characterization, the current therapies are based on surgery, radio-
and chemotherapy; patients treated with the FDA-approved
vismodegib, an antagonist of the SMO receptor, showed rapid
development of drug resistance and severe side effects [4, 69].
Because of the existence of alternative mechanisms of activation
to SMO, targeting downstream SHH components is now
considered a preferable option. GLI1 inhibitors and multitargeting
approaches [70, 71], including HDAC inhibitors, could offer a
valuable opportunity to fight SHH-MB.
In the light of our findings, innovative strategies may arise from

the use of drugs triggering SALL4 degradation. The recent
discovery that the small immunomodulatory drug thalidomide
induces ubiquitylation and degradation of SALL4 by the CRL4CRBN

E3 ubiquitin ligase [50] has demonstrated that this transcription
factor can be targeted for cancer therapy [48, 50]. Efficacy of
thalidomide and its derivatives has been demonstrated in
neuroblastoma and multiple myeloma cell lines [48]. In addition,
they are now in clinical trial evaluation in brain tumors, including
MB (NCT01356290 [72], NCT03257631). Although thalidomide can
target several substrates, our findings suggest that the
thalidomide-dependent degradation of SALL4 may represent
one mechanism contributing to the anti-tumor effects of this
drug in SHH-MB. Overall, our studies unveil SALL4 as a novel
regulator of SHH signaling and promising therapeutic target in
SHH-MB.

MATERIAL AND METHODS
Purification of REN/KCTD11 interactors
HEK293T cells (purchased by the American Type Culture Condition, ATCC)
cells were transfected with pcDNA3-Flag-HA-REN and treated with MG132
10 µM for 5 h. Cells were harvested and subsequently lysed in lysis buffer
(50mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% NP40, plus
protease and phosphatase inhibitors). REN was immunopurified with anti-
Flag agarose resin (Sigma-Aldrich, St. Louis, MO, USA). After washing,
proteins were eluted by competition with Flag peptide (Sigma-Aldrich).
The eluate was then subjected to a second immunopurification with anti-
HA resin (12CA5 monoclonal antibody crosslinked to protein G Sepharose;
Invitrogen, Waltham, MA, USA) prior to elution in Laemmli sample buffer.
The final eluate was separated by SDS-PAGE, and proteins were visualized
by Coomassie colloidal blue. Bands were sliced out from the gels and
subjected to in-gel digestion. Gel pieces were then reduced, alkylated and
digested according to a published protocol [73]. For mass spectrometric
analysis, peptides recovered from in-gel digestion were separated with a
C18 column and introduced by nano-electrospray into the LTQ Orbitrap XL
(Thermo Fisher Scientific, Waltham, MA, USA) with a configuration as
described [74]. Peak lists were generated from the MS/MS spectra using
MaxQuant build 1.0.13.13 [75], and then searched against the IPI Human
database (version 3.37, 69164 entries) using Mascot search engine (Matrix
Science). Carbaminomethylation (+57 Da) was set as fixed modification

and protein N-terminal acetylation and methionine oxidation as variable
modifications. Peptide tolerance was set to 7 ppm and fragment ion
tolerance was set to 0.5 Da, allowing 2 missed cleavages with trypsin
enzyme. Finally, Scaffold 3.6.1 (Proteome Software Inc.) was used to
validate MS/MS based peptide and protein identifications. Peptide
identifications were accepted if their Mascot scores exceeded 20.

Cells and primary cultures
HEK293T and Med1-MB cells [29, 45] were cultured in Dulbecco’s Modified
Eagle Medium (DMEM, Sigma-Aldrich) supplemented with 10% fetal
bovine serum (FBS; Merck, Darmstadt, Germany). Media contained 1%
Penicillin–Streptomycin (Pen–Strep) and 1% L-Glutamine.
Primary SHH-MB cells were freshly isolated from Math1-cre/Ptcfl/fl mice

tumors as described in [76] and cultured in Neurobasal Media-A (Thermo
Fisher Scientific) with B27 supplement minus vitamin A (Thermo Fisher
Scientific), 1% Pen–Strep and 1% L-Glutamine. PCR detection kit (Applied
Biological Materials, Richmond, BC, Canada) was routinely used to test
Mycoplasma contamination in cell cultures.
Stable SHH-dependent MB cells were cultured as neurospheres in

DMEM/F12 media (2% B27 minus vitamin A; 3% Glucose 10×; 0.2% Insulin
10mg/ml; 1% Pen/Strep; 0.01% Heparin 2 mg/ml; 0.06% N-Acetyl-L
Cysteine) as described in Bufalieri et al. [47]. Whenever necessary,
neurosphere cultures were pelleted and dissociated by incubation with
Accutase (Sigma-Aldrich) to obtain a single cell suspension.
Cerebellar cultures of GNPs were obtained from 5-days old (P5) CD-1

mice. Cerebellum tissues were aseptically removed and incubated in
digestion buffer (Dulbecco’s PBS with 0.1% trypsin, 0.2% EDTA, and 10 µg/
ml DNase) for 15min at room temperature. Then, tissues were
mechanically disrupted to obtain a single-cell suspension and cells were
seeded (2.5 × 105 cells/cm2) in Neurobasal Medium (Thermo Fisher
Scientific) 5% FBS supplemented with B27, 1% Pen–Strep and 1% L-
Glutamine.
Patient-derived xenograft (PDXs) ICN-MB-PDX12 was generated from

primary human SHH-MB tumor of patient diagnosed at the Children’s
Necker Hospital in Paris and transplanted into the subscapular fat pad of
immunocompromised NOD/SCID mice [77]. The SHH-MB PDX Med-1712FH
was generated by the Olson lab [78]. Human SHH-MB PDX cells were
obtained as described in [79]. Human samples were obtained with
informed consent of patients, and all experimental procedures were
performed following guidelines from the Institutional Review Board at
Necker Hospital, Paris, France. Once established, PDX models were
maintained by serial propagations in nu/nu mice. For in vitro cultures,
tumors were dissociated in Neurobasal Media containing 1mg/ml DNaseI
(Worthington Biochemicals, Lakewood, NJ, USA), 2.5 mg/ml Collagenase P
and 2.5 mg/ml Collagenase/dispase (Roche, Basil, Switzerland),
B27 supplement minus vitamin A (Thermo Fisher Scientific), and
N2 supplement (Invitrogen). Then, cells were cultured in Neurobasal
Media supplemented with B27 supplement minus vitamin A, 0.01% BSA
solution, 1% 1000X N-Acetyl Cysteine, and 1% D

+-Glucose solution 45%
(Sigma-Aldrich), 1% Pen–Strep and 1% L-Glutamine.

Transfections and lentiviral infections
DreamFectTM Gold or DreamFectTM Transfection Reagents (Oz Biosciences
SAS, Marseille, France) were used in accordance with the manufacturer’s
protocols. siRNAs transfection in Med1-MB cells was performed by using
HiPerFect Transfection Reagent (QIAGEN, Hilden, Germany). siRNAs electro-
poration in SHH-MB-SLCs was performed by using Mouse Neural Stem Cell

Fig. 5 SALL4 knock-down inhibits the proliferation of SHH-MB cell lines. Med1-MB cells have been transiently transfected with (A–D) two
small interfering RNAs (siRNAs) or (E–H) a short hairpin RNAs (shRNA) targeting SALL4 or a non-relevant control sequence (siCTR or shCTR).
Cell proliferation in A and E has been measured as cell confluence calculated using the IncuCyte® Zoom software by phase-contrast images.
B, F The transcript levels of SHH signature target genes are expressed as FC versus relative controls. C, G Protein levels of SALL4, GLI1, and
AcGLI1 and D, H relative densitometric analysis are shown. I Med1-MB cells have been transiently transfected as indicated, and proliferation is
expressed as cell confluence calculated using the IncuCyte® Zoom software by phase-contrast images. J SALL4 protein levels in Med1-MB cells
transfected with siREN or siCTR. K qRT-PCR of REN silencing in this setting is shown, as well as L SALL4 densitometric analysis.M SALL4 half-life
in Med1-MB cells transfected as indicated and then treated with CHX (100 µg/mL) up to 8 h; densitometric analysis is shown in N. O Med1-MB
cells have been transiently transfected as indicated, and proliferation is expressed as cell confluence calculated using the IncuCyte® Zoom
software by phase-contrast images. Data in A, E, I, and O are normalized to cell scans at time 0 and expressed as FC, and represent the mean of
n= 3 independent experiments ± SD. Representative immunoblotting of n= 3 biological replicas with similar results are shown in C, G, J, and
M. Actin-normalized densitometric analysis in D, H, L, and N represent the mean of n= 3 independent experiments ± SD. Data in B, F, and K are
normalized to endogenous Gapdh and Hprt control expressed as FC respect to the control sample value and represent the mean of n= 3
independent experiments ± SD. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 calculated with two-sided Student’s t-test.
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Nucleofector® Kit (VPG-1004, Lonza Bioscience, Basel, Switzerland) in
accordance with the manufacturer’s protocol. Silencer RNAs (Negative
Control, AM4637; siSALL4 #1, MSS246807; siSALL4 #2, MSS246808; siREN/
KCTD11, 170461) were purchased by Thermo Fisher Scientific.

Lentiviral particles were generated in HEK293 cells by transiently
transfecting the packaging plasmids pCMV-dR8.74 and VSV-G/pMD2 with
pLKO.1 plasmids (shCTR SHC002 or shSALL4 #TRCN0000097824 for primary
murine SHH-MB cells, and #TRCN0000021878 for SHH-MB PDX cells, Sigma-
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Aldrich) using calcium phosphate transfection method. Cells were infected
with purified lentiviral particles for 72 h.

Plasmids, antibodies, and treatments
pcDNA3.1 GFP-/Flag-GLI1, Flag-/HA-HDAC1 and Flag-/HA-REN expressing
vectors were generated in our lab by standard cloning techniques and
verified by sequencing. pCDNA3.1 Flag-ΔBTB-, or BTB-REN mutants were
constructed by deleting amino acids 18–80 or 196–232 to WT-REN,
respectively. The following plasmids were kindly provided by other labs:
pcDNA3.1 Myc-Cul3 (M. Pagano, New York University School of Medicine,
USA), 12 × Gli–RE TKO-Luc, P1A WT-Luc, and P1A Mut-Luc (R. Toftgård,
Karolinska Institutet, Sweden), pcDNA3.1 Flag-Ub (I. Dikic, Institute of
Biochemistry Goethe University, Germany), pcDNA3.1 HA-SALL4 (W. Dai,
New York University Langone Medical Center, USA). Single residues
(pcDNA3.1 Flag-K518R GLI1) were mutated by the Quickchange site-
directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA). The
N-terminal tagged 3xHA-6xHis SALL4 plasmids were designed and
purchased by VectorBuilder (Neu-Isenburg, Germany). GFP-SALL4 WT
(vector ID: VB230530-1241dyq); GFP-SALL4 ΔZFC1 (deleted in amino acids
320-486, vector ID: VB230530-1248kpp); GFP-SALL4 ΔZFC2 (deleted in
amino acids 551-662, vector ID: VB230530-1278bkc); GFP-SALL4 ΔZFC4
(deleted in amino acids 859-1028, vector ID: VB230530-1264awg); GFP-
SALL4 ΔNuRD (deleted in amino acids 1-12, vector ID: VB230530-1247eau).
Mouse anti-Gli1 (L42B10, 1:500 for WB; 1:100 for IHC) and rabbit anti-

cleaved Caspase-3 (Asp175 D3E9, 1:100 for IHC, 1:1000 for WB) were
purchased by Cell Signaling Technology (Beverly, MA, USA). β-Actin HRP
(sc-47778, 1:2000), mouse anti-HA-probe F-7 HRP (sc-7392 HRP, 1:1000),
mouse anti-Myc 9E10 (sc- 40, 1:500), mouse anti-Sall4 G-3 (sc-166033,
2 μg), rabbit anti-Gli1 H-300 (sc-20687, 1:100), mouse anti-Cyclin D1 C-20
(sc-717, 1:500) were purchased by Santa Cruz Biotechnology (Santa Cruz,
CA, USA). HRP-conjugated secondary antibodies were purchased by Bethyl
Laboratories (Waltham, MA, USA). Anti-Flag M2 HRP (A8592, 1:1000), rabbit
anti-HDAC1 (H3284, 1:1000), and rabbit anti-Flag (F7425, 2 μg) were
purchased by Sigma-Aldrich. Goat anti-Gli2 (AF3635, 1:1000) was
purchased by R&D Systems (Minneapolis, MN, USA). Rabbit anti-Sall4
(ab29112, 1:1000 for WB, 1:100 for IHC) was purchased by Abcam
(Cambridge, UK). Rabbit anti-Ki67 SP6 (MA5-14520, 1:100) was purchased
by Thermo Fisher Scientific. Rabbit anti-Acetyl-Gli1(Lys518) antisera (1:500
for WB) was generated by Eurogentec by rabbit immunization with the
peptide acetylated-Gli1(Lys518) H2N-IGS RGL K(Ac)LPSLT CCONH2 [39].
The specificity of the antibody was validated by competition assay with the
immunogenic peptide, with or without lysine acetylation. Anti-mouse
Alexa Fluor 546 (A11003, 1:400) was purchased by Life Technologies
(Foster City, CA, USA).
MG132 (Calbiochem, Nottingham, UK), cycloheximide (CHX, 100 μg/ml

up to 8 h; Sigma-Aldrich), mocetinostat (MGCD0103, 0.5 μM up to 72 h;
synthetized in house as a dihydrobromide salt as described in [80]),
thalidomide (Thal, 10–20 μM up to 72 h; Tocris Bioscience, Bristol, UK), and
Smoothened Agonist (SAG, 200 nM, Alexis Biochemicals, Farmingdale, NY,
USA) were used were indicated.

Luciferase reporter assays
In vitro functional transcription assays were performed in HEK293Ts
transiently transfected with a Firefly luciferase reporter containing 12
binding sites for GLI1 in its synthetic promoter (12 × GLI1-BS-Luc) or Ptc-

dependent luciferase reporter with a conserved or mutated GLI1 binding
site in its promoter (P1A WT-Luc or P1A Mut-Luc), pRL-TK Renilla and
indicated plasmids. 24 h after transfection, a dual-luciferase assay system
was used to analyze the expression signals of Firefly and Renilla
following the manufacturer’s instructions (Biotium Inc., Hayward, CA,
USA). Results were expressed as Luciferase/Renilla ratios and repre-
sented the mean ± S.D. of at least n= 3 experiments, each performed in
triplicate.

Immunoblot analysis and immunoprecipitation
Protein lysates were obtained in RIPA buffer (50mM Tris-HCl at pH 7.6,
150mM NaCl, 0.5% sodium deoxycholic, 5 mM EDTA, 0.1% SDS, 100mM
NaF, 2 mM NaPPi, 1% NP-40) supplemented with protease and phospha-
tase inhibitors. The lysates were centrifuged at 13,000 rpm for 30min at 4
°C and the resulting supernatants were boiled for 5 min in loading buffer.
The protein extracts were then separated by SDS-PAGE, transferred to
nitrocellulose membranes (GVS North America, Sanford, ME, USA), blocked
with 5% skimmed milk in TBS containing 0.1% Tween 20 (Sigma-Aldrich),
and incubated with the indicated antibodies.
For co-immunoprecipitations, cells were lysed as described above,

quantified, and at least 1 mg of the whole-cell protein extracts was
incubated overnight at 4 °C with specific primary antibodies or IgG used as
a control (2 μg/mg; Santa Cruz Biotechnology). The day after, immuno-
complexes were incubated with G- or A-Protein agarose beads (Santa Cruz
Biotechnology) for 1 h at 4 °C. The IPs were then washed five times, and
samples were prepared for SDS-PAGE resolving and then subjected to
immunoblot analysis. Uncropped Western blots are provided in Supple-
mentary Material.

In vivo ubiquitylation assays
HEK293T cells were lysates with a denaturing buffer (1% SDS, 50 mM Tris-
HCl at pH 7.5, 0.5 mM EDTA, 1 mM DTT). NETN buffer (100mM NaCl, 20 mM
Tris-Cl pH 8.0, 0.5 mM EDTA, 0.5% (v/v) NP-40) was used to dilute 10 times
the lysates during immunoprecipitation (from 2 h to overnight at 4 °C) with
indicated antibodies. To perform the immunoblot analysis, the IPs were
washed with NETN buffer, resuspended in sample loading buffer, boiled for
5 min, resolved in SDS-PAGE, and then subjected to immunoblot analysis
to detect the polyubiquitylated forms. Uncropped Western blots are
provided in Supplementary Material.

Cell proliferation assays
Med1-MB cells were transiently transfected for 24 h with si- or shRNAs
where indicated, while primary murine SHH-MB cells and human SHH-MB
PDXs were infected with lentiviral particles encoding either short hairpin
RNA targeting SALL4 (shSALL4) or a control non-targeting sequence
(shCTR) for 72 h. 1 × 103 cells/well for Med1-MB cells, 2 × 104 cells/well for
primary murine MB cells, and 1 × 105 SHH-MB PDX cells were seeded onto
a 96-well tissue culture plate in 100 μl complete medium (6 wells for each
experimental point). Med1-MB cell proliferation was measured as cell
confluence (%), while primary SHH-MB cell proliferation was indicated as
relative Nuclight staining (Nuclight Rapid Red reagent, #4717, Sartorius,
Gottinga, Germany), both calculated using the IncuCyte® Zoom software
(Essen BioScience Ann Arbor, MI, USA). Cells proliferation is normalized to
scans obtained at time 0 (T0) and expressed ad fold change (FC) ± SD of

Fig. 6 SALL4 inhibition impairs SHH-dependent tumor cell growth in vitro. A-C SALL4 levels have been evaluated in protein lysates of SHH-
MB tissues from Gfap-cre/Ptcfl/fl and Math1-cre/Ptcfl/fl mice and compared to the cerebella of healthy siblings (Ptcwt/wt). D Primary SHH-MB cells
have been infected with lentiviral particles expressing shSALL4 or shCTR. E Cell proliferation has been measured as Nuclight relative staining
calculated at indicated time points by using the IncuCyte® Zoom software. F Transcript levels of SHH target genes and G expression of SHH-
related proteins are shown, with H relative densitometric analysis. I SALL4-depleted primary SHH-MB cells, and control cells, have been treated
with MGCD0103 (0.5 μM, 24 h) or DMSO as control. Cell proliferation has been measured as relative Nuclight staining calculated using
IncuCyte® Zoom software at the indicated time points. J SHH-MB-SLCs neurospheres were dissociated and electroporated with siRNAs to a
non-relevant mRNA (siCTR) or murine SALL4 (siSALL4). Representative bright field images of tumor neurospheres were acquired with the
IncuCyte® zoom software. Scale bar: 400 µm. K The proliferative capability of SHH-MB-SLCs is expressed as neurospheres-size (μm2). L Protein
expression levels of SALL4, GLI1, stemness, and tumorigenic markers are shown with M relative densitometric analysis. Representative
immunoblotting of n= 3 biological replicas with similar results are shown in B, G, and L. Vinculin- or actin-normalized densitometric analysis
in C, H, and M represent the mean of n= 3 independent experiments ± SD. Data in E and I are normalized to cell scans at time 0 and expressed
as FC and represent the mean of n= 3 independent experiments ± SD. Data in F are normalized to endogenous Gapdh and Hprt control
expressed as FC respect to the control sample value and represent the mean of n= 3 independent experiments ± SD. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001 versus siCTR or shCTR calculated using two-sided Student’s t-test. Schematic representations in A and D have been
created by BioRender.com.
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n= 3 experiments. Med1-MB cells were scanned every 3 hours up to 72 h
after transfection; both murine primary SHH-MB and SHH-MB PDX cells
were scanned every 6 h up to 96 h and 72 h after infection, respectively.

Proliferation of SAG-induced GNPs was evaluated by Click-iT™ EdU Cell
Proliferation Kit for Imaging (#C10337, Thermo Fisher Scientific) according
to the manufacturer’s protocol.
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Flow cytometry and cell cycle analyses
Cell cycle analysis was performed using the Click-iT™ EdU Pacific Blue flow
cytometry assay kit (Thermo Fisher Scientific) according to the manufac-
turer’s protocol. In brief, 10 μM of 5-ethynyl-2′-deoxyuridine (EdU) was
added into culture medium, and SHH-MB PDX cells were incubated for 1 h
at 37 °C. Then, cells were fixed with 4% paraformaldehyde for 60min, and
EdU was labeled with Pacific Blue. 7-Aminoactinomycin D (7-AAD) was
added for measuring DNA content and cell cycle distribution. Data were
collected on an LSR II or BD FACSVantage flow cytometer using FACSDiva
software (both from BD Immunocytometry Systems) and analyzed using
FlowJo software (Tree Star).

mRNA expression analysis
Total RNA was isolated from cells using TRIzol reagent (Invitrogen).
Synthesis of first-strand cDNA was performed by reverse transcription of
total RNA using SensiFAST cDNA Synthesis Kit (Bioline, London, UK)
according to manufacturer’s protocol. The ViiATM 7 Real-Time PCR System
(Life Technologies Carlsbad, CA, USA) was employed to perform
quantitative real-time PCR analysis (qRT-PCR) of the indicated mRNA
expression levels. The reaction mix containing the cDNA template, the
SensiFAST Probe or SYBR® Lo-ROX Kit (Bioline, London, UK) and the
Taqman gene expression assays (Thermo Fisher Scientific) or the primer
probes was amplified using standard qPCR thermal cycler parameters.
Each sample was amplified in triplicate and the quantification of
the mRNA was performed using SDS version 2.3 software. The average
of the three threshold cycles was used to calculate the number of
transcripts. Data were normalized with the endogenous housekeeping
genes (GAPDH and HPRT) and expressed as the FC respect to the
control sample value. The following qRT-PCR assays were used: Sall4
(mSall4 forward, CCCCTCAACTGTCTCTCTGC; mSall4 reverse, CAGG-
GAGCTGTTTTCTCGA; hSALL4 forward, ATTTGTGGGACCCTCGACAT;
hSALL4 reverse, TTAAGTTGCCTTTGGTGGTAA); Gli1 (Mm00494654_m1;
Hs00171790_m1; mGli1 forward, AAGCCAACTTTATGTCAGGG; mGli1
reverse, AGAGCCCGCTTCTTTCTTAA); Gli2 (Mm01293117_m1;
Hs01119974_m1); Ptch1 (Mm00436026_m1; Hs0018117_m1); Ccnd2
(Mm00438070_m1; Hs00153380_m1); N-Myc (Mm00476449_m1;
Hs00232074_m1); Ren/Kctd11 (Mm00628328_s1); Hprt
(Mm00446966_m1; Hs02800695_m1; mHprt forward, GCTTCCTCCTCAGA
CCGCTT; mHprt reverse, GGTCATAACCTGGTTCATCATC); Gapdh
(Mm99999915_g1; Hs02786624_g1).

Immunohistochemistry
For IHC analysis, tissues were fixed and the slides were stained as
reported in [47]. Briefly, tissues were first fixed in formalin and
embedded in paraffin (FFPE) and then incubated overnight at 4 °C
with anti-SALL4, anti-GLI1, -cleaved Caspase-3 or -Ki67 antibodies. The
next day, the slides were incubated for 20 min with secondary
antibodies coupled with peroxidase (Dako), which is then detected by
the diaminobenzidine (DAB) solution (ScyTek Laboratories, Logan, UT,
USA) and the EnVision FLEX Substrate buffer containing peroxide (Dako,
Agilent, Santa Clara, CA, USA). Cell quantification was performed on
stained sections with NIS-Elements BR 4.00.05 (Nikon Instruments
Europe B.V., Florence, Italy) imaging software. Stained slides were

scanned using the NanoZoomer S60 Digital slide scanner C13210-01
(Hamamatsu Photo- nics). Scanned images were viewed and captured
with Hamamatsu Photonics’s image viewer software (NDP.view2 View-
ing software U12388-01) at indicated magnifications.

Animal studies
Female nu/nu mice of 28–34 days (086NU/NUCD1) were purchased by
Charles River Laboratories (Calco, LC, Italy). CD-1, Gfap-Cre/Ptcfl/fl, and
Math1-cre/Ptcfl/fl mouse models, previously described by [41], were already
available in our animal husbandry.
For in vivo heterotopic allograft experiments, spontaneous SHH-MB from

Math1-cre/Ptcfl/fl mice were disaggregated, and cells were cultured as
described above. Then, primary cells were infected with purified lentiviral
particles expressing shSALL4 or a scramble non-targeting sequence as
control (shCTR). After infection, 2 × 106 cells were subcutaneously injected
(s.c.) on both posterior flanks of nu/nu mice randomly divided in two
groups (n= 4). Cells were resuspended in an equal volume of culture
medium and Matrigel® Basement Membrane Matrix (#354248, BD
Biosciences, Heidelberg, Germany) before injection. Changes in tumor
volume were evaluated with the formula (length × width) × 0.5 × (length+
width), measured with caliper at indicated days.
For in vivo orthotopic allograft models, nu/nu mice were anesthe-

tized by intraperitoneal (i.p.) injection of ketamine (10 mg/kg) and
xylazine (100 mg/kg). The posterior cranial region was placed in a
stereotaxic head frame and primary infected SHH-MB cells (shSALL4 or
shCTR) were stereotaxically implanted into the cerebellum (2 × 105/3 μl)
according to the atlas of Franklin and Paxinos coordinates (n= 6 mice
for each experimental group). After injection, at an infusion rate of 1 μl/
min, the cannula was kept in place for 5 min. 45 days after tumor
implantation animals were sacrificed and brains were fixed in 4%
formaldehyde and paraffin embedded. Tumor volume calculation was
performed on serial 40 coronal sections of 2 μm after hematoxylin and
eosin (H&E) staining every 40 μm of brain slice. A microscope (Axio
Imager M1 microscope; Leica Microsystems GmbH, Wetzlar, Germany)
equipped with a motorized stage and Image Pro Plus 6.2 software was
used to evaluate tumor area of each slide. All animal protocols were
approved by local ethic authorities (Ministry of Health) and conducted
in accordance with Italian Governing Law (D.lgs 26/2014). We followed
the European and national regulations for the care and use of animals
to protect them for experimental and other scientific purposes (D.lgs
26/2014).

Datasets and data analyses
Through the R2 Genomics Analysis and Visualization Platform (http://
r2.amc.nl), we analyzed the expression levels of KCTD11 and SALL4 in SHH-
MB subgroup and SHH-MB alfa, beta, delta, and gamma subtypes using the
previously generated dataset “Tumor Medulloblastoma – Cavalli – 763 –
rma_sketch – hugene11t”, accession number: GSE85217. The survival
distribution was estimated according to the Kaplan-Meier method and the
significance was determined using log-rank statistics. The log-rank test was
used for comparison of patient survival between high and low expression
groups for each selected gene. Statistical significance was defined as
p ≤ 0.05.

Fig. 7 SALL4 inhibition impairs SHH-dependent tumor cell growth in vivo. A Representative images of SHH-MB tumors from Math1-cre/
Ptcfl/fl mice immune-stained with SALL4 or Ki67 used as control of proliferating cells (magnification ×40 and ×80; scale bars: 50 µm and 25 µm,
respectively). B Primary SHH-MB cells have been infected with lentiviral particles expressing shSALL4 or shCTR. After infection, 2 × 106 cells
have been subcutaneously injected in both back flanks of nu/nu mice (n= 4/group). C Caliper measurements have been collected three times
a week up to 35 days after injection to assess tumor growth. Quantification of D tumor explants and E representative flank allograft tumors are
shown (magnification ×1; scale bar: 1 cm). F Relative transcript and G protein levels of SHH targets in explanted tumors are shown. H Protein
levels are normalized to endogenous actin. I Representative hematoxylin and eosin (H&E) images and immunohistochemical staining of Ki67,
GLI1, and cleaved Caspase-3 (CL. CAS-3) of representative tumor masses (magnification 20 ×; scale bar: 100 μm). J The Ki67, GLI1, and CL. CAS-
3%-positive estimates have been calculated on the total of cells for each image. K Primary SHH-MB cells have been infected with lentiviral
particles expressing shSALL4 or shCTR. After infection, 2 × 104 cells have been orthotopically injected in the cerebellum of nu/nu mice (n= 6/
group). L Representative H&E images (low and high magnifications) of murine SHH-MB orthotopic tumors derived from primary SHH-MB cells
genetically silenced for SALL4 before the injection in nu/nu mice cerebella. (magnification ×4 and ×10; scale bars: 500 µm upper panel, and
200 μm lower panel). Representative immunoblotting of at least three independent tumor grafts with similar results are shown in G. Actin-
normalized densitometric analysis in H represents the mean of n= 3 independent explanted tumors ± SD. Data in F are normalized to
endogenous Gapdh and Hprt control expressed as FC respect to the control sample value and represent the mean of n= 4 tumor grafts ± SD.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 versus shCTR calculated by two-sided Student’s t-test. Schematic representations in B and K
have been created by BioRender.com.
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Statistical analysis
Statistical analyses were performed with GraphPad Prism software version
9 (GraphPad, San Diego, CA, USA). P-values were determined by two-tailed
Student’s t-test for all in vitro experiments. For animal studies, statistical

significances were determined by two-way ANOVA and the sample size
determination was accounted on the need for statistical power. Statistical
significance was set at p ≤ 0.05. For IncuCyte® experiments, data were
analyzed with the IncuCyte® software package (Essen BioScience, UK).
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